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CHAPTER 1 
Introduction 

 
1.1.  Purpose.  This document is intended to serve as a guide to project team members for the 
use of statistics in environmental decision-making.  The foundation of Corps of Engineers 
environmental work is the Environmental Operating Principles as specified in ER 200-1-5.  
These seven tenets serve as guides and must be applied in all Corps business lines as we 
strive to achieve a sustainable environment.   
 
1.2.  Applicability.  The U.S. Army Corps of Engineers (USACE) developed this document 
within the broader scope of Technical Project Planning (TPP), recognizing that 
understanding statistical evaluations can improve project planning and implementation at 
hazardous, toxic, and radioactive waste (HTRW) sites. 
 
1.3.  Distribution Statement.  Approved for public release; distribution unlimited. 
 
1.4.  References.  References are contained in Appendix A. 
 
1.5.  Introduction.  This Manual’s primary objective is to improve a decision-maker’s 
understanding of common environmental statistical evaluations.  The applicability of 
statistical tests and considerations is presented in the context of a typical environmental 
project life cycle.  This document should serve as a first step in explaining statistical 
concepts and their application at HTRW sites.  It is not intended to replace more robust 
statistical texts or electronic statistical software. 
 
 1.5.1.  Statistics are applicable to environmental projects throughout their entire life 
cycle and yield defensible, cost-effective solutions to environmental questions.  Statistics can 
be used to guide the selection of sampling locations, analyze large data sets, and verify that 
project objectives have been met.  Statistics are of particular importance for quantifying the 
power and limitations of environmental data, specifically because these data are usually 
limited.  It is not possible to collect and analyze every bit of an environmental medium (for 
example, soil, sediment, groundwater, or surface water) at a site; instead, a set of sample data 
is used to characterize the environmental medium as a whole. 
 
 1.5.2.  This Manual is organized into four major Chapters, each associated with a stage 
in a typical Superfund project life cycle.  These Chapters are supported by Appendices that 
provide detailed statistical or technical explanations of concepts or techniques used within 
the main sections.  
 
 1.5.3.  Statistical terms unfamiliar to some readers may be used in the four main 
chapters.  When used for the first time, these terms will be printed in italics and footnoted.  
The footnote will direct the reader to the appropriate Appendix for a detailed explanation of 
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the term.  To demonstrate the types of statistical concepts necessary for the planning stages 
of environmental projects, concepts are presented in the context of Comprehensive 
Emergency Response, Compensation, and Liability Act (CERCLA) projects.  The material is 
applicable to Resource Conservation and Recovery Act (RCRA) projects as well.  The steps 
involved in the two programs are similar except for the use of different terminology and the 
applicable regulations.  Table 1-1 presents a terminology crosswalk for the stages of 
CERCLA and RCRA investigations. 
 
 1.5.4.  In the following Chapters of this document, major stages that require data 
gathering and evaluation are presented, and to the extent that statistical processes are 
applicable, examples are provided from case studies illustrating the application of those 
statistical processes.  Some statistical elements may apply in more than one phase of the 
project life cycle.  The Appendices provide detailed instructions on implementing the 
statistical processes. 
 
 1.5.5.  The CERCLA project life cycle is not always linear.  As information regarding a 
given site is gathered, additional questions may be raised about a previously unrecognized 
threat to human health or the environment.  In that case, the process can repeat in whole or in 
part, creating a series of loops to previous portions of the cycle.  In addition, at any point in 
the process, emergency activities (e.g., “time critical” remedial actions) may occur at earlier 
or later times in the cycle.  Finally, the process can terminate at the end of any given phase in 
a “no further action” determination. 
 
Table 1-1.  Project Phase Crosswalk Between CERCLA and RCRA 

CERCLA Project Phase RCRA Project Phase 
Discovery and Notification Permit Application 
Preliminary Assessment RCRA Facility Assessment 
Site Investigation Site Inspection 
Hazard Ranking  Administrative Order  
Remedial Investigation RCRA Facility Investigation 
Feasibility Study Corrective Measures Study 
Proposed Plan Statement of Basis 
Record of Decision RCRA Permit 
Remedial Design Remedy Design 
Remedial Action Corrective Measures Implementation 
Five Year Review Monitoring/Annual Report 
Closeout Closure 

 
 1.5.6.  The remedial action process under CERCLA is necessarily iterative and the 
same statistical tools can be employed repeatedly to address the original problem or newly 
identified issues at the site.  For purposes of this text, however, we will assume a linear 
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progression through an idealized project life cycle, consistent with the instructions contained 
in EM 200-1-2. 

 1.5.7.  In the Technical Project Planning Process, the user is encouraged to identify the 
appropriate project phase for a given segment of work, then reference matching portions of 
this Manual for statistical guidance and methods appropriate to that phase. 
 
1.6.  Technical Project Planning and the Project Life Cycle.  EPA QA/G-4 states, “EPA 
Order 5360.1 A2 [requires that] all EPA organizations (and organizations with extramural 
agreements with EPA) follow a systematic planning process to develop acceptance or 
performance criteria for the collection, evaluation, or use of environmental data.”  Similarly, 
ER 5-1-11 states, “Requirements for quality must be addressed during the planning phase of 
a project’s life cycle, rather than waiting until the review or inspection stage.”  Thus, a 
systematic planning process of some sort is required for all HTRW projects involving the 
collection of data. 
 
 1.6.1.  The EPA approach to systematic planning is described in detail in EPA QA/G-4 
and is called the Data Quality Objectives (DQO) process.  It is a seven-step process, which 
has as its goal the design of legally and scientifically defensible sampling strategies.  The 
DQO guidance generally assumes that decision-making requires a probabilistic approach.  
Fundamental to the DQO process is identifying some statistic describing an environmental 
site that is compared via a statistical process to either a fixed threshold or risk-based value, or 
a statistical comparison of some descriptive measure of data for two or more variables.  The 
DQO process also incorporates statistical tools for estimating such things as the number of 
samples required to measure a site characteristic, spacing of sampling locations, and 
frequency of sampling.  This permits data users to make decisions with specific degrees of 
statistical confidence. 
 
 1.6.2.  The USACE TPP process is broader in scope, with the EPA’s DQO process as 
one step within it, to the extent that probabilistic decision-making is appropriate to the goals 
of the project.  The intent of the TPP process is to “get to closure” and to provide 
documentation of project decisions and project performance.  The TPP process is useful for 
all sites, regardless of whether probabilistic decision-making is involved.  It is highly flexible 
and promotes an approach that balances the size and complexity of a given site or problem 
with the level of effort involved in the planning process. 
 
 1.6.3.  As described in EM 200-1-2, there are four phases to the TPP process, as 
follows. 
 
 1.6.3.1.  Identify the Current Project Phase.  The project manager establishes a project 
team to encompass all of the perspectives and skills required to take the project from 
beginning to end.  The project manager briefs the team on client goals and existing site 
information and develops a conceptual model for the site.  A broad, overall approach to the 
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work is agreed upon, including an assessment of the most likely remedies or outcomes for 
the site.  The work is broken down into clearly defined executable stages and the current 
stage of work is identified. 

 1.6.3.2.  Determine Data Needs.  Allowing all perspectives to be addressed, the team 
identifies the data required for each data user type (e.g., hydrogeologic, chemical, health and 
safety, risk assessment, engineering, etc.).  The team reviews sources of existing information 
for availability, quality, and applicability to the current stage of work, and identifies data 
gaps that only new data can fill. 
 
 1.6.3.3.  Develop Data Collection Options.  With their respective needs defined, the 
team members decide on the best approach to obtain the required data.  Usually, the team 
assesses a number of differing approaches and selects the approach that provides all of the 
requisite data with the best balance of available resources, measurement quality, and client 
risk tolerance.  The TPP process clearly defines three data collection options: basic, 
optimum, and excessive.  A basic sampling approach provides data applicable only to the 
current stage of work, whereas an optimum approach addresses both current data needs and 
anticipated future needs as well.  An approach not focused on the specific data required to 
“get to closure” is excessive and should be avoided. 
 
 1.6.3.4.  Finalize the Data Collection Program.  At this point, the team encourages 
clients, regulators, the public, and in some cases other parties, to take part in the decision-
making process.  Specific DQO statements are prepared for each data user and data type and, 
to the extent that probabilistic decision-making is appropriate, the EPA’s DQO guidance 
document (EPA QA/G-4) is used and applied to these statements.  From these DQO 
statements, scopes of work and other project controlling documents (PCDs) such as work 
plans, quality assurance (QA)/quality control (QC) plans, field sampling plans (FSPs), etc., 
are derived and cost estimates generated. 
 
 1.6.4.  Table 1-2 provides a crosswalk between the EPA DQO Process and the USACE 
TPP process. 
 
 1.6.5.  Failure to apply, or to apply properly, the TPP process can result in a variety of 
negative consequences.  Failure to properly plan for data collection may require more time 
and money to implement the work.  Lack of planning may extend the time it takes to validate 
work because both objectives and verification methods may be unclear.  Poor planning may 
create the need for extensive rework or remobilization.  Finally, lack of advance planning can 
cause increases in legal risk to the client and to the USACE by increasing the potential for 
decision error.  On the other hand, too great an emphasis on planning extends the planning 
cycle and the checking cycle, depleting the available resources. 
 
1.7.  Data Quality Objectives, Data Quality Indicators, and Measurement Quality Objectives.  
This paragraph provides a conceptual understanding of DQOs in the context of project 
planning for environmental investigations and remediations.  The terminology is less 
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important than the underlying concepts that support the decision-making process, as long as 
all parties possess a common understanding of that process.  Project planners derive DQOs 
from scientific objectives, as well as social and economic objectives and the regulatory 
objectives of the environmental program under which the project is implemented.  DQOs are 
technical, goal-oriented, qualitative, and quantitative statements derived from the planning 
process that clarify study objectives, define the appropriate type of data, and specify tolerable 
levels of potential decision error.  The DQO process typically uses statistics and is the basis 
for establishing the quality and quantity of data needed to support decisions.  The DQO 
process does not establish specifications for data quality—called measurement quality 
objectives (MQOs)—or the mechanisms for measuring conformance to those 
specifications—called data quality indicators (DQIs).  MQOs and DQIs are discussed in 
additional detail below. 
 

Table 1-2.  Crosswalk Between the TPP and DQO Processes 

EPA's DQO Process  

USACE TPP Process 
     
Phase I Phase II Phase III Phase IV 

Step 1 
State the Problem  Identify the 

Current 
Project 

Determine 
Data Needs 

Develop Data 
Collection 
Options 

Finalize Data 
Collection 
Program 

Step 2 
Identify the Decision     

Step 3 
Identify Inputs to the 
Decision 

  

Develop Data 
Collection 
Options 

  

Step 4 
Define the Study 
Boundaries 

    

Step 5 
Develop a Decision Rule  

Identify the 
Current 
Project 

  

Step 6 
Specify Limits on 
Decision Error 

    

Step 7 
Optimize the Design      

Finalize Data 
Collection 
Program   

 
 1.7.1.  Data Quality.  Data quality depends on the integrity of each element in a  
series of events.  It is critical to collect samples that are representative of the features of the 
environmental population being investigated in the study area.  Representativeness depends 



 
 
 
EM 200-1-16 
31 May 13 
 

 

1-6 

on factors such as sample frequency, location, time of collection, and the nature of the 
sampled medium.  Pre-testing factors include sample containerization, preservation, 
transportation, and storage.  Sample analysis factors generally include sample homogeni-
zation, sub-sampling, sample preparation (such as extraction and cleanup), as well as the 
instrumental analysis of the sample.  The final steps of the process include data generation, 
reduction, and review. 
 
 1.7.1.1.  Historically, attention has been focused primarily on the analytical component 
of data quality rather than on “total measurement system quality.”  Environmental decision-
makers and practitioners tend to assume that data quality is primarily determined by the 
analytical methodology.  For example, as fixed laboratory methods tend to be superior to 
field methods in terms of analytical uncertainty, data produced from field methods have been 
viewed to be too uncertain to support critical project decisions.  However, defensible 
decisions are possible only when data quality encompasses total uncertainty rather than the 
uncertainty associated with only the analytical portion of the investigation.  The value of data 
is limited less by the analytical procedures than by the quality of the sampling design* and 
the inherent variability of the environmental population of interest or condition being 
measured (the “field” component of variability).  Because analytical uncertainty is typically 
small relative to field uncertainty, data quality usually depends more on sampling design than 
the quality of the individual test methods. 
 
 1.7.1.2.  Table 1-3 summarizes sources or components of variability for environmental 
studies and how they are measured and controlled.  
 
 1.7.1.3.  Regulators have also historically insisted on adhering to pre-approved 
analytical methods because of a perception that this ensures defensible data and that 
definitive data will be produced when EPA-approved analytical methods and QA/QC 
requirements are used.  Though adequate data quality is often achieved using EPA-approved 
analytical methods, they are insufficient to ensure data of high quality.  Efforts to improve 
data quality have primarily focused upon increasing laboratory oversight, rather than on 
developing mechanisms to manage the largest sources of uncertainty in data, which are 
issues related to sampling.  Furthermore, prescriptive methods are scientifically feasible only 
when the sample matrices do not vary in any manner that will affect the reliability of the 
analyses.  As all analytical methods are potentially subject to chemical and physical 
interferences, given the variability and complexity of environmental matrices, it is unlikely 
that “one-size-fits-all” analytical methodologies are viable for all projects.  

 1.7.1.4.  The EPA has recently clarified its intended meaning of the term “data quality” 
in its broadest sense by defining it as “the totality of features and characteristics of data that 
bear on its ability to meet the stated or implied needs and expectations of the client.”  One 
must know how a data set is to be used to establish a relevant benchmark for judging whether 
the data quality is adequate.  Linking data quality directly to their intended use provides a 

                                                 
* Appendix C. 
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firm foundation for building a vocabulary that distinguishes the individual components of 
overall data quality. 
 
 1.7.2.  Data Quality Indicators.  DQIs are qualitative and quantitative descriptions of 
data quality attributes: the various properties of analytical data historically expressed as 
precision, accuracy, representativeness, comparability, and completeness.  Collectively, these 
factors are called the PARCC parameters.  These are discussed in detail in EPA guidance 
documentation.  Because it is evaluated at the same time, an additional parameter often 
combined with the PARCC parameters is sensitivity, which is the ability of an analytical 
method or technology to reliably identify a compound in the sample medium. 
 
 1.7.2.2.  Completeness has been assigned an arbitrary goal of 80 to 100% based on the 
premise that decisions are still possible if a limited portion of the data are discarded (for 
example, because of quality control problems).  However, the goal is based primarily on 
practical experience and is not mathematically based.  Completeness should be evaluated in 
the context of project objectives.  
 
 1.7.2.3.  In addition to these, selectivity is also a data quality indicator.  “Selectivity” is 
the ability of an analytical method to identify the analyte of concern, e.g., the existence of 
other analytes in a sample or other interferences may mask the presence of the target analyte. 
 
 1.7.2.4.  There may be more than one DQI for a single data quality attribute.  For 
example, sensitivity is generally thought of in terms of detection, quantitation, or reporting 
limits, i.e., the lowest value that an analytical method can reliably detect or report.  However, 
another important element of sensitivity is discrimination, the ability to distinguish between 
values to a given degree of precision.  In other words, can the method tell the difference 
between values of 1 and 2 units, or only differences between 10 and 20 units?  When 
developing DQIs, it is important to define them in terms of all the important attributes and 
assign specific numeric values to them as often as practicable. 
 
 1.7.3.  Measurement Quality Objectives.  MQOs are project-specific values assigned to 
DQIs derived from project-specific DQOs.  MQOs are acceptance criteria for the DQIs and 
are derived by considering the level of measurement system performance needed to actually 
achieve project goals.  MQOs are not intended to be technology - or method-specific.  As 
with DQOs, MQOs specify what the level of data performance should be, but not how that 
level of data performance is to be achieved.  A large part of the variability in environmental 
data stems from sampling considerations.  MQOs should balance the relative contributions 
from analytical uncertainties and from sampling uncertainties.  In many environmental 
media, matrix heterogeneity causes sampling variability to overwhelm analytical variability.  
Historically, the term MQO was restricted to the analytical side of the measurement process, 
but the broader concept of DQO (or decision confidence objectives) requires that sampling 
considerations be included.  The importance of including both the sampling and analytical 
component of MQOs when assessing overall data quality cannot be overemphasized. 
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Table 1-3.  Variability in Environmental Studies 
Source of Variability Measurement Method Control Methods 

Analytical Variability 
Analytical instrumentation Replicate measurements of 

instrumental standards (most 
common for inorganic analysis) 

Regular preventive maintenance 

Analytical method Duplicate analytical spikes, lab-
blind field duplicate samples 

Use of standard methods 
documented as standard operating 
procedures; control of standards 
and reagents; control of instrument 
conditions 

Sample preparation method Duplicate control samples and 
matrix spike/matrix spike 
duplicates 

Use of standard methods 
documented as standard operating 
procedures; control of standards 
and reagents; regular, close 
supervision 

Analyst Analyst demonstration of 
capability, blank 
spikes/performance evaluation 
(PE) samples 

Inter-laboratory comparison 
studies; internal PE and auditing 
programs; analyst training; 
regular, close supervision 

Field Variability 
Sampling equipment Field blanks Routine inspection and preventive 

maintenance; decontamination; 
selection of appropriate equipment 
for representative samples 

Sampling method Method-specific standard 
deviation of field duplicate 
results 

Selection of appropriate methods 
for representative samples 

Sampler Inter- and intra sampler standard 
deviation of field replicate results 

Independent auditing program; 
training; regular, close supervision 

Matrix heterogeneity Field duplicates or replicates, 
matrix specific standard 
deviation of field replicates, 
matrix spike duplicates 

Effective field mixing of sample 
components; compositing 

Sample selection Site-wide or stratum-specific 
standard deviation of field 
replicate results 

Representative sampling plan; 
sufficient number of samples; 
statistically-based sampling design 

Note: Duplicates are separate aliquots of the same sample; replicates are a second sample from the same 
location. 

 
 1.7.4.  Relationships Among Decision Goals, DQOs, MQOs, and QC Protocols.  
During project planning, there should be a logical conceptual progression in the development 
of decision goals, DQOs, MQOs, and QC acceptance criteria.  However, in practice, this will 
be a non-linear process.  
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 1.7.4.1.  As project planning develops, the following should be clearly presented: 
 
 1.7.4.1.1.  General decision goals. 
 
 1.7.4.1.2.  Technically expressed project goals (DQOs), and decision rules that will 
guide project decision-making. 
 
 1.7.4.1.3.  Tolerable uncertainties for decisions. 
 
 1.7.4.1.4.  Uncertainties that create decision errors. 
 
 1.7.4.1.5.  Strategies for managing the uncertainties to achieve the desired tolerances 
for decision errors. 
 
 1.7.4.2.  In the beginning of the project, program managers often set broad, non-
technical goals.  The next step is to translate these broad, non-technical goals into more 
technically oriented goals that can address specific considerations such as the following. 
 
 1.7.4.2.1.  Regulations—what are the applicable environmental regulations? 
 
 1.7.4.2.2.  Confidence in the outcome—how certain do we need to be by the end of the 
project that we have achieved goals such as risk reduction or regulatory compliance? 
 
 1.7.4.2.3.  What are the constraints that need to be accommodated? 
 
 1.7.4.3.  The next level of technical detail for data collection involves identifying DQIs 
and assigning to them project-specific MQOs that will be needed to achieve the project 
DQOs.  At this point, the project team begins to consider in detail the options available for 
acquiring the needed measurements and selecting those that best meet the needs of the 
program.  These decisions are documented in sampling and QC plans that specify the 
controls that will be used to ensure that MQOs are met and that any deviations are 
appropriately addressed. 
 
 1.7.4.4.  Because sampling design and analytical strategy interact to influence the 
statistical confidence in final decisions, interaction among a statistician, a sampling expert, 
and an analytical chemist is critical for selecting a final strategy that can achieve project 
goals cost-effectively.  The statistician is concerned with managing the overall variability of 
data, and with interpreting data with respect to the decisions being made.  A statistician is a 
person having adequate familiarity with statistical concepts to correctly apply the required 
tests; this does not necessarily require a degree in statistics.  The field sampling expert is 
responsible for implementing the sampling design while managing contributions to the 
sampling variability as actual sample locations are selected and as specimens are collected.  
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The chemist is responsible for managing components of variability that stem from the 
analytical effort. 
 
 1.7.4.5.  In summary, the conceptual progression starts with the project-specific 
decision goals, and then moves from broader, higher-level goals to narrow, more technically 
detailed articulations of data quality needs.  Project decisions are translated into project-
specific DQOs; then into project-specific MQOs; then into technology/ method selection and 
development of a method-specific QC protocol that blends QA/QC needs of the technology 
with the QA/QC needs of the project.  Then the process reverses.  The data must be assessed 
against the project MQOs to document that data quality meets the decision-making needs of 
the project. 
 
 1.7.4.6.  Figure 1-1 presents the life cycle in project planning.  Figure 1-2 illustrates 
which guidance documents are useful in the planning phases of a project. 
 
1.8.  Statistics in Environmental Project Planning.  The number of individual samples 
collected during a given study is called sample size and is generally designated by the 
statistic n.  In order for decisions based on that sample to be meaningful in any scientific 
sense, the sample size has to be sufficiently large to account for the inherent variability in the 
characteristics measured.  Sample size should be dependent on the variability in the 
measured condition but, in practice, is often limited by available resources. 
 
 1.8.1.  A hypothetical illustration may be helpful in understanding this relationship.   
Let us suppose that a researcher wants to know the average concentration of a particular 
chemical constituent in the air of a sealed room.  The constituent of interest is initially absent 
from the room and the researcher releases the chemical into the room from a port in the north 
wall of the room.  Immediately after opening the port, a measurement taken along the south 
wall will not detect the presence of the chemical, while a sample taken adjacent to the port 
will display a high concentration.  As the chemical disperses throughout the room via various 
physical processes, a single sample taken at any location in the room will not provide a 
representative value for the average concentration in the room as a whole.  Even if a single 
sample were collected some time well after the release of the gas (i.e., after an equilibrium 
state of dispersion has been achieved), depending upon the physical characteristics of the 
chemical and the room, it may not be uniformly spread throughout the room.  Thus, a sample 
taken at any single randomly selected location will not give a representative result for the 
room as a whole, or even necessarily a good approximation. 
 
 1.8.2.  Only when the chemical is uniformly dispersed throughout the three dimensions 
of the room, and is held static in that condition, can a representative result be arrived at from 
a single sample.  The analytical error or measurement uncertainty would also need to be 
negligible when analyzing the one sample.  In all other cases, the true population mean (µ)* 

                                                 
* Appendices C and D. 
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(the real average concentration for the room as a whole) must be approximated by averaging 
the results from a number of samples.  
 
 1.8.3.  The greater the variability in the chemical concentration throughout the room is, 
the more individual samples will be required to formulate an accurate approximation of the 
true average.  Therefore, as decision confidence requirements increase (i.e., as confidence 
increases toward 1 or 0 decision error tolerance), the number of samples required to correctly 
estimate any statistical parameter will also increase.  
 
 1.8.4.  Variability is a measure of the degree of dispersion (or spread) for a set of 
values.  The sample variance*, s2  and sample standard deviation, s, measure the spread of 
individual measurements or values about the sample mean†, x .  Some factors that may 
contribute to variability in environmental populations are the following. 
 
 1.8.4.1.  Distance, direction, and elevation relative to point, area, or mobile population 
sources. 
 
 1.8.4.2.  Non-uniform distribution of pollution in environmental media owing to 
topography, hydrogeology, meteorology, actions of tides, and biological, chemical, and 
physical redistribution mechanisms. 

 1.8.4.3.  Diversity in species composition, sex, mobility, and preferred habitats of biota. 
 
 1.8.4.4.  Variation in natural background levels over time and space. 
 
 1.8.4.5.  Variable source emissions, flow rates, and dispersion parameters over time. 
 
 1.8.4.6.  Accumulation or degradation of pollutants over time. 
 
 1.8.5.  For a particular sampling plan where n measurements are taken for some 
contaminant of concern in a study area, a (sample) mean concentration ( x ) and (sample) 
standard deviation (s) for the contaminant are calculated.  The standard deviation measures 
the variability of the individual measurements.  However, it is often the case that it is the 
variability of x  itself that is of interest.  The variability of the mean is often measured by the 
standard deviation of the sample mean, xs  = ns / .  Those two sample values, x  and xs , are 
used to estimate the interval (range) within which the true mean (µ) of the chemical 
concentration probably occurs, under the assumption that the individual concentrations 
exhibit a normal (bell-shaped) distribution. 
 

                                                 
* Appendices D, E, and H. 
† Appendices C, D, E, F, G, and H. 
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 1.8.6.  The relationship among variability, available resources (expressed as sample 
number, n), and decision confidence or lack of uncertainty is fundamental to the project 
planning process.  In general, cost increases as the desired level of confidence or lack of 
uncertainty increases.  Thus, balancing cost and confidence is a primary objective of the 
planning process.  As illustrated in Figure 1-3, this can be depicted as a balance between cost 
and level of uncertainty: reducing uncertainty increases project costs.  As the number of 
samples increases, the uncertainty decreases but the cost increases.  As depicted in Figure  
1-3, project planning is the fulcrum of a seesaw balancing cost and uncertainty.  

Identify 
Current Project 

Determine 
Data Needs 

Develop Data 
Collection Options 

Finalize Data 
Collection Program 

•  
•  
•  

Prepare Team Information Packages 
Identify Site Approach 
Identify Current Project 

  

•  
•  

Determine Data Needs 
Document Data Needs 

•  
•  
•  

Plan Sampling & Analysis Approach 
Develop Data Collection Options 
Document Data Collection Options 

•  
•  

Finalize Data Collection Program 
Document Data Collection Program 

Existing Site 
Information 

Customer’s 
Goals 

Phase I 

Phase II 

Phase IV 

Phase III 

Figure 1-1.  Project Planning Life 
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 1.8.7.  When dealing with regulators and clients, it is often beneficial to illustrate, in 
mathematical terms, the relationship among the project objectives, the desired confidence for 
decisions, and the cost of the project.  
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 1.8.8.  Figure 1-4 illustrates the relationship of factors that need to be considered in 
successful project planning. 
 
 1.8.9.  The purpose of the project planning triad approach is managing total decision 
uncertainty.  Total uncertainty may be viewed as the sum of analytical and field uncertainty.  
Analytical uncertainty is the portion that arises from variability and bias in the instrumental 
or analytical test method (as indicated in Table 1-3).  Field uncertainty depends on factors 
such as the temporal and spatial variability of the target environmental population (Table  
1-3).  Field variability typically exceeds the analytical variability and primarily depends on 
the sampling design (e.g., the total number of samples, the sample mass, and the nature of 
field sampling and laboratory sub-sampling methods).  In general, data produced by 
screening analytical methods will contain more analytical variability and bias than data 
produced by definitive methods.  However, field analyses are less costly than laboratory 
analyses, so a greater number of field samples can be analyzed than laboratory samples for 
the same fixed cost.  Thus, even though field analyses typically contain higher analytical 
variability relative to laboratory analyses, a larger number of field samples can reduce the 
total variability more effectively than a smaller number of similarly collected laboratory 
samples.  Field analytical methods should be scrutinized, however, because the total 
uncertainty does not depend on measurement precision (variability) alone; it also depends on 
a number of data quality elements such as analytical bias, sensitivity, and specificity (i.e., the 
ability to detect or quantify the analyte or contaminant of concern in the presence of other 
analytes or interferences in the sample). 
 

 

 

 

 

 

 

 

 

Figure 1-4.  Project Planning Triad 
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modify sample locations on the basis of new information about the extent of contamination 
during a single mobilization.  In contrast, fixed laboratory data packages are produced 
several weeks after sampling is complete.  Remobilization may be necessary to resolve 
questions arising from laboratory results. 

 1.8.11.  The triad approach is especially useful for statistical designs such as adaptive 
sampling,* ranked set sampling∗, and systematic sampling∗, as these designs often require 
larger numbers of samples.  To successfully implement the approach, the capability of the 
field methods must be scrutinized with respect to project data quality and measurement 
objectives.  For example, many field methods are not as sensitive or selective as laboratory 
methods.  If the primary objective is to characterize contamination with respect to some fixed 
risk-based limit or cleanup goal, and the detection limit is greater than the decision limit, 
then comparisons of the field data to the decision limit will not be viable.  Comparisons of 
field and laboratory data during a pilot test phase to verify or establish correlation between 
two sets of results is a useful approach for evaluating and selecting field methodologies. 

 1.8.12.  The triad approach relies on thorough, systematic planning to articulate clear 
project goals and encourages negotiations among stakeholders to determine the desired 
decision confidence.  A multidisciplinary technical team then determines what information is 
needed to meet those goals.  A key feature of this planning is identifying what uncertainties 
could compromise decision confidence and allowing team members with appropriate 
sampling and analysis expertise to explore cost-effective strategies to minimize them.  Often, 
the most cost-effective work strategy involves the second leg of the triad, which is using a 
dynamic work plan to make real-time decisions in the field.  The third leg of the triad uses 
field analytical methods to generate real-time on-site measurements that support the dynamic 
work plan.  Projects managed using these concepts have demonstrated cost savings of up to 
50% over traditional approaches.  

 1.8.13.  The contributions to the total variability (i.e., the total precision component of 
the uncertainty) can be expressed as a vector sum of an analytical component and sampling 
component of the variability (e.g., or as a ratio of the sampling to analytical variability, say 
9:1).  Although the analytical variability is minimized by conventional laboratory analyses, 
sampling variability is often not adequately addressed.  Budget constraints invariably limit 
the number of laboratory analyses.  A combination of high laboratory analysis costs and a 
poor sampling design often results in a low sampling density that is not very representative 
of the environmental population of interest.  Field studies consistently find that the sampling 
design, rather than analytical considerations, predominately governs the total variability. 

 1.8.14.  When analytical costs are lower, more samples can be analyzed, yielding more 
confidence in the representativeness of the data set (Phase 1).  This is most effective if field 
methods are used to generate data and a dynamic work plan rapidly resolves any uncertainty 
about location and volume of contamination (for example, locate and delineate hot-spots in a 
                                                 
* Appendices C and D. 



 
 
 
EM 200-1-16 
31 May 13 
 

 

1-16 

single field mobilization).  If the analytical data quality used to manage sampling uncertainty 
is less than what is eventually needed to make final project decisions, such as whether the 
site can be declared clean, more expensive definitive analyses may be performed on samples 
selected to refine the feature of interest (Phase 2).  However, if the initial method produces 
data of sufficient rigor to support defensible decision-making, then additional, expensive 
analyses would be redundant and unnecessary.  

 1.8.15.  In Phase 1, analytical uncertainty (variability) increases so that unit sample 
costs decrease, allowing a higher sampling density than with the conventional approach.  As 
a result, sampling uncertainty (variability) decreases, lowering the overall uncertainty in data 
interpretation.  Sampling uncertainty is further decreased if hot-spot removal reduces the 
variability in contaminant concentration and if representative sampling locations for more 
rigorous analysis are identified based on Phase 1 information.  The vector representation of 
uncertainty for this approach indicates that the overall uncertainty in the data set for site 
decision-making will be much less than the overall uncertainty in the conventional method.  

 1.8.16.  Data quality should be judged on whether both the sampling and the analytical 
uncertainties in the data sets support decision-making at the desired degree of decision 
confidence.  However, relying solely on regulator-approved, definitive analytical methods, 
while ignoring sampling uncertainty, easily produces uncertain decisions.  

 1.8.17.  When field analytical methods are used, the process and resulting data are often 
referred to as “field screening.”  The term is misleading when field methods are of adequate 
quality to satisfy project DQOs; field analyses are not necessarily “screening” or inferior to 
fixed-laboratory analyses in the context of the overall end use of the data.  Here, alternate 
terminology is proposed to reflect current EPA guidance that both sampling and analytical 
uncertainties must be managed to assess data quality.  We consider the two terms “effective 
data” and “decision-quality data,” to be equivalent when describing data of known quality 
that are effective for making defensible primary project decisions, because both sampling 
and analytical uncertainties have been explicitly managed to the degree necessary to meet 
clearly defined project goals. 

 1.8.18.  Primary project decisions are those decisions that drive resolution of the 
project, such as whether or not a site is contaminated and what subsequent actions, if any, 
will be taken.  Therefore, contaminant data are usually the data sets of interest.  But data sets 
can interact in complex ways, and are referred to as collaborative data sets.  For example, a 
contaminant data set considered alone might not be effective for making project decisions, 
yet the same data set might be more effective when combined with other data or information 
to manage the remaining uncertainties.  Ancillary data refers to data used to support many 
other project decisions that fall under worker health and safety monitoring, data that help in 
the understanding of fate and disposition of contaminants, and data that aid in decisions 
about the representativeness of environmental samples. 

 1.8.19.  This decision-making paradigm and terminology embodies the central theme of 
systematic project planning, the management of decision uncertainty.  
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CHAPTER 2 
Preliminary Assessment and Site Investigation 

 
Section I 
Preliminary Assessment 
 
2.1. Introduction.  A Preliminary Assessment (PA) is initiated after a CERCLA site (or sus-
pected site) is identified.  Statistical evaluations are not typically conducted for a PA.  The 
purpose of the PA is to determine if a site poses a potential threat to human health or the envi-
ronment.  EPA maintains a list of actual and potential hazardous substance releases requiring 
CERCLA response.  The property owner or agent is obliged to perform a PA; for Federal  
facilities, a PA is required within 18 months of listing (57 FR 31758; 17 July 1992).  
 
 2.1.1.  The PA process collects information from existing resources.  Generally, PA data 
are qualitative rather than quantitative, and do not require statistical evaluation.  In some in-
stances, historical chemical data may be available, but the PA does not require that such data 
be statistically manipulated.  The EPA evaluates the site information according to the Hazard 
Ranking System (HRS) as detailed in 55 FR 51531 (14 December 1990).  HRS calculations 
do not have statistical components.  Some examples of PA information necessary to the HRS 
are as follows. 
 
 2.1.1.1.  Identification of wastes or waste sources. 
  
 2.1.1.2.  Physical site conditions, such as precipitation rates, depth to groundwater, or 
distance to surface water bodies. 
 
 2.1.1.3.  Workers or residents at a site. 
 
 2.1.1.4.  Local population within a set radius of a site. 
 
 2.1.2.  Based on the results of the HRS, a site may warrant further investigation or no 
further action.  Though quantitative statistical evaluations are not required during a PA, the 
following case study illustrates the value of a thorough qualitative evaluation of PA infor-
mation.  
 
2.2.  Case Study 1—Examining Historical Data Sets.  In the preliminary assessment of a land-
fill located on a manufacturing facility in Pennsylvania, some historical analytical data were 
available to the project team.  The question raised, however, was whether or not those data 
would be usable in the PA.  If the data were found to be usable and applicable, the landfill 
might be removed from further consideration in the CERCLA process.  However, if the data 
were not found to be usable, then a Site Inspection (see Section II) would be needed.   
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Moreover, if the data were used, prior to further validity testing (thus, explicitly assuming the 
data were reliable), and found later in the assessment to be erroneous, inaccurate and mislead-
ing conclusions would have been drawn. 

 2.2.1.  Several different assessments of the data were required:  i) Were the precision, 
accuracy, and representativeness of the data sufficient for the purpose?  ii) Was the sampling 
design for the historical data sufficient for the purpose?  and iii) Were the data comparable 
from historical event to historical event and could they be combined with new data, if neces-
sary, to draw conclusions about the site? 

 2.2.2.  The existing data were included in monitoring reports to the state.  The reports 
consisted of little more than sample identification, date, and analytical results.  Only positive 
detections were reported.  Based on that information alone, the project team could not assess 
the quality of the data and concluded that unless additional information was obtained, the data 
could not be used as part of the PA.  The site owners began to investigate the origins of the 
data. 

 2.2.3.  In the interim, the project team assigned a geologist to examine the sampling  
design for the work.  The facility had identified a single monitoring well, MW-02, as an 
upgradient location for comparison to a set of three downgradient wells, MW-03, MW-06, 
and MW-08.  Through a review of well construction diagrams, as well as available topograph-
ic and hydrogeologic information, the geologist found that the well identified as upgradient 
was located within 3 feet of the landfill footprint, in a swale that received run-off from the 
landfill. 

 2.2.4.  Thus, it was likely that the upgradient well was directly impacted by landfill  
operations and would not constitute an acceptable upgradient location.  Further, MW-06 and  
MW-08 were found to be generally cross-gradient to MW-02 rather than directly down-
gradient, and that MW-03 had been screened in a perched aquifer, hydrologically isolated 
from the aquifer monitored by the other three wells. 
 
 2.2.5.  Upon receipt of laboratory data packages for the historical data, the project team  
observed that a variety of different analytical methods and laboratories had been employed in 
the course of the work, resulting in mixed reporting limits and inconsistent detection of 
analytes.  As a result of these assessments, the historical data were judged not to be usable for 
the PA. 
 
 2.2.6.  In summary, prior monitoring appeared to indicate the presence of contamination 
(e.g., which would have triggered an RI), but additional evaluation data indicated that the  
data were not usable; therefore, an SI was initiated. 
 
Section II 
Site Inspection 
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2.3.  Introduction.  The Site Inspection (SI) is the next step in the CERCLA process.  Statisti-
cal evaluations are often appropriate for an SI.  Typically, the major objective of these evalua-
tions is to establish the presence or absence of site contamination with respect to predefined 
decision limits.  An SI is performed if the PA indicates the potential for hazardous materials 
to be present, if human or ecological receptors, or both, exist, and if there are potential com-
plete exposure pathways for the receptors.  The SI generally focuses on establishing, through 
sampling and analysis, whether hazardous materials are present at concentrations that exceed 
some “screening criteria.”  The project planning team must establish decision limits or screen-
ing criteria prior to sampling and analyses.  Generally, decision limits fall into the following 
categories: 
 
 2.3.1.  Naturally occurring or known background levels (site-specific background infor-
mation is typically unavailable at the SI stage). 
 
 2.3.2.  Ecological benchmarks, which are dependent on analytes and media (typically 
developed with regulatory input). 
 
 2.3.3.  Risk-based screening criteria for human health such as EPA Region IX Prelimi-
nary Remediation Goals (PRGs) or EPA Region III Risk-based Concentrations (RBCs) are 
available at the following Web sites. 
 
 http://www.epa.gov/region09/waste/sfund/prg/index.html  
 
 http://www.epa.gov/reg3hwmd/risk/index.htm 
 
 2.3.4.  Applicable or relevant and appropriate requirements (ARARs).  For example, 
Maximum Contaminant Levels (MCLs) for drinking water may be ARARs for some 
CERCLA sites. 
 
 2.3.5.  During the DQO process, stakeholders identify the study questions, such as the 
presence or absence of contamination with respect to a set of decision limits, the nature and 
quantity of the data required to support the decision-making process, and the acceptable toler-
ances for decision errors.  Selecting the screening criteria is critical for establishing both data 
quality objectives (DQO) and measurement quality objectives (MQOs).  MQOs are estab-
lished after DQO development.  MQOs for analytical sensitivity must be adequate to report 
quantitative contaminant concentrations at levels less than the project decision limits.  (Refer 
to Appendix G for a discussion of detection limits and quantitation limits.) 

 2.3.6.  Team members must establish the DQOs for the project at the outset of the SI.  In 
an SI, stakeholders must identify the problem at the site and how it will be evaluated, identify 
the decisions to be made using the data, and specify limits on that decision error.  These will 
lead the project team to an optimal sampling design at a site.  Appendix G discusses detection 

http://www.epa.gov/region09/waste/sfund/prg/index.html
http://www.epa.gov/reg3hwmd/risk/index.htm
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limits, quantitation limits, and censored data.  Understanding the concepts in the context of 
ARARs guides part of the project planning. 
 
2.4.  Sampling Design.  In general, statistical sampling designs are required to support statisti-
cal evaluations.  Professional judgment, site-specific information, and DQOs must be used to 
select the type of the statistical sampling design (e.g., random* as opposed to systematic sam-
pling) and the required number of samples.  The sampling design depends on factors such as 
the nature and distribution of the contamination in the study area, sampling cost, tolerances 
for decision error, and perceived level of decision uncertainty.  For example, a small number 
of samples during the SI stage may be beneficial for short term cost considerations, but may 
not be adequate to achieve the desired tolerances for decision uncertainty and error and may, 
therefore, not be a cost-effective strategy by project closeout (as multiple sampling events  
rather than a single sampling event would typically be required to support decision-making).  
 
 2.4.1.  Decision uncertainty refers to statistical variability, subjective judgment, ran-
domness in the process, disagreement, and even imprecise wording inherent in the decision-
making process (Moser 2000).  Decision uncertainty is a function of the variability of the con-
taminant of concern in a study area and depends on the number of samples collected.  For ex-
ample, if the sample mean, x , is an appropriate measure of site-wide contamination and the 
standard deviation of the sample mean, xs , measures the variability around x , then the varia-
bility (and uncertainty) decreases as the number of samples n increases, because xs  = ns / .  
(Increasing the physical size of each sample would also decrease the variability.)  It should al-
so be noted that, in addition to decreasing the variability, x becomes a more accurate estimate 
of the population mean, µ, as n increases. 
 
 2.4.2.  Site-specific information must be taken into account when selecting the sampling 
design.  In particular, the team members need to identify potential source areas and any strati-
fication they may represent.  For example, suppose there are two sources of lead at a bomb re-
conditioning facility—stack emissions affecting surface soil and old buried waste piles 
affecting subsurface soil.  This information can be used to design a sampling scheme for the 
“surface soil stratum” and a separate scheme for the “subsurface soil stratum.”  Likewise, 
there may be different study objectives for each stratum.  Surface lead may be of concern for 
exposure of site workers and subsurface lead may be of concern for protection of ground-
water.  Stakeholders would need to identify these issues during project planning to develop an 
optimal site-wide sampling design. 

 2.4.3.  Several different types of sampling designs are listed below.  Appendix C  
presents a detailed explanation of these designs. 
 

a. Judgmental sampling. 
b. Random sampling. 

                                                 
* Appendices C and D. 
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c. Simple random sampling. 
d. Stratified random sampling. 
e. Systematic and grid sampling. 
f. Ranked set sampling. 
g. Adaptive cluster sampling. 
h. Composite sampling. 

 
 2.4.4.  The TPP and DQO processes are used to develop an appropriate sampling design 
for the SI phase.  Two case studies are presented below to illustrate sampling designs com-
monly used for SI. 
 
2.5.  Case Study 2—Judgmental Sampling, Oil/Water Separator.  Project planners found an 
oil/water separator buried underground at a pipe mill.  There was evidence of leakage to the 
surface soils around the tank and a release to groundwater was suspected.  The objective was 
to determine if there was a measurable presence of oil floating on the water table. 
 
 2.5.1.  Historical information and local knowledge allowed a hydrogeologist to deter-
mine the direction of groundwater flow.  The hydrogeologist also knew of two monitoring 
wells in the area.  One well was located upgradient to the separator; the second was cross-
gradient. 
 
 2.5.2.  The project planners decided to place a new monitoring well downgradient of the 
separator.  Because they were looking for an oil product, the soil boring for the monitoring 
well was logged by a geologist who could then identify the water table depth.  The well was 
installed so that the screen intersected the water table, where floating oil would most likely be 
visually detected. 
 
 2.5.3.  Judgmental sampling was predominantly used in this example because the plan-
ners possessed significant existing site information.  They knew the physical properties of the 
oil, they knew the hydrogeology of the site, and they were answering a no quantitative ques-
tion.  

 2.5.1.  Case Study 4 predominantly illustrates the application of composite sampling* 
and stratification† for a SI, and the iterative nature of the DQO process when optimizing a 
sampling design.  
 
2.6.  Case Study 3—Arsenic Contamination in Soil.  At an active manufacturing site, arsenic 
contamination was widespread in surface soils.  Preliminary screening analyses and risk  

                                                 
* Appendices C and D. 
† Appendix D. 
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assessments identified worker exposure as the most likely concern.  The site was initially  
divided (stratified) into 90 subunits related to work areas for a more in-depth evaluation of 
risk.  Based on financial constraints, the project team was allocated a budget of $50,000 for SI 
sampling and analytical testing. 
 
 2.6.1.  The aggregate initial cost of a field grab sample was $175, with $100 attributed to 
field collection and $75 attributed to laboratory analysis.  The expected percent relative stand-
ard deviation (%RSD) for the analytical (laboratory) measurements was 5%.  The estimated 
standard deviation, s, for the analytical method, at the decision limit of 600 ppm, was comput-
ed as 5% of 600 ppm or 30 ppm. 
 
 2.6.2.  The planning team estimated the field component of the variability to be 10 times 
greater than the laboratory component of the variability.  Thus, the %RSD for the field com-
ponent of the variability was calculated by multiplying the %RSD for the analytical measure-
ments by 10 (yielding a field component %RSD of 50%).  This estimate was then multiplied 
by 600 ppm to yield a value of s equal to 300 ppm for the field component of variability (i.e., 
50% of 600 ppm).  The estimates for field and analytical variability (i.e., variance or s2) were 
then combined and the standard deviation was calculated (s = 330 ppm).  The maximum ob-
served arsenic concentration was 720 ppm.  The analytical method was deemed appropriate 
by the planning team.  If historical sampling data were available, the data would be used to  
estimate the field variance and to test for normality. 
 
 2.6.3.  The planning team principally considered two sampling design alternatives—
simple random sampling and composite sampling (see Appendix C for a review of each sam-
pling method).  A t-test was used to calculate the sample size for simple random sampling 
(Appendix L).  Given a decision error limit of α = 0.01, more than 200 samples per work area 
would have been required (refer to Appendix L for a review of methods involved in setting 
and testing hypotheses).  The total cost of this sampling effort would have exceeded $3 mil-
lion.  
 
 2.6.4.  Using similar methods, the team explored composite sampling, which would have 
required 30 samples to be collected per work area for a cost of over $1 million.  Given the 
considerable cost burdens for both proposed sampling designs, the team decided to return to 
Step 6 of the DQO process and modify the decision error limits.  The team found that by in-
creasing α to 0.05, the composite sampling design would require the collection of 13 samples 
for each of the 90 work areas.  This revised design had a total cost of $204,750,  
approximately one-fifth of the original estimate.  
 
 2.6.5.  The team realized that they would have to find other means of generating an ap-
propriate design while remaining within budget.  To do this, the project team redefined the 
boundaries of the study (by revisiting Step 4 of the DQO process).  The team recognized that 
one of the drivers of the cost was the large number of separate study units (previously, the 
calculated sample size was applied to each of the study units).  The planning team used expo-
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sure information for the contaminant to map out the potential or expected pathways in the sur-
face soils through which the contaminant could spread.  The potential pathways were catego-
rized into four distinct spatial units. 
 
 2.6.6.  Rather than collect data and make decisions for each of the 90 individual work 
areas, the team decided to sample and make decisions for each of the four risk areas.  Recog-
nizing that these larger areas carried greater decision error consequences, the team revisited 
Step 6 of the DQO process and established new limits for decision errors applicable to the 
four risk areas.  The team established different decision confidence limits for each and recal-
culated the number of samples required.  The cost of implementing this design was $38,850, 
which fell within the $50,000 budget for the sampling and analysis. 

2.7.  General Review of Sample Size Determination*.  For typical statistical sampling designs, 
there are well-defined relationships between the number of required samples (i.e., sample 
size), tolerance for decision errors, and inherent variability of the analytical measurements 
and the target environmental population.  One such relationship states that the sample size in-
creases as the tolerance for decision error decreases or the variability increases.  The sample 
size must be equal to or greater than the sample size required to achieve predetermined toler-
ances for decision errors.  When confidence limits for the mean are of interest, an appropriate 
sample size is required to generate a sufficiently precise estimate of the true mean concentra-
tion of a chemical contaminant (refer to Paragraph 3.11 and Appendix K for additional dis-
cussion of confidence limits).  For the example presented above, the sample size must be 
adequate to demonstrate that the upper limit of the CI for µ is less than the applicable regula-
tory threshold, RT.  The required sample size must increase as s2 increases and as the differ-
ence Δ (RT – x ) decreases.  In a well-conceived sampling plan for a solid waste, every effort 
should be made to estimate the values of x  and s2 before sampling starts.  Case Study 3 illus-
trated that decision confidence affects sample size.  Case Study 4 illustrates this concept in a 
different setting. 

2.8.  Case Study 4—Effect of Decision Confidence on Sample Number.  Upon promulgation 
of the Toxicity Characteristic Leaching Procedure (TCLP) rule, a steel mill in Maryland con-
tracted with a consultant to collect samples from various waste streams within the facility for 
TCLP analysis of metals (this case study considers only the cadmium data).  One such waste 
stream was from a wastewater treatment system and consisted of collected sludges.  Although 
no previous analysis of sludges had been done, cadmium had been monitored in the waste-
water stream before treatment.  The project manager believed that the wastewater data would 
be sufficient for establishing routine variability of cadmium in the sludge, assuming there 
were no great differences in the treatment process over time and a 10 times concentration  
factor from wastewater to sludge. 

 2.8.1.  The project manager decided to use the past year’s wastewater data to make  

                                                 
* Appendix L. 
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preliminary estimates of the number of samples required to meet the statistical confidence  
requirements of the TCLP rule (i.e., α = 0.2).  Four results (in milligrams per liter [mg/L]) 
were available from the previous year as follows: 14.2, 9.6, 21.7, and 19.3. 
 
 2.8.2.  The mean and variance of the results (as adjusted for concentration to sludge) 
were the following: x = 1.6 mg/L and s2 = 2.2 mg/L, respectively.  The proposed water regu-
latory threshold value (RT) was 1 mg/L. Using the formula for simple random sampling, the 
project manager calculated the number of samples required as follows: 
 
 2 2 2( ) (RT )n t s x= × ÷ −   
 
where: n = number of samples required 
 t = Student’s value for n–1 degrees of freedom and 0.8 confidence 
 s2 = sample variance 
 x  = sample mean 
 RT = regulatory threshold. 
 
 2.8.3.  Thus, n = [(0.9785)2×2.2]/(1 – 1.6)2 = 6 samples.  Samples are an integer value, 
and should be reported without decimal fractions.  (The value of t may be obtained from  
Table B-23, where df = 3 and p = 0.8.)  Assuming a sampling cost of $50 per sample and an 
analytical cost of $25 per sample, this testing would cost $450. 
 
 2.8.4.  The client’s attorneys asked what the effect would be should they wish to estab-
lish a safety margin by increasing the decision confidence to α = 0.05.  The revised plan 
would require 
 
 n = [(2.353)2×2.2]/(1 – 1.6)2 = 34 samples, or a sampling and analysis cost of $2,550. 
 
2.9.  Summary of Case Studies.  Case studies 2 through 4 illustrate the multitude of related 
factors that must be considered when evaluating which sampling design to apply in a particu-
lar SI.  When evaluating alternative sampling plans, planners may anticipate the concentration 
patterns likely to be present in the target population.  Advanced information about these pat-
terns can be used to design a plan that will estimate population parameters with greater accu-
racy and less cost than can otherwise be achieved. 
 
2.10.  Comparing On-site Data to Fixed Screening Criteria.  In the data analysis phase of the 
SI, environmental scientists compare site data to screening values using either qualitative or 
quantitative statistical evaluations.  The following provides a discussion of qualitative and 
quantitative evaluations. 
 
 2.10.1.  Qualitative Statistical Evaluations.  The EPA has developed risk-based screen-
ing criteria in the form of PRGs and RBCs.  These criteria are frequently applied at the SI 
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stage to identify whether the site as a whole may need further attention in an RI/FS.  Many 
screening criteria exist at both the Federal and state government level.  Thus, comparisons are 
frequently made against the lowest of several screening criteria that can be applied to a given 
data set from a given location.  The technical team must ensure that the criteria are being  
applied properly (i.e., not all screening criteria are applicable to every site), and that the  
implications are clear in the conclusions of the SI.  For example, if site data exceed a standard 
developed to protect groundwater from soil leaching of contamination, but do not exceed an 
applicable human health standard, the team should report the results with the implications of 
these differences noted in the conclusions. 
 
 2.10.2.  One typical qualitative method of comparing data decision limits entails the use 
of a spreadsheet or database.  The decision limits and individual sample results are presented 
in a tabular format and each detected analyte concentration is compared to the corresponding 
screening values for that analyte.  (It may be necessary to compare a single contaminant of 
concern to only the lowest decision limit or several different decision limits.)  Table 2-1 is an 
example of such a spreadsheet.  
 
 2.10.3.  The primary pitfall of this qualitative strategy is that the uncertainty associated 
with the reported results is not considered when the results are compared to the decision lim-
its.  Thus, the reported results may actually be equal to or exceed decision limits when uncer-
tainty is taken into consideration.  If this is the case, especially in the event the decision limit 
is exceeded, the wrong conclusion would be drawn.  The ramification of an erroneous conclu-
sion will vary, depending on the nature of the problem under investigation; nevertheless, this 
is an outcome that should be avoided or at least minimized. 
 
 2.10.4.  Historically, environmental researchers have tended to screen analytical results 
into two categories—greater than the standard or less than the standard.  Through advances in 
research and technology, three categories now exist against which analytical results can be 
compared:  i) the reported value clearly exceeds the standard (when bias and variability are 
taken into account);  ii) the reported value clearly does not exceed the standard;  and iii) the 
result is inconclusive.  This last conclusion is reached when the uncertainty is too large for  
reliable decision-making. 
 
 2.10.5.  Table 2-1 illustrates how qualitative information may be used to support the de-
cision making process when SI data are qualitatively, rather than statistically, compared to 
decision limits.  In particular, information regarding the quality of the data, obtained in the da-
ta validation process, is used to determine whether contamination is present at concentrations 
greater or less than project decision limits.  All applicable screening criteria are displayed in 
Table 2-1.  For example, the “S” column reports the results of comparing each analyte con-
centration and the lowest screening limit.  One of three codes is entered in this column for the 
three possible conditions identified in the preceding paragraph.  An “X” is recorded if the re-
ported values appear to be well above the decision limit, an “I” if the result is inconclusive, 
and a blank space if the result appears to be well below the limit.  Select results from Table  
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2-1 are discussed below to illustrate the nature of the screening evaluation. 
 
 2.10.5.1.  Tetrachloroethane results in IRP-49 (1.2 ppb) and IRP-51 (17.08 ppb) both 
exceed the PRG (1.1 ppb).  Although the value in IRP-49 is barely above the PRG, it reports 
the results as two significant figures, so we must accept its value as exceeding the PRG.  
However, accounting for analytical error, typically between 20 and 30% (as a conservative  
estimate), this result would be inconclusive.  The researcher then must choose whether to 
conduct additional testing or accept the value of IRP-49 as an exceedance.  The latter would 
be selected only if a conservative estimate was desired. 
 
 2.10.5.2.  In IRP-49 (0.2 ppb) and IRP-51 (0.2 ppb), the reported concentration is not 
distinguishable from the PRG when compared on the basis of just one significant figure.  
Therefore, these results are inconclusive. 
 
 2.10.5.3.  Several chloromethane results are marked inconclusive because of blank  
contamination.  The only sample without blank contamination, IRP-39, was below the PRG 
(PRG = 1.5 ppb; IRP-39 = 0.2 ppb).  The reported concentration was qualified with a J flag 
because it is less than the quantitation limit of 1 ppb.  (The quantitation limits are not listed in 
Table 2-1, but were obtained from the laboratory’s data package.)  
 
 2.10.5.4.  For bromodichloromethane in sample IRP-48 (0.2 ppb), the reported concen-
tration is biased low and is less than the quantitation limit of 1 ppb, so this exceedance of a 
PRG (0.18 ppb) is conclusive.  In sample IRP-51 (0.1 ppb), the result is also biased low and is 
just below the PRG, so this result is also not conclusive. 
 

2.10.5.5.  For chloroform in sample IRP-39 (0.4 ppb), the reported concentration is 
qualified with a J flag because it is less than the quantitation limit of 1 ppb.  As the reported 
result is quantitatively estimated, it does not reliably demonstrate that chloroform is present 
above the PRG. 

 
 2.10.5.6.  Benzo(a)pyrene was reported in sample IRP-49 (0.278 ppb) above the PRG 
limit (0.0092 ppb).  However, the detection limit (0.014 ppb) is above the PRG for the re-
maining samples.  Only by achieving a lower detection limit is it possible to determine 
whether the non-detects are a problem.  The results for benzo(a)pyrene are marked inconclu-
sive.  All of the arsenic non-detects are inconclusive based on a similar rationale. 

 2.10.5.7.  Though the reported concentration of chloride in sample IRP-49 (265 mg/L) is 
not qualified as estimated and exceeds the decision limit (250 mg/L), the result is marked in-
conclusive because the difference between the detected concentration and the decision limit is 
less than 5%, which is smaller than the analytical error for the test method (e.g., the error tol-
erance for the test method is typically 5 to 20%). 

 2.10.6.  These results illustrate the critical importance of estimating and incorporating 
into decision-making knowledge of both the field and laboratory components of variance.  
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One fundamental error is treating the reported results as conclusive when in fact they are not.  
The values represented in this table are measurements, and measurements contain bias and 
variability that must be accounted for in decision-making.  (See EM 200-1-10 for additional 
guidance on the data review strategies that were primarily used to qualify the results in  
Table 2-1.)  

2.11.  Quantitative Statistical Evaluations.  When the results of the qualitative statistical eval-
uations are inconclusive, further investigation is required.  DQOs must be revised so that the 
parameter of interest is no longer a single datum per location.  Instead, multiple samples are 
collected for those uncertain locations and the resulting distribution of values is compared to 
the decision limit using quantitative statistical tests.  The results would typically be statistical-
ly compared to decision limits using one-sample tests* for central tendency, as discussed be-
low. 

 2.11.1.  All statistical tests require the user to make certain assumptions about the data 
to perform the statistical test.  The user must demonstrate that the underlying assumptions for 
a particular statistical test are reasonable before doing the test.  With respect to these underly-
ing assumptions, statistical tests can be roughly categorized as either parametric or non-
parametric.†   When non-parametric tests are conducted, data sets are required to satisfy few-
er assumptions than for the corresponding parametric tests. In particular, a parametric statis-
tical test assumes a specific distribution for the data (i.e., the entire population is described 
by some specific mathematical function), such as the bell-shaped curve for the normal distri-
bution‡.  Statistical plots of actual measured sample concentrations must be substantively 
consistent with the corresponding plots generated using the theoretical functional relation-
ship.  Tests that require normal or log normal distributions are most commonly used.  (A data 
set is log normal if, when the log of each datum is calculated, the resulting set of values is 
normally distributed.)  Common graphical methods (i.e., plots) are presented in Appendix J.  
In addition, an overview of the evaluation of distribution assumptions is presented in Section 
III of Chapter 3. 

 2.11.2.  It should also be noted that parametric tests become problematic, and may not 
be possible to perform, when the data sets contain a significant number of censored§ values 
(i.e., analyte concentrations reported as non-detects).  However, as described in Appendix H, 
it may be possible to use the Poisson distribution** for highly censored data.  Parametric tests 

                                                 
* Appendix L. 
† Appendices L and M. 
 Appendix E  
‡ Appendices E, F, and J. 
§ Appendix H. 
** Appendice E 
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are also problematic when there are outliers.  The possibility of outliers* should be considered 
ered in every analysis.  

 2.11.3.  Non-parametric tests do not assume a specific functional relationship for the  
data distribution.  These tests tend to be less sensitive to outliers and non-detects than para-
metric tests.  Although non-parametric tests are more applicable relative to parametric tests, 
non-parametric tests tend to be less statistically powerful than parametric tests.  In essence, 
this means that more samples must be collected for a non-parametric test relative to the corre-
sponding parametric test to make decisions at the same level of confidence. 
 
 2.11.4.  Background concentrations of naturally occurring and anthropogenically derived 
compounds are also possible screening criteria.  However, there are few instances in which 
such background levels are available at the SI stage.  Sometimes a “site-wide” statistical 
background study has been done.  If such a study is available, two-sample statistical tests† 
would be used to compare the study area data set with the “site-wide” background data set.  
(As the name implies, a two-sample statistical test is predominantly a statistical evaluation to 
compare two separate sets of data.)  Because an RI often includes specific sampling for back-
ground, the determination of background levels and their usefulness is described in Chapter 3.  
If the SI is the first sampling event for a site, there is a low probability specific background 
sample data exist.

                                                 
* Appendix I. 
† Appendix M. 
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Table 2-1.  Site Screening Data Table 

   
EPA 
MCL 

Region IX 
PRG (1999) IRP-39 IRP-48 IRP-49 IRP-51 

Analyte Units Tap Water  L V S  L V S  L V S  L V S 
Organics                    
Bromodichloromethane μg/L — 0.18 0.1 U   0.2 J L, s I 0.1 U   0.1 L, s  I 

Carbon Tetrachloride μg/L 5 0.17 0.1 U   0.1 U   0.1    0.4 J J I 
Chloroform μg/L — 0.16 0.4 J J I 0.1 U   0.1 U   0.1 U U  

Chloromethane μg/L — 1.5 0.2 J J  6.1  B I 1.6  B I 3.7  B I 
Methylene Chloride μg/L 5 4.3 0.1 U   0.1 U   0.1 U   0.1 U   

Trichloroethene μg/L 5 1.6 0.4 J J  0.1 U   18.7   X 18.1   X 
Tetrachloroethene μg/L 5 1.1 0.1 U   0.1 U   1.2   X 17.1   X 

Benzo(a)pyrene μg/L 0.2 0.0092 0.014 U  I 0.014 U  I 0.278   X 0.014 U  I 
Inorganics                    

Arsenic mg/L 50 0.045 0.7 U  I 0.7 U  I 0.7 U   0.7 U  I 
Chloride mg/L 250 — 311   X 15.8    265   I 134.7    

Lead mg/L 15 — 0.3 U K  0.3 U K  8    10    
Nickel mg/L — 730 590    29.0    214    198.0    
Sulfate mg/L 250 — 44.0    5.98    41.6    21.45    

Thallium mg/L 2 2.9 1.4    0.8 U   0.8 U   0.8 U   
Vanadium mg/L — 260 1.4    1.0 U   3.0    5.0    

  

 

Notes: L column contains the laboratory flags. V column contains the validation flags. S column contains screening results. 
Flags: U—Not detected above reported detection limit. Screening Codes: 
 B— Not detected substantially above laboratory or field blank. X — sample concentration unequivocally exceeds the lowest screening standard. 
 L—Biased low.  I — sample concentration comparison to screening standard is inconclusive. 
 K—Biased high. —  A blank cell indicates that the sample concentration unequivocally does  
 s—Surrogate failure. not exceed the lowest screening standard. 
 J—Quantitatively estimated. 
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CHAPTER 3 
Remedial Investigation/Feasibility Study 

 
3.1.  Introduction.  If, based on the PA/SI, a site warrants listing on the National Priorities 
List (NPL), and RI/FS is performed at the site.   
 
 3.1.1.  The RI is the stage in the CERCLA process for collecting data to do the  
following. 
 
 3.1.1.1.  Characterize site conditions (e.g., thickness of unsaturated soil [vadose zone], 
depth to groundwater, vegetative cover, background conditions). 
 
 3.1.1.2.  Determine the types, conditions, and distribution of the waste contamination in 
affected media. 
 
 3.1.1.3.  Assess risk to human health and the environment. 
 
 3.1.1.4.  Conduct treatability tests to evaluate the potential performance and cost of the 
treatment technologies that are under consideration. 
  
 3.1.2.  The FS is the stage for the development, screening, and detailed evaluation of 
remedial actions.  
 
 3.1.3.  The RI and FS are intimately linked.  Data from the RI influence the develop-
ment of remedial alternatives in the FS, which in turn affect the data needs and scope of 
treatability studies and additional field investigations.  This phased approach encourages the 
planning team to continually plan the site characterization effort, which minimizes the col-
lection of unnecessary data and maximizes data quality. 
 
 3.1.4.  As in the SI phase, the initial statistical elements in the RI process involve the 
development of DQOs.  The statistical evaluations used for the RI typically include those 
performed for the SI.  For example, as in the SI, site data are often statistically compared to 
some set of fixed decision limits and upper confidence limits are often established (as dis-
cussed in Chapter 2).  In general, the statistical evaluations are more common for RIs than 
SIs, and the statistical analysis tends to be more comprehensive.  In part, this is because  
typically data coverage is greater and the RI data quality objectives are more robust.  For  
example, while the SI predominantly focuses on statistical evaluations to resolve the pres-
ence or absence of contamination, the RI reaches for a determination of the extent of contam-
ination.  Critical to the onset of an RI is the identification of Applicable or Relevant and 
Appropriate Requirements (ARARs), which, in turn, may influence the identification of areas 
requiring remediation.  Both sampling strategy and extent of contamination are influenced by 
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the selection of ARARs.  ARARs help identify the best analytical procedures needed to reach 
decision limits.  This aspect of DQOs is addressed in Appendix C. 
 
Section I 
Site Characterization 
 
3.2.  Introduction.  The first two objectives of the RI (subparagraphs 3.1.1.1 to 3.1.1.4) are 
combined for discussion in this Paragraph.  The process of site characterization is linked to 
the procedures described in Section II of Chapter 2, where sampling distribution design was 
discussed.  In the RI stage, sample design is likely to be influenced by SI data.  In turn, these 
SI results affect the statistical methods at the planner’s disposal for collection of site data. 
 
 3.2.1.  When scoping for the SI, project planners have expectations about the probable 
location and nature of contamination.  By the time a site reaches the RI, some usable infor-
mation is usually available.  In particular, if a contaminant was identified in the SI, planners 
may have an idea of the mean and standard deviation of contaminant concentrations.  These 
initial estimates assist in devising a statistical sampling design at the RI stage.  Two exam-
ples of using site data to support sampling design are presented in this Paragraph.  These are 
“hot spot” sampling and geostatistical sampling, the fundamentals of which are presented in 
Appendices C, J, and R. 
 
 3.2.2.  A “hot-spot” typically refers to a localized area of high concentration, but is of-
ten otherwise poorly defined (e.g., criteria for the size and concentration of hot spots are of-
ten arbitrary or not specified).  Hot-spots are not uncommon at sites where waste was 
released in an isolated region, perhaps during a spill.  In addition, hot-spots may occur within 
broader regions with low, but detectable, levels of contamination.  One example of this may 
be when an area was used to process waste disposal over some time and, at times when a 
shop or operation was cleaning house, a high concentration of waste would be deposited.  
However, sample concentrations that exceed a regulatory threshold or other decision limit 
should not be considered to be hot-spots if these concentrations appear to be randomly dis-
tributed and will not necessarily be of concern if they represent a small portion of study area 
and contain a small contaminant mass. 
 
 3.2.3.  Case study 1 presents an RI application of the hot-spot identification method 
discussed in Appendix C. 
 
 3.2.4.  In this instance, professional judgment led to the determination of the size and 
shape of the hot-spot.  The reader is urged to vary S and L to identify the sensitivity of hot-
spot sampling grids to the assumptions. 
 
 3.2.5.  As stated previously, there is typically some knowledge of contaminant distribu-
tion at a site by the time an RI begins.  Geostatistics allow an investigator to extrapolate (and 
interpolate) what is known in one location to other nearby related locations.  Its application 
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relies on the fact that, given a known concentration at one location, an adjacent location is 
likely to have a similar concentration.  The greater the distance from the known concentra-
tion, the greater uncertainty there is in predicting a concentration at an unsampled location.  
This situation can be described as a spatial correlation, because correlations are related to 
how close samples are to one another.  Geostatistical methods are described in detail in  
Appendices J and R. 
 
 3.2.6.  Case Study 2 illustrates the use of geostatistics for reducing uncertainty in a pro-
ject.  Although geostatistical techniques are more common for RIs than SIs, they may also be 
used for SIs if sufficient site data are available. 
 
 3.2.7.  One of the major RI objectives is identifying the distribution of contamination at 
a site.  As useful as geostatistics are in helping with sampling design, they may also be used 
in interpreting sample data.  The geostatistical method known as kriging (Appendix J and R) 
is an effective method for interpolating site concentration data under conditions where spatial  
correlation exists.  Kriging is a weighted-moving-average interpolation method.  The USEPA 
developed a two-dimensional kriging package, which is useful in providing a fundamental 
introduction to the technique (Geo-EAS; EPA/600/4-88/033).  Kriging as a method of  
contouring is described in several readily available texts, and typically requires the use of 
commercially available computer software with kriging options for contouring (e.g., Surfer, 
EVS). 
 
3.3.  Case Study 1—Hot-Spot Identification.  The project team attempted to locate a hot-spot 
resulting from an uncontrolled water release within a larger storage area.  The total storage 
area was approximately 150 by 200 feet.  Because the suspected waste was spilled as a liq-
uid, the hot-spot was assumed to be approximately circular.  A best estimate of the diameter 
was approximately 20 feet.  The method proceeded in steps as follows: 
 
 3.3.1.  A circular hot-spot means S equals 1. 
 
 3.3.2.  The radius of the target spot is 10 feet. 
 
 3.3.3.  The team assigns a value of 0.1 to the acceptable risk of not finding the hot-spot.  
 
 3.3.4.  Using S and β, refer to Table D-1 (or nomographs presented in Gilbert, 1987) to 
determine that L/G is 0.55 for a square grid and 0.50 for a triangular grid. 
 
 3.3.5.  Using the relationship L/G and the assumed radius of 10 feet, we see that square 
grid spacing is 18 feet and triangular grid spacing is 20 feet (values are rounded to the near-
est foot to reflect the significant figures). 
 
 3.3.6.  One sample will be placed at each grid node in the storage area, so that a square 
grid requires 88 samples and a triangular grid requires 75 samples. 
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3.4.  Case Study 2—Using Geostatistics in Project Planning to Reduce Uncertainty and Cost.  
At a site in the Midwest, project planners were asked to assess a site potentially contaminated 
with lead at levels exceeding risk-based limits.  A SI was conducted using a grid system over 
areas that were suspected of being contaminated based on historical information.  
 
 3.4.1.  The project team identified lead concentrations in soil exceeding threshold val-
ues in various areas of the site (red circles in Figure 3-1).  They were required to move on to 
an RI/FS to more fully characterize the nature and extent of contamination and develop pre-
liminary estimates of cost for a removal action.  Initially, the team intended to collect numer-
ous additional samples on a grid (green circles in Figure 3-1) to more fully delineate the 
extent of contamination.  However, the project geologist suggested the use of geostatistics as 
a means of reducing the number of samples without increasing uncertainty. 
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Figure 3-1.  Initial Sampling Grid and Proposed New Samples 

 
 
 3.4.2.  Geostatistics can predict both the concentration and the uncertainty for an 
unsampled portion of the study area.  In essence, spatial correlations for contaminant concen-
trations established from the existing data set are used to “extrapolate” sample concentrations 
and uncertainty for other portions of the study area.  Consequently, the team was able to use 
a geostatistical evaluation to assess the value of collecting additional samples at any given 
location in the grid.  Simply put, the team recognized that in any sampling and analysis sys-
tem there will be bias and variability, and that estimates of that bias and variability could be 
made using the existing data.  Thus, at any location where the estimate of uncertainty from 
the geostatistical prediction was less than the uncertainty from sampling and analysis, the 
team reasoned that there was no value in collecting additional samples. 
 
 3.4.3.  The final sampling plan required the addition of only seven new sampling points 
(shown as black circles in Figure 3-2) with associated cost savings of over $12,000. 
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Figure 3-2.  Samples Required after Geostatistical Analysis. 

 
Section II 
Background Comparisons 
 
3.5.  Introduction.  Not all chemicals detected at hazardous waste sites originate from site-
related activities; for example, metals in soil and groundwater are often present because of 
natural geological conditions.  Similarly, anthropogenic activities unrelated to a site frequent-
ly contribute certain organic chemicals (e.g., polycyclic aromatic hydrocarbons [PAHs] or 
pesticides derived from urban or agricultural sources; EPA SOW No. 788).  If site sample 
concentrations for a specific compound are similar to or lower than background concentra-
tions*, there may be no need to consider potential remedial actions with respect to that  

                                                 
* Background does not mean pristine or unaffected by human activity,  
especially at sites in heavily industrialized areas. 



 
 
 
 

EM 200-1-16 
31 May 13 

 

3-7 
 

compound.  This determination can be quantitatively defended by use of statistical compari-
son methods. 
 
 3.5.1.  The project team should determine the background sampling locations and pa-
rameters during the planning stages of the RI.  Separating and identifying background sample 
locations from portions of the study area that have been potentially affected by waste  
handling activities is an example of stratification.  The critical factor distinguishing a back-
ground sample from the site lies in understanding where contaminated areas end and natural 
conditions begin.  Such samples may be located upwind, upstream, or upgradient from the 
waste site.  Background data should be drawn from media that physically represent the study 
area; they should be from the same soil type or geological deposit, same type of surface wa-
ter system (for example, freshwater versus saltwater; wet season versus dry season), or from 
the same aquifer as the site data.  It is also critical to collect the background samples in sub-
stantively the same manner that the site samples are collected (same analytical method, vol-
ume of sample, etc).  The sampling design and analytical methodology for the background 
and the site study areas must be similar.  For example, erroneous conclusions can result if 
judgmental sampling is done for the site study area but random sampling is done for the 
background study area. 
 
 3.5.2.  Background locations should be in a nearby portion of the region unaffected by 
site activities.  As a caveat, site planners should be skeptical if regulators prefer to limit 
background sampling to only pristine areas; doing so will potentially result in erroneously 
concluding that the study area has been adversely impacted by site-related waste handling ac-
tivities. 
 
3.6.  Does Background Soil Differ From Site Soil?  The USEPA has developed guidance for 
addressing whether site soil characteristics differ from background (EPA/540-R-01-003 and 
EPA/540/S-96/500).  The guidance EPA/540-R-01-003 emphasizes the formulation of DQOs 
in devising background sampling design and subsequent site to background testing.  The  

focus of the cited guidance is only to determine whether site and background soil chemistry 
differ.  It does not establish comparison standards, or levels of background that may replace 
unnaturally low risk-based clean-up goals. 

 3.6.1.  Fundamentally, the USEPA guidance (EPA/540-R-01-003) identifies two forms 
of background testing: 
 
 3.6.1.1.  Background Test Form 1.  Tests the null hypothesis that the mean contaminant 
concentration in samples from the site waste handling area is less than or equal to the mean 
concentration in background areas. 
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 3.6.1.2.  Background Test Form 2.  Tests the null hypothesis that the mean contaminant 
concentration in samples from the site waste handling area exceeds the mean concentration 
in background areas by more than a specified margin (e.g., by 50 ppm). 
 
 3.6.2.  Before continuing with this approach, investigators need to be certain that these 
tests are applied to random sample data sets collected from both the site and background lo-
cations.  Typically, site sampling may have a component of judgmental sampling, meaning 
samples were biased to expected contaminated areas of a site.  In such cases, the background 
testing cannot be applied. 
 
 3.6.3.  The project planning team should establish which form of background testing 
will be applied at the onset of the RI planning process.  In addition, the planning team needs 
to establish the levels of acceptable levels of error in the decision-making.  This will differ 
from site to site, and will depend on the desires of the project planning team members. 
 
 3.6.4.  The USEPA guidance also provides examples for the application of test methods 
that may be applied to the background test forms (EPA/540-R-01-003;  
Table 3-1).  These are: 
 
 3.6.4.1.  Descriptive Summary Statistics.  These (e.g., mean, median, standard devia-
tion, variance, percentiles—see Appendix D) may be used as a preliminary screening tool for 
comparison with site history and land use activities in the establishment of background.  EPA 
considers these “simple and straightforward [but having low] statistical  
rigor.” 
 
 3.6.4.2.  Simple Comparisons.  These (i.e., greater than maximum) may be used with 
very small data sets.  This approach is not recommended. 
 
 3.6.4.3.  Parametric Tests.  These (e.g., Student t-test–see Appendix L) may be used if a 
larger number of data points is available (n > 25).  EPA states that parametric tests require 
approximate normality of the estimated means and recommends that, for smaller data sets, 
investigators examine data for normality or lognormality in distribution.  EPA considers this 
application statistically robust enough to be used frequently in parametric data analysis. 
 
 3.6.4.4.  Nonparametric Tests.  These (e.g., Wilcoxon Rank Sum Test—see Appendix 
M) may be used when data are not normally distributed, as rank-ordered tests make no  
assumption on distribution.  Again, EPA considers this approach statistically robust and to be 
used frequently in background estimation. 
 
 3.6.5.  The list of methods is not complete, but, by reviewing the appropriate Appendix, 
users of this Manual may identify the most appropriate statistical method for site application.  
USEPA guidance leans heavily toward parametric and nonparametric tests, which in turn re-
ly on establishing whether data are normal or lognormal (see Appendix F). 
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 3.6.6.  The U.S. Department of the Navy (DON) also developed statistical guidance for 
evaluating background in soils (UG-2049-ENV).  Like the USEPA method, the guidance 
suggests comparative methods for testing whether site data differ from background.  Howev-
er, DON guidance is unique, in part, because it also relies on geochemical relationships.  
UG-2049-ENV provides guidance for evaluating the geology of the site and the geochemical 
characteristics of site soils as they relate to background analyses.  The procedures outlined in 
UG-2049-ENV can be quite useful for USACE projects and are recommended as a resource 
for additional reading. 
 
 3.6.7.  This “geochemical method” is often used when reference area data are not avail-
able.  The method may be used to extract background concentration ranges by evaluating 
correlated background chemicals using on-site data only (i.e., no background area need be 
sampled).  The key concept is that if the site has not been affected by a release, then only one 
population exists at a site; if a release has affected the site, then overlapping of different pop-
ulation characteristics would be evident in the data. 
 
3.7.  Simple Background Comparison.  Investigators are more likely to rely on regional 
background at the SI stage than the RI.  As the text below states, site-specific background is 
more desirable, but SI project budgets rarely allow for a full background study and such re-
gional comparisons are still useful.  Background concentrations are typically not known prior 
to RI activities, and sampling for background should be scoped in the planning stages of the 
RI.  In some instances, background criteria are available as regulatory limits, as Case Study 3 
illustrates.  (Although the case study could also apply in an SI [Chapter 2], it is presented 
here to illustrate the concepts that arise for background comparisons all in one section of this 
document.) 
 
3.8.  Case Study 3—Comparison to Regional Background.  Site-specific background concen-
trations are typically not known prior to RI activities, and sampling for background should be 
scoped in the planning stages of the RI.  In some instances, regional background values may 
be compared to site data.   
 
 3.8.1.  Texas has established soil background levels that can be used in the screening 
process if site-specific background levels are not available.  Soil data from one site proposed 
for redevelopment were compared to Texas background levels.  Texas regulation states that 
if the maximum concentration of the chemical under investigation does not exceed the Texas 
soil background level, then that chemical is not of concern.  The site analytical data were re-
viewed for quality and applicability.  Based on the review, the project team was satisfied that 
the site analytical data were of sufficient quality for use in evaluating the site.  The soil ana-
lytical data (in mg/kg) for chromium were: 
 

6.17 4.31 4.38 6.07 5.68 
2.86 5.08 4.98 2.22 15.30 
4.75 3.56 4.48 3.46 2.63 
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 3.8.2.  The maximum concentration for chromium at the site is 15.30 mg/kg.  The Tex-
as soil background level for soil is 30 mg/kg.  Therefore, chromium would not be a chemical 
of concern at the site. 
 
 3.8.3.  As indicated in the USEPA guidance, such a comparison lacks statistical rigor, 
but is useful for guiding the project planners in the next phase of investigation. 
 
 3.8.4.  At this stage, the comparison to regional background is merely sufficient to pro-
ceed to additional phases of site chromium evaluation.  
 
3.9.  Parametric and Nonparametric Tests.  In the preceding case study, the regulatory com-
munity established background concentrations.  It is far more desirable for local background 
levels to be assessed and applied.  Differences related to sample medium, sampling method, 
or analytical method are less likely to arise in site-specific background data than regional 
background data.  However, the project must be budgeted for a sufficient number of samples 
to characterize site-specific background conditions; a large number of samples may be re-
quired to characterize heterogeneous background media.  If the regional background data 
(e.g., the background data from a very limited site-specific background study) are shown to 
be statistically different from a waste site, it may also be attributable to differences in water 
quality or soil types between the site and the location where the regional background data 
were collected, and not necessarily related to a waste release.  Therefore, a thorough evalua-
tion of local background conditions is preferred to the use of regional background levels. 
 
 3.9.1.  Instructions and guidance for selecting analytical procedures as part of DQOs 
should be applied to the background data set with the eventual uses of background data in 
mind.  For statistical comparison, background measurements need to be random.  In addition, 
the power of statistical comparison may be greater if the background results are normally or 
lognormally distributed.  Although the distribution of background measurements cannot be 
guaranteed, either random or systematic sampling of background should be a component of 
the sampling plan.  (Note that given spatial correlation, systematic samples spaced closer 
than the geostatistical range may not be independent.  Sampling methods are addressed in 
Appendix C.)  Once a set of background samples have been collected, comparison methods 
are applied using the statistical procedures addressed in Appendix M or N. 
 
 3.9.2.  A random sampling* design is typically used to characterize the background 
study area.  Two-sample statistical tests* are then typically used to compare the site data set 
to the background data set.  Two-sample tests, described in Appendix M, are summarized in 
Table 3-1. 
 

                                                 
* Appendix C. 
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 3.9.3.  An example of determining COPCs using background population tests is pre-
sented in case study 4. 
 
Table 3-1.   
Background Population Comparison 
Percent Detections in 

Site Data 
Percent Detections in 

Background Data 
 

Test 
0–100 0 No comparison 

> 0–100 < 10 Poisson UTL 
10–50 10- 50 Test proportions 
> 50 > 50 Mann-Whitney test, 

85–100 85–100 Student’s t test* or Mann-Whitney test 
*Student’s t test should be used if the distributions of the site and background data sets are 
normal.  

 
3.10.  Case Study 4—Establishing and Comparing Background Concentrations to On-site 
Data.  At a military installation in Utah, samples were collected for metals in soil—seven on 
site and four at background locations.  This case study focuses on chromium.  The chromium 
results were as follows (mg/kg): 
 

SS01 SS02 SS03 SS04 SS05 SS06 SS07 BKG1 BKG2 BKG3 BKG4 
 4.3  2.7  2.2  3.2  <1  3.6  2.4  1.6  1.8  2.6  1.6 

 
 3.10.1.  Because the site data had an 85% detection rate, one-half the reporting limit 
was substituted for each non-detect for the statistical calculations. 
 
 3.10.2.  Both background and site data were determined to be normally distributed at a 
90% confidence level.  An F-test was used to compare the variance of the background data 
set to the variance of the site data set.  The result of the F-test indicated that the variances are 
equal. 
 
 3.10.3.  Thus, a two-sample t-test (with equal variances) was used to compare the back-
ground and on-site data sets.  At the 95% confidence level, the calculated p = 0.172.  Based 
on this evidence, a statistical difference between background and on-site data could not be 
demonstrated at the 95% level of confidence; thus, no further action with respect to chromi-
um was required.  Note that, for this simple example, the conclusion of “no further action” is 
drawn because a statistical difference was not obtained.  The power of the test is normally 
calculated when the null hypothesis is not rejected.  Additional investigation would be re-
quired if the power was not adequate. 
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3.11.  Upper Tolerance Limits.  Upper tolerance limits* (UTLs) are sometimes used to de-
termine whether site concentrations are elevated relative to background concentrations.  The 
UTL defines a threshold value for the background data set.  (More accurately, it is an upper 
confidence limit for some percentile of the background data.)  Individual site contaminant 
concentrations are compared to this value.  Study area detections that are greater than the 
background UTL are considered to be indicative of contamination from site-related waste 
handling activities.  Tolerance limits are used in this manner in the USEPA guidance for the 
statistical treatment of groundwater monitoring data (EPA 530-SW-89-026, EPA 9285.7-
09A).  However, this approach must be used with caution.  In particular, it is often errone-
ously concluded that site-related contamination exists if a single detection exceeds the UTL.  
For example, the “95% UTL” is typically used to evaluate site contamination relative to 
background.  If the background and site concentrations are not different from one another, 
we will be 95% confident that at least 95% of all site measurements will fall below the 95% 
UTL with coverage of 95%.  (For brevity, this is often referred to simply as the “95% UTL.”)  
Therefore, we would expect a small percentage of site measurements to exceed the UTL, 
even when overall site contamination is not elevated relative to background.  When a large 
number of samples are taken, we should not definitively conclude that a small number of de-
tections greater than the UTL necessarily indicate site-related contamination. 
 
 3.11.1.  Furthermore, regulators have criticized the use of UTLs to compare site to 
background contamination because UTLs do not minimize false negatives but, rather, mini-
mize false positives.  In other words, if many detected study area concentrations were greater 
than the background UTL, this would constitute strong evidence of site-related contamina-
tion.  This scenario would be unlikely if the site and background concentrations were similar.  
Alternatively stated, the probability of a false positive—erroneously concluding that the site 
is contaminated relative to background—would be low.  However, if detected site concentra-
tions were less than the UTL, strictly speaking; no conclusion would be possible.  This 
would not be sufficient to demonstrate the absence of site contamination relative to back-
ground.  If we were to conclude the absence of site-related contamination using the UTL, 
false negatives could result (i.e., erroneously concluding that site concentrations are not ele-
vated relative to background concentrations).  
 
 3.11.2.  Because of the problems with tolerance intervals discussed above, two-sample 
statistical tests are usually preferred (and are typically more appropriate) to compare site and 
background data sets.  It is recommended that UTLs be used only when two-sample tests are 
not practical (or when the primarily objectives is to demonstrate that site contamination is el-
evated relative to background contamination).  For example, a two-sample statistical test 
cannot be performed when the site data set is extremely small (when only one or two samples 
are available for the study area).  If a large data set was available for the background study 
area (e.g., because a “site wide” background study had been done for a prior investigation), 
then the study area results could be compared to the background UTL. 

                                                 
* Appendices G and K. 
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 3.11.3.   The UTL background comparison methods are discussed Appendix K.  These 
methods are summarized in Table 3-2 
 
 3.11.4.   There are parametric UTLs and non-parametric UTLs.  The parametric UTL 
require the data to follow a specified distribution such as a normal or lognormal distribution.  
(Distribution tests are addressed in Appendices F and J.)  As shown in the table above, the 
proportion of non-detects must be taken into account when selecting an appropriate UTL.  
(UTLs that rely upon the normality assumption cannot be calculated when a large portion of 
the data are reported as non-detect.)  The nonparametric UTL represents a high-end value in 
the distribution.  The following case study illustrates an example of calculating background 
UTLs for metals. 
 
Table 3-2. 
Calculation of Background UTLC 
Percent Detections in Background Data Type of UTL Calculated 
      0 No UTL calculated 
< 10 Poisson UTL 
10–85 Nonparametric UTL 
≥ 85 (normal or lognormal distribution) Parametric UTL 

 
3.12.  Case Study 5—Calculating Background UTLs for Metals.  At a site in Utah, 56 soil 
samples were collected across a very large area to determine background concentrations for 
metals. 
 
 3.12.1.  Chromium was detected above the detection limit in every sample, so there was 
no need to substitute for censored values.  Manganese was not detected in one sample, and 
the geochemist elected to substitute one-half the detection limit for the censored value in that 
sample. 
 
 3.12.2.  The chromium data were normally distributed and the manganese data were 
lognormally distributed.*  Refer to Appendices D, E, and I for a review of these concepts. 
 
 3.12.3.  For chromium, the 95% UTL was calculated from the sample results using the 
formula: 
 
 95% UTL x ks= +  . 
 
 3.12.4.  For 56 samples, k equals 2.032.  Chromium results for background had a mean 
( x ) of 12.7 mg/kg and standard deviation of 5.1 mg/kg, so the UTL was 23.0 mg/kg.  For 
manganese, the log of each sample result was taken prior to the calculation of the UTL.  (The 
                                                 
* The Shapiro-Wilk test (Paragraph F-3) was used to test for normality at the 95% level of confidence. 
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individual concentrations are not shown.)  For the set of log-transformed results, the sample 
mean and standard deviation were 5.41 and 0.75, respectively.  The log UTL for manganese 
was 6.93 (using the above equation).  All comparisons for manganese should occur in “log 
space” (that is the logarithm of the site manganese maximum would be compared to 6.93).  
(Alternatively, a minimum variance unbiased estimator of the manganese background con-
centration could be calculated using the methods described in Appendix E). 
 
3.13.  Extended Background Example.  This paragraph illustrates the concepts of distribu-
tional assumptions presented in Appendix J through a case study.  
 
 3.13.1.  Suppose surface soil samples (from 0 to 5 feet below ground surface) have been 
collected at Site A and a background location to evaluate chromium concentrations on site.  
Table 3-3 presents the analytical results from samples collected at the site and background 
areas.  All chromium concentrations were detected so no proxy concentrations are needed to 
evaluate the data. 
 
 3.13.2.  Further, suppose the objectives of this data evaluation are to identify whether 
chromium surface soil concentrations on site: 
 
 3.13.2.1.  Exceed regulatory threshold levels. 
 
 3.13.2.2.  Exceed background concentrations, on the average. 
 
 3.13.3.  Several statistical tests can be used to make such comparisons.  A “one-sample” 
test can be used to compare the mean site chromium concentration to regulatory risk-based 
levels (Appendix L).  A “two-sample” test can be used to compare the mean concentration of 
chromium at the site to the mean background concentration of chromium (Appendix M).  A 
background value, such as a UTL, can be estimated for comparisons to individual site con-
centrations to identify if any one sample has a concentration higher than background.  How-
ever, before any statistical tests can be done, distributional assumptions must be evaluated 
for each population (site and background) of data to determine which statistical test is most 
appropriate.  The distributions are evaluated for normality (or log normality) using statistical 
tests and graphical plots. 
 
 3.13.4.  Graphical displays are the first approach taken to evaluate the distribution of 
the data (Appendix J).  Histograms, box-and-whiskers plots, and probability plots are all use-
ful in identifying how data are distributed and answering questions such as—are the data 
symmetrical, what is the range of concentrations, are there any outliers that may unduly in-
fluence future distributional tests, do the data seem to follow a normal distribution, and so 
on.  Histograms, box-and-whisker plots, and probability plots for the site and background da-
ta are provided in Figures 3-3 and 3-4, respectively.  
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Table 3-3.   
Analytical Results for Chromium at Site A and Background Locations 

Site A 
Sample 

Location 

Top 
Depth of 
Sample 

(ft) 

Bottom 
Depth of 
Sample 

(ft) 

Chromium 
Concentration 

(mg/kg) 

Background 
Sample 

Location 

Top 
Depth of 
Sample 

(ft) 

Bottom 
Depth of 
Sample 

(ft) 

Chromium 
Concentration 

(mg/kg) 

SB01 1 2 4.76 BG01 1 2 4.99 
SB01 4 5 4.42 BG01 4 5 4.35 
SB02 1 2 4.68 BG02 1 2 4.61 
SB02 4 5 4.82 BG02 4 5 4.83 
SB03 1 2 4.36 BG03 1 2 3.92 
SB03 4 5 4.37 BG03 4 5 5.09 
SB04 1 2 4.09 BG04 1 2 5.19 
SB04 4 5 4.14 BG04 4 5 4.54 
SB05 1 2 4.78 BG05 1 2 5.49 
SB05 4 5 4.94 BG05 4 5 4.3 
SB06 1 2 3.35 BG06 1 2 5.67 
SB06 4 5 3.08 BG06 4 5 4.16 
SB07 1 2 10.1 BG07 0.5 1 5.41 
SB07 4 5 18.5 BG07 2 2.5 4.98 
SB08 1 2 10.6 BG08 1 2 5.64 
SB08 4 5 4.87 BG08 4 5 4.98 
SB09 1 2 10.3     
SB09 4 5 5.51     
SB10 1 2 6.4     
SB10 4 5 4.13     
SB11 1 2 4.96     
SB11 4 5 4.96     
SB12 1 2 4.91     
SB12 4 5 4.89     

 
 3.13.5.  These plots have been developed on the basis of the original data and the natu-
ral-log transformed data, as it is common that environmental data follow either a normal or 
lognormal distribution.  Other less common transformations, such as the square root or in-
verse sine transformation, are not applicable in this case study because: 
 
 3.13.5.1.  Chromium concentrations are continuous (values can be any number within a 
range of concentrations). 
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 3.13.5.2.  Detected chromium concentrations are not rare events to warrant review of 
the Poisson distribution. 
 
 3.13.5.3.  Chromium concentrations are not binomially distributed. 
 
 3.13.6.  Based on just the plots in Figure 3-3, chromium at Site A does not appear to 
have a normal or lognormal distribution.  The histograms for the original data and log-
transformed data are not symmetrical, but are skewed.  This is confirmed in the box-and-
whiskers plots because the mean (the dotted line) is larger than the median (the solid line 
within the box) and the mean is even larger than the 75th percentile (the top part of the box).  
(If the data were normal, the mean would be equal to the median.)  As the mean is greater 
than the 75th percentile, this suggests that the mean is influenced by several considerably 
large concentrations.  Outliers (each of point represented by an “x”) predominantly occur on-
ly in the upper portion (the top) of the box plots.  Lastly, as the normal probability plots for 
the original data and log-transformed data are not linear, this gives additional evidence that 
the data are not normal or lognormal.  
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Figure 3-3.  Chromium in Site A 

 
 3.13.7.  The chromium data distributions possess heavier right tails relative to a normal 
distribution.  Note the extreme deviation from linearity (Appendix F) at the right-hand side 
of each normal probability plot (appearing as a series of points above the straight line).  The 
superimposed line on the normal probability plots illustrates the line that concentrations fol-
low when data are normally or lognormally distributed.  This line is related to Filliben’s sta-
tistic in the sense that it provides a standard to compare the linearity of sample results.  For 
these normal probability plots associated with Site A, it is apparent that the data do not fol-
low a normal or lognormal distribution. 
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Figure 3-4.  Chromium in Background 

 
 3.13.8.  The plots in Figure 3-4 show evidence that chromium for the background data 
set appears to follow a normal or a lognormal distribution.  The histogram for the original da-
ta seems to be symmetrical, though the histogram for the log-transformed data is not as 
symmetrical.  However, histograms can be misleading if the boxes (i.e., concentration inter-
vals) are too large or too small; therefore, another type of plot, preferably a normal probabil-
ity plot, should be constructed to determine whether the data are normally (or lognormally) 
distributed.  
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 3.13.9.  One of the most powerful statistical methods for testing normality is the 
Shapiro-Wilk* test.  Because the site data set has 24 sample results and the background data 
set has 16 sample results, this test would be appropriate for evaluating normality and 
lognormality for both the site and background data sets.  The result of the Shapiro-Wilk test 
is presented in Table 3-4 for chromium at Site A and background based on the original data 
and log-transformed data.  The Shapiro-Wilk test results in either a calculated value of the 
statistic W or the value p.  There is acceptably strong evidence that the data set is not normal 
when either W or p is small relative to the corresponding acceptance limit for W or p. 

 3.13.10.  For Site A, results of the Shapiro-Wilk test* show evidence that the data do 
not follow a normal or lognormal distribution (i.e., since the calculated value of W is smaller 
than W0.01, or equivalently, p < 0.01, there is less than a 1% chance that the data set is nor-
mal, or equivalently stated, there is at least a 99% confidence that the data are not normal).  
However, for background the results of the Shapiro-Wilk test suggest that the data seem to 
follow both a normal and lognormal distribution.  It should be noted that there is more evi-
dence that background data are normally distributed rather than lognormally distributed, be-
cause the value of W and the associated value of p are higher for the original data than for the 
log-transformed data. 

 3.13.11.  The coefficient of variation* (CV) (CV) was estimated for each data set, and is 
provided in Table 3-4.  A CV greater than 1 suggests a departure from normality.  However, 
the evaluation of the CV is not as reliable as quantitative statistical tests for normality, such 
as the Shapiro-Wilk test.  The coefficient of variation is useful only for identifying obvious 
departures from normality when CV is much greater than 1.  Because the sample CVs for the 
site and background data sets based on the original data and the log-transformed data all are 
less than 1 (as discussed in Appendix F), one cannot conclude the data can be modeled by a 
normal distribution.  Therefore, for these data sets, the CV does not provide any useful addi-
tional information. 

 3.13.12.  Similarly, to illustrate the relative reliability of various distributional test 
methods, the Studentized range test* was also performed on the data sets.  The results of this 
test (Table 3-5) indicate that the Site A and background data sets follow normal and lognor-
mal distributions.  The range test failed to identify the lack of normality for Site A data.  This 
happened because the data distribution for Site A is asymmetrical and this test does not per-
form well for asymmetrical distributions.  However, according to the test, the background da-
ta follow a normal and lognormal distribution.  Therefore, the Studentized range test for the 
background data set is consistent with the Shapiro-Wilk test, the coefficient of variation test, 
and the graphical plots (e.g., the normal probability and box plots). 

 3.13.13.  Similarly, to illustrate the relative reliability of various distributional test 
methods, the Studentized range test * was also performed on the data sets.  The results of this 
test (Table 3-5) indicate that the Site A and background data sets follow normal and  

                                                 
* Appendix F 
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lognormal distributions.  The range test failed to identify the lack of normality for Site A  
data.  This occurred because the data distribution for Site A is asymmetrical and this test 
does not per-form well for asymmetric distributions.  However, according to the test, the 
background data follow a normal and lognormal distribution.  Therefore, the Studentized 
range test for the background data set is consistent with the Shapiro-Wilk test, the coefficient 
of variation test, and the graphical plots (e.g., the normal probability and box plots). 

 3.13.14.  To summarize, the background data appear to follow both a normal and 
lognormal distribution, but Site A data do not appear to follow either a normal or lognormal 
distribution.  A dilemma exists regarding the distribution of the background data—is it nor-
mal or lognormal?  As the log transformation did not appreciably improve the normality of 
the data set, it would be advisable not to perform the transformation. 

 3.13.15.  If a background value, such as a UTL, and other summary statistics are de-
sired to characterize the background data set, then the assumed distribution should fit the da-
ta as much as possible.  With respect to this objective, it would be more appropriate to define 
background as following a normal distribution because the Shapiro-Wilk test shows more  
evidence of normality than lognormality.  Comparing the Shapiro-Wilk test’s critical value 
or associated p value from the original data and from the log-transformed data is a reasonable 
approach for discerning which distribution is more appropriate and has more evidence of  
following a normal or lognormal distribution. 
  
 3.13.16. The first objective for this case study is to determine whether chromium con-
tamination at Site A, on the average, exceeds a regulatory threshold value.  As it cannot be as-
sumed that the Site A data set is either normal or lognormal, a nonparametric test (e.g., the 
Wilcoxon signed rank test for the median as discussed in Appendices H and M) must be used 
to compare the Site A data to the regulatory threshold. 
 
 3.13.17.  The second objective is to determine whether chromium exceeds background.  
Though the background data set could be reasonably assumed to be either normal or lognor-
mal, this assumption could not be made for the Site A data set.  As the Site A data set is nei-
ther normal nor lognormal, a parametric two-sample test* cannot be used to compare the Site 
A data set to the background data set (for example, to determine if the mean concentration at 
Site A exceeds the mean background concentration).  Both data sets must follow the same 
distribution to use a parametric test.  For example, both the background and site data sets 
must both be normally or lognormally distributed.  As data from Site A does not follow a 
normal or lognormal distribution, only nonparametric tests such as the Wilcoxon rank-sum 
test* can be used to compare the Site A and background data sets. 

 3.13.18.  This case study illustrates the value of background data in project decision-
making.  The application of background data in identifying contaminants for inclusion in the 
risk assessment is presented in the following section.  The data in the preceding discussion 
may be used as sample data to apply some of the nonparametric tests in Appendix M. 

                                                 
* Appendices M and N. 
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Table 3-4. 
Results of the Shapiro-Wilk Test of Normality and Lognormality for Chromium Surface Soil at Site A and Background 

Area 
Testing for 

Normality or 
Lognormality? 

Number 
of Results CV 

Shapiro-Wilk 
Test Statistic,  

W 

Critical Values  
(from Table B-20 of Appendix B) p value for 

Shapiro- 
Wilk Test 

(from  
statistical 
software) 

Conclusion: Is 
there evidence 
that the data 
are Normally 

or Lognormally 
Distributed? 

Yes/No 

Critical  
Value based 
on 0.05 level 

of  
significance, 

05.0W  

Critical  
Value based 
on 0.10 level 

of  
significance, 

10.0W  

Critical  
Value based 
on 0.50 level 

of  
significance, 

50.0W  
Site A Normality 24 0.5687 0.627 0.916 0.930 0.963 <0.0001  No 
Site A Lognormality 24 0.2426 0.791 0.916 0.930 0.963 0.0002 No 

Background Normality 16 0.1093 0.963 0.887 0.906 0.952 0.7177 Yes 
Background Lognormality 16 0.07041 0.958 0.887 0.906 0.952 0.6308 Yes 

 
 

Table 3-5. 
 Results of the Studentized Range Test of Normality and Lognormality for Chromium Surface Soil at Site A and Background 

Area 

Number 
of  

Results 

Test of Normality (based on original data) Test of Lognormality (based on log-transformed data) 
 Ratio of Range 

of  
Results and 
Standard  
Deviation 

Critical Values 
from Table B-21 of 

Appendix B,  
assuming a 0.05 

level of  
significance 

Conclusion: Is 
there evidence 

that the data are  
Normally  

Distributed? 
Yes/No 

Ratio of Range of 
Results and 
Standard  
Deviation 

Critical Values from 
Table B-21 of Appen-
dix B, assuming a 0.05 

level of  
significance 

Conclusion: Is 
there evidence that 

the data are 
Lognormally  
Distributed? 

Yes/No 
Site A 24 4.586 (3.308, 4.666)* Yes 4.400 (3.308, 4.666)* Yes 

Background 16 3.278 (3.01, 4.24) Yes 3.317 (3.01, 4.24) Yes 
*Critical Values for n = 24 are based linear interpolation of critical values from n = 20 and n = 25.
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Section III 
Risk Assessment 
 
3.14.  Introduction.  Perhaps more than any other area in the CERCLA project life cycle,  
assessing site risk relies on statistics.  Many of the techniques described in several of the ap-
pendices apply in quantifying and assessing risk at a hazardous waste site.  The components 
of a risk assessment discussed in this report are: 
 

a. Identifying contaminants of potential concern (COPCs). 
b. Calculating exposure point concentrations (EPCs). 

 
Statistics enter into risk assessment in one additional major area—the calculation of exposure 
levels.  Specifically, a baseline human health risk assessment requires estimation of a reason-
able maximum exposure (RME), and a central tendency exposure (CTE).  The former relies 
on 95% upper confidence level (UCL) values for exposure parameters, and the latter on the 
mean of the exposure parameters.  In either case, the exposure parameters are generally pro-
vided by EPA guidance, such as the Exposure Factors Handbook (USEPA, 1997).  For all 
practical purposes, the environmental scientist will not need to statistically evaluate these pa-
rameters and, consequently, their derivation is not discussed here.  However, understanding 
the concepts presented in Appendix E and K is very useful in deconstructing the data evalua-
tions presented in the Exposure Factors Handbook (USEPA, 1997). 
 
 3.14.1.  Identification of Contaminants of Potential Concern for Risk Assessment.  Not 
all chemicals detected at a site are typically included in the quantification of risk.  Those 
chemicals retained in the risk assessment are the COPCs.  Note that the COPCs are media-
specific; COPCs are evaluated for air, surface soil, subsurface soil, groundwater, sediment, 
surface water, and any other medium sampled in the RI at each site. 
 
 3.14.1.1.  Chemicals are typically screened against background or other criteria (estab-
lished by ARARs) and a subset is selected for inclusion in the risk calculations.  Some of the 
screening criteria, other than background levels, include drinking water MCLs, or secondary 
MCLs, RBCs, and Toxic Substance Control Act (TSCA) values for PCBs (polychlorinated 
biphenyls) in soil.  In addition, inorganics that are essential human nutrients (e.g., iron, po-
tassium, magnesium, sodium, and calcium) may be excluded from the quantitative risk anal-
ysis in most cases.  (ARARs are identified in the planning stage of the RI.) 
 
 3.14.1.2.  Both qualitative and quantitative statistical evaluations are frequently per-
formed to identify COPCs.  A qualitative evaluation is initially conducted to determine 
whether select potential analytes of concern can be eliminated from future investigation; a 
statistical evaluation is subsequently done for a more in-depth look at of contaminants that 
were not eliminated during the qualitative assessment. 
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 3.14.1.3.  For example, for the qualitative evaluation of the data, if a chemical is detect-
ed infrequently in the sample data set, and is not considered to be associated with historical 
waste handling at a site, it may be screened out as a COPC.  However, it is essential to use 
site-specific information before discarding such a chemical, as infrequently detected com-
pounds may also represent hot-spots, depending on the sampling strategy used at the site.  
For every chemical detected at least once, the maximum detected concentration is compared 
to the chemical- and medium-specific screening criterion.  Chemicals with higher concentra-
tions than their criteria are generally retained for quantitative evaluation in the risk assess-
ment.  
 
 3.14.1.4.  Contaminants that lack ARARs (usually because toxicity information does 
not exist) are retained as COPCs in the risk assessment and discussed in the uncertainty sec-
tion of the report.  One-sample tests for contaminants where the maximum exceeds the risk-
based screening limit may be used to determine whether the mean is statistically less than the 
screening limit, even though a single value exceeds the screening limit.  Anthropogenically 
derived contaminants (such as PAHs) that occur at concentrations below background levels 
are still retained in the risk assessment if they exceed ARARs.  If the risk assessment indi-
cates that such contaminants are a primary contributor to total risk at a site, then a quantita-
tive statistical comparison with background (e.g., using appropriate two-sample statistical 
tests) would be done and the results would subsequently be discussed in the risk characteriza-
tion at the end of the assessment. 
 
 3.14.2.  Calculating Exposure Point Concentrations.  For risk assessment, means and 
standard deviations are typically calculated as the basis for EPCs and as the basis for deriv-
ing UTLs for the background comparisons.  However, the mean and standard deviation will 
frequently be inappropriate measures of central tendency and dispersion when the data are 
not normally distributed or a large portion of the data consists of non-detects.  Under these 
circumstances, means and standard deviations should not be used to perform statistical  
evaluations.  Before statistically valid means and standard deviations can be calculated, tests 
for normality should be conducted and non-detects must be appropriately addressed. 
 
 3.14.2.1.  The EPC is used to calculate a COPC’s carcinogenic risk and non-
carcinogenic hazard index.  It represents the concentration a receptor is likely to encounter.  
The USEPA requires the EPC to be a conservative estimator of central tendency—the 95% 
upper confidence limit (UCL) of the sample arithmetic mean concentration (OSWER  
92-856-03, EPA 68-W0-0025).  The 95% UCL is the concentration that, when calculated  
repeatedly for randomly drawn samples, equals or exceeds the true mean 95% of the time. 
 
 3.14.2.2.  Calculating rigorous, statistically valid 95% UCLs requires that data be dis-
tribution tested and that non-detects be treated properly.  Procedures for this are provided in 
Appendix H.  Some of the older (pre-2000) RCRA and CERCLA guidance for calculating 
the UCL are outdated (and hence, are not recommended); modifications and updates are  
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provided with the goal of improving scientific defensibility.  Appendix K presents methods 
to calculate UCLS. 

 3.14.2.3.  Calculating EPCs at a CERCLA site brings together many of the statistical 
procedures described in the attached Appendices.  The correct steps are, in general, as  
follows 
 
 3.14.2.3.1.  Identify the nature of the censoring limit and the proportion of censored 
values and substitute proxy values as directed in Appendix H. 

 3.14.2.3.2.  Identify outliers as discussed in Appendices I and J. 
 
 3.14.2.3.3.  Perform distribution testing as detailed in Appendix F. 
 
 3.14.2.3.4.  Depending on the outcome of these steps, calculate the UCL as directed in 
Appendix K. 
 
 3.14.2.4.  Unfortunately, there are many pitfalls along the way, and this process does 
not always lead to a simple result.  In part, this is attributable to the use of or adherence to 
older USEPA guidance.  In particular, USEPA guidance for substituting for censored data is 
addressed in many separate risk assessment documents.  In earlier documents, substituting 
one-half the detection limit is supported.  Appendix H provides insight on the deficiency in 
this approach.  In addition, even if the risk assessor has performed all of the statistical  
procedures, USEPA guidance for EPCs states that if a 95% UCL exceeds the maximum  
value of a compound detected at a site, the maximum should be substituted.  This has the  
dissatisfying attribute of being completely ad hoc, giving rise to unquantifiable and  
unacceptable uncertainties for risk assessment decisions. 
 
 3.14.3.  Uncertainty Quantification.  A required element in a baseline human health risk 
assessment is to evaluate uncertainty for decisions.  Statistical techniques alone will be una-
ble to account for all sources of uncertainty in a risk assessment and a qualitative approach is 
normally taken.  For example, there will be uncertainty in the risk assessment for analytes for 
which toxicity data do not exist, and the quantification of such uncertainty is not possible. 
 
 3.14.3.1.  In risk assessment, uncertainty stems primarily from the following three 
sources. 
 
 3.14.3.1.1.  Errors in the estimate of contaminant concentration. 
 
 3.14.3.1.2.  Errors in the estimate of toxicity. 
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 3.14.3.1.3.  Errors introduced by large numbers of assumed values in the risk assess-
ment formulations, which are by definition and intent very conservative. 
 
 3.14.3.2.  In practical terms, there is little that can be done about the uncertainty in es-
timates of toxicity.  The studies upon which toxicity data are based are taken “as is” simply 
because of the scarcity of available studies.  Uncertainty in the assumptions employed in the 
risk assessment can sometimes be addressed, but only to a limited extent.  An example for 
how the uncertainties listed in subparagraph 3.14.3.1.3 were taken into account is presented 
in Case Study 6. 
 
 3.14.3.3.  Most statistical evaluations implicitly assume the absence of bias.  The uncer-
tainty predominantly depends on the distribution of field measurements.  Even in the case of 
risk screening, as demonstrated in Chapter 2, we have seen that it is possible to qualitatively 
assess the uncertainty of individual sample/analytical results before comparing those results 
to fixed threshold values using analytical QC information.  For example, QC data can poten-
tially be used to identify the direction of bias and to estimate the magnitude of the bias asso-
ciated with a set of analytical results.  This is illustrated in Case Study 6.  It is also possible 
to make similar estimates of variability which may affect decision-making, as illustrated in 
Case Study 7. 
 
 3.14.3.4.  The error introduced into the risk assessment by the uncertainty associated 
with each of the various assumptions and reference values is more likely multiplicative rather 
than additive, such that the calculated risk is conservative to an extraordinary degree.  Con-
sider, for instance, some components of a soil dermal absorption scenario.  The risk assessor 
calculates an EPC, which represents the 95% UCL of the mean.  Then, the skin area exposed 
to the contaminant is based on an upper 95% confidence level of all the U.S. adult population 
from EPA OSWER 92-856-03.  These are combined with, say, the default average exposure 
duration and frequency values which, again, are upper estimates from some population.  
Combining all of these upper estimates results in a risk evaluation that has a far higher  
confidence than 95%.  The Risk Assessor and Project Manager are encouraged to identify 
every opportunity to use site-specific values in place of assumptions in risk assessment to  
reduce uncertainty in the results and, thus, more appropriately apply the limited remediation 
resources available. 
 
 3.14.3.5.  One method for estimating the true mean and distribution of risk estimates is 
to use the recommended RME and CTE values of exposure parameters.  This methodology is 
recommended in Risk Assessment Guidance for Superfund (RAGS).  The result of looking at 
each input parameter using the CTE is to provide an estimate of risk near the mean of the es-
timated exposure scenario.  The RME is considered to represent an upper estimate of site 
risk.  An alternative method of quantifying the range in risk estimates is to use Monte Carlo 
simulations. 
 
3.15.  Case Study 6—Refining Risk Assessment Assumptions.   
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 3.15.1.  A risk assessment was to be done as part of a RCRA Facility Investigation 
(RFI) at a steel mill in Pennsylvania.  The project team approached the EPA Remedial Pro-
ject Manager (RPM) regarding using site-specific assumptions for some of the exposure fac-
tors in the risk assessment calculations.  This was possible because the facility maintained 
excellent records of employee longevity, promotion, and work assignments.  For this case 
study, the focus is on site-specific estimates of exposure duration, which enters into quantifi-
cation of risk. 
 
 3.15.2.  Under the assumptions given by the EPA for the worker exposure scenario in 
OSWER 92-856-03, the risk assessor is to assume that a given worker will be exposed for a 
period of 25 years.  However, by reference to detailed employee records for the facility, the 
project team was able to demonstrate concretely on a facility-specific, job-specific, and loca-
tion-specific basis, the actual average lifetime exposure duration for the various site areas 
under study.  Employing these actual values, which were approximately 3 to 5 years rather 
than 25 years, greatly reduced the exposure duration.  More importantly, the site-specific 
value reduced the uncertainty in the calculated lifetime risk.  Using this lower value allowed 
the steel mill owner to limit the number of site areas proceeding to the Corrective Measures 
Study phase of the project. 
 
3.16.  Case Study 7—Direction and Magnitude of Bias.  As part of a property transfer in  
Baltimore, Maryland, the project team was asked to estimate reserves that the seller would 
have to put in escrow against the potential need for site clean-up, before the seller would  
accept transfer of the property.  For this case study, petroleum hydrocarbon contamination 
will be discussed. 
 
 3.16.1.  The project team decided to divide the relatively small site into four quadrants 
and collect one composite sample from each to assess the potential need for remediation in 
each quadrant.  The analytical results obtained from the laboratory were as follows: 
 

Quadrant Result (mg/kg) 
1 1200 
2          101 
3          756 
4          138 

 
 3.16.2.  With the state’s action level set at 100 mg/kg, it appeared that the seller would 
be required to reserve funds against a potential soil removal for the entire site.  However, a 
review of the quality control data associated with the analytical results displayed significant 
potential bias. 
 
 3.16.3.  A normal calibration curve was developed for the gas chromatograph used in 
the analysis that met method criteria for linearity.  The laboratory then analyzed an Initial 
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Calibration Verification (ICV) using a standard from an alternative source from that em-
ployed in the calibration.  The ICV was essentially a blank spike set at the midpoint of the 
calibration curve.  The result of this analysis was a percent recovery (%R) of 168%, which 
was within the acceptance limits provided with the standard by the manufacturer. 
 
 3.16.4.  However, in its simplest form this QC result indicates that if the laboratory in-
troduced the equivalent of 100 mg/kg of total petroleum hydrocarbons (TPH) into the analyt-
ical system, they would get a reported result of 168 mg/kg.  This observation, applied to the 
results reported for the site, removed two of the four quadrants from further consideration, 
reducing the required reserves by half.  
 
Section IV 
Probabilistic Risk Assessments Monte Carlo Simulations 
 
3.17.  Introduction.  The implementation of probabilistic risk assessment for environmental 
projects is beyond the scope of this document; however, a brief overview of the procedures is 
presented here.  Monte Carlo simulation, the most common technique used for probabilistic 
assessments, is a statistical technique in which outcomes are produced using randomly se-
lected values for input variables that possess a range of possible values.  In some cases, a 
known probability distribution can be assigned to each input variable.  By repeating the cal-
culation many, many times, Monte Carlo simulations create a population of results represent-
ing (in theory) the full range of possible outcomes and the likelihood of each.  For example, 
when Monte Carlo simulation is used in risk assessment, risk is expressed as a distribution of 
possible values rather than a single point value.  
 
 3.17.1.  There are two major practical limitations to the application of Monte Carlo 
simulations in general: i) it can be costly, and ii) few people are sufficiently qualified to do it.  
The EPA has also written a guidance document for probabilistic risk assessment titled RAGS 
Volume 3 Part A: Process for Conducting Probabilistic Risk Assessment (EPA 540-R-02-
002) available at http://www.epa.gov/oswer/riskassessment/rags3a/index.htm.  An EPA  
Region 3 publication (EPA 903-F-94-001) identified several technical limitations that  
preclude the Agency from relying on Monte Carlo simulations: 
(http://www.epa.gov/reg3hwmd/risk/human/info/guide1.htm). 
 
 3.17.1.1.  Software is unable to distinguish between measurement variability and lack 
of knowledge.  Some input parameters are for well-described differences among individu-
als—these differences are variability.  Other factors, such as frequency and duration of  
trespassing, are simply unknown, and assuming a distribution for them is ad hoc.  But the 
simulated distribution of unknowns is presented in computer output as variability.  The  
accuracy of the distributional assumptions limits the accuracy of the simulation. 
 
 3.17.1.2.  Software is unable to account for sample dependency (e.g., spatial and tem-
poral correlations for sample locations).  However, this limitation also applies to all classical 

http://www.epa.gov/oswer/riskassessment/rags3a/index.htm
http://www.epa.gov/reg3hwmd/risk/human/info/guide1.htm
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statistical methods (e.g., the methods predominantly discussed in this document and in EPA 
environmental statistical documents such as the QA-G4 and GA-G9 guidance documents).  
In classical statistics, the assumption of independence highly influences the applicability of a 
technique—the same limitation applies here. 
 
 3.17.2.  In most statistical evaluations (excluding geostatistics), environmental scien-
tists are resigned to the limitations of classical statistics for environmental data.  The same is 
true for Monte Carlo simulations.  Though Monte Carlo simulations require sample inde-
pendence, the approach can be advantageous.  The primary advantage is that it accounts for a 
range of input values and outputs a range of outcomes (such as risk values) with associated 
probabilities.  Although a Monte Carlo approach is currently not recommended or required 
by the EPA, the approach may be beneficial for some projects.  There are applications of 
such simulations.  Moreover, future scientists may learn how to overcome some of the limita-
tions and eventually develop reasonable and inexpensive computer applications. 

 3.17.3.  Applications of Monte Carlo simulation are more prevalent in groundwater 
modeling than any other current environmental application.  Case Study 8 shows how a 
Monte Carlo simulation of groundwater contamination was used to perfect a remedy. 
 
3.18.  Case Study 8—Monte Carlo Simulation in Remedial Alternative Selection. 
 
 3.18.1.  Monte Carlo analysis was coupled with decision tree analysis for a study site in 
Nebraska where the groundwater was contaminated with trinitrotoluene (TNT).  The extent 
of TNT contamination was characterized during an RI.  Three pump-and-treat alternative 
remedial actions were developed for the FS.  The maximum concentration of TNT remaining 
in the saturated zone at the end of each alternative project lifetime was determined stochasti-
cally using a Monte Carlo model.  The Monte Carlo model randomly generated values for 
site information for initial mass concentration, hydraulic conductivity, and retardation coeffi-
cient.  Then these randomly generated fields were sampled and the output was combined into 
sets or ensembles.  Probability functions were fitted to the output ensembles with the maxi-
mum simulated TNT concentrations.  Because each of the treatment alternatives was associ-
ated with a different set of possible maximum concentrations, the Monte Carlo simulation 
made it possible to identify the optimal alternative quantitatively by analyzing the output  
ensembles for each alternative. 
 
 3.18.2.  Applying Monte Carlo simulations requires the technical support of a specialist 
in this area; detailed methodologies are beyond the scope of this Manual.  The technique 
does rely on the power of randomly generated data sets and the optimization of conditions 
based on the simulation. 
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CHAPTER 4 

Remedial Design and Remedial Action 

 

4.1.  Introduction.  During the RD/RA phase, engineers develop detailed designs for 

remedial actions, construct remediation systems, and operate and monitor sites with long-

term remedies in place.  The term remedial system is defined here in a broad sense; it 

includes removal actions and capping as well as more active treatment systems. 

 

 4.1.1.  A number of statistical approaches that are applicable for prior stages of a 

project’s life cycle are also applicable for the RD/RA.  This Chapter will address 

environmental statistical applications for the RD/RA that have not been highlighted for the 

PA, SI, or RI/FS.  In this Chapter, we consider adaptive sampling plans for removal actions 

and groundwater monitoring and trend analysis.  

 

 4.1.2.  Although groundwater is most commonly subject to long-term monitoring, the 

same tools can be used to monitor and optimize remedial systems for other environmental 

media or demonstrate achievement of site closure criteria. 

 

4.2.  Comparisons to ACLs and MCLs.  Confirmation sampling is often performed for the 

RD/RA and would typically entail one-sample statistical tests.  These would be the same 

types of tests that would be conducted during the SI and RI, only the nature of the decision 

limits would differ (e.g., the decision limits for the RD/RA would be “cleanup goals” rather 

than the risk-based screening concentrations as in the SI). 

 

 4.2.1.  As an example, consider data collected at a landfill.  If a statistically significant 

difference is observed between upgradient and downgradient concentrations, a compliance 

monitoring program must be put into place.  According to RCRA regulations, analysis of 

Appendix IX list constituents is required.  Assuming that a release is confirmed, the facility 

must demonstrate that the release does not present a health or environmental risk.  

Generally, this entails comparing analytical results to fixed threshold values, called 

Alternate Concentration Limits (ACLs), which are often established in a jurisdiction-

specific fashion.  An alternative approach is to compare site data to MCLs.  In the first case, 

tolerance or confidence intervals are recommended.  In the second case, the tolerance limit 

is the preferred method.  

 

 4.2.2.  An appropriate one-sample statistical test is to determine whether 

contamination exceeds the decision limit (e.g., an MCL).  For example, if a set of measured 

contaminant concentrations is normal, a one-sample t-test could be used to compare the 

mean concentration to the decision limit.  However, a reliable comparison using a one-

sample test will not be possible if the data set is small (e.g., consists of only three points).  If 

normality of the data set can be assumed, a conservative approach would consist of 

calculating an UTL and comparing it to the decision limit.  If the UTL were less than the 
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decision limit, there would be strong evidence that site contamination does not exceed the 

decision limit.  However, do not conclude that there is a contamination problem when the 

UTL exceeds the decision limit.  To avoid false positives, when the UTL exceeds the 

decision limit, additional data should be collected to do an appropriate one-sample statistical 

test. 

 

 4.2.3.  The confidence limit approach is used for comparisons to ACLs based on 

background data, whereas the tolerance limit approach is used when the comparison criteria 

are health-based and the comparisons are in relation to MCLs or health-based ACLs.  The 

tolerance limit approach is more conservative than the confidence limit approach in that the 

UTL must be less than the MCL.  However, Gibbons (1994) has pointed out the following.  

 

 4.2.4.  Because at most four independent samples will be available during semiannual 

monitoring, the 95% confidence, 95% coverage tolerance limit is approximately five 

standard deviation units above the mean concentration.  In light of this, even if all four 

semiannual measurements for a given compliance are well below the MCL, the tolerance 

limit will invariably exceed the MCL or health-based ACL and never-ending corrective 

action will be required.  

 

 4.2.5.  Thus, special care must be taken in the design of compliance monitoring 

programs to ensure that the facility is not caught in the kind of regulatory trap described 

above.  

 

 4.2.6.  In addition to one-sample statistical tests, multi-sample statistical tests can be 

appropriate for the RD/RA to perform comparisons with background values.  Since long-

term monitoring is commonly performed for groundwater during the RD/RA, Figures 4-1 

through 4-5 summarize the types of one-sample and two-sample statistical tests that would 

be used for groundwater monitoring. 

 

Section I 

Groundwater Monitoring and Optimization Trend Analysis 

 

4.3.  Introduction.  Monitoring remedial systems have significant, long-term costs.  It is not 

difficult to anticipate that, over the course of 10 to 20 years, substantial economic resources 

available for environmental programs at military installations will be in long-term 

monitoring of sites actively under remediation or sites that require long-term monitoring.  

Project planners should ensure that these monitoring systems are optimized, and that they 

provide the necessary information at the least possible cost.  Likewise, where active 

remediation is ongoing, optimization is important to minimize economic impacts to the 

facility.  While optimization is desirable, compliance is mandatory, and at most 

installations, groundwater monitoring is required under various permits or consent 

agreements.  This section reviews various methods of assessing groundwater systems over 

time with a view to both detection and compliance, and optimization. 
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4.4.  Detection and Compliance Monitoring.  Detection monitoring is a means of identifying 

whether a regulated hazardous waste site is releasing hazardous materials into the 

environment.  Compliance monitoring entails the repetitive, periodic sampling and analysis 

of a select set of monitoring locations for compliance with a fixed set of standards or 

requirements.  The standards to which analytical results are compared are generally 

specified in regulations, permits, or consent agreements.  

 

 4.4.1.  In detection monitoring, the results of sampling and analysis from a location 

that has recorded a release are compared to measurements from an unaffected or 

background location.  In the case of groundwater monitoring, this generally entails selecting 

one or more monitoring wells upgradient of the site and selecting a representative set of 

downgradient monitoring wells.  If the difference between the two sets of results is 

statistically significant, the owner is usually required to begin compliance monitoring to 

investigate how the release is occurring and to remedy the situation.  These statistics fall 

into the category of hypothesis tests, specifically two- or multiple-population tests, and are 

addressed in Appendices M and N. 

 

 4.4.2.  The selection of the statistical approach is generally open to discussion with 

regulators and the final determination will depend upon many factors.  In general terms, the 

simplest approach (consistent with the requirements of local jurisdictions) is the best 

approach.  For example, for detection monitoring, a two-sample t-test could potentially be 

used to compare upgradient (background) to downgradient (site) contaminant 

concentrations.  Under the best of circumstances, a straightforward, parametric t-test would 

suffice; however, in practical terms, it is rare that environmental data meet all of the 

conditions that would make such a straightforward approach viable.  And, in fact, by the 

time Figure 4-2 was published in EPA 530-SW-89-026, the use of the t-test had been largely 

discredited for this application because it failed to adequately control false positives when 

multiple site and background comparisons are required.  Clearly, as of the time of its 

publication, the 1989 guidance recommended the use of ANOVA techniques (essentially a 

generalization of the two-sample t-test), and, to a lesser extent, alternatives such as tolerance 

intervals, prediction intervals, and control charting.  By 1992, with the publication of 

Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities—Addendum to 

Interim Final Guidance (EPA 68-W0-0025), a somewhat different statistical approach was 

highlighted.  Preferences had shifted further with the use of intervals and resampling 

strategies receiving much greater attention.  By 1994, when Gibbons published Statistical 

Methods for Groundwater Monitoring, ANOVA techniques had largely fallen out of use, 

replaced by prediction intervals with resampling strategies that have become, in some cases, 

very complex.  This statistical approach currently represents what might be called the state-

of-the-art for groundwater. 

 

 4.4.3.  The alternative approach of using control charts has not gone altogether out of 

favor, however.  A control chart is a type of plot (using data from a particular monitoring 
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well) of some function of concentration (e.g., the mean concentration) versus time.  The 

various statistical tests previously discussed are based on one of two possible approaches for 

detection monitoring.  With the exception of the control chart approach, each new 

downgradient result is compared to the history (or historical data set) of upgradient results.  

These types of comparisons are called interwell (literally, “between well”) comparisons.  A 

potential flaw in this approach is that it assumes the only variable that can make a difference 

between the upgradient and downgradient results is the intervening waste management unit.  

In reality, there are a number of other possible influences and, for this reason, intrawell 

(literally, “within well”) comparisons are still considered quite useful in groundwater 

monitoring applications.  The classic method of performing these intrawell comparisons is 

with control charting.  The two types of control charts normally employed for these 

purposes are the Shewart and cumulative summation (CUSUM) control charts, which are 

often combined in normal use.  

 

 4.4.4.  Figures 4-1 through 4-5 present flow charts showing the options available and 

guidance on option selection.  However, the decision regarding the type of statistical 

analysis program to employ should be made as part of the DQO development process for the 

monitoring effort.  It is strongly recommended that the Project Manager involve a 

statistician in this process. 

 

 4.4.5.  Case study 1 provides an example in which multiple techniques are used to 

assess groundwater monitoring data.  Case study 2 provides an example of using a 

combined Shewart/CUSUM method to identify a release at a site. 

 

4.5.  Case Study 1—Groundwater Monitoring.  At a manufacturing facility in Virginia, a 

long-standing tetrachloroethene (PCE) plume is being hydrologically contained and treated 

with a combination of vapor extraction and groundwater pump-and-treat.  The facility has 

been engaged in long-term monitoring for over 20 years and uses a variety of techniques to 

assess permit compliance.  Sample statistics allow the facility to determine whether 

remediation at the site is causing reductions in PCE concentrations.  Table 4-1 presents an 

example of summary statistics and testing results in a fashion that is easily understood for 

both compliance and detection monitoring.  

 
 4.5.1.  For compliance monitoring at wells with known past contamination (MW1 to 

MW4), increasing or decreasing statistical trends were determined at the 90 and 95% level 

of confidence, respectively, as negotiated with state regulators at the site. 

 

 4.5.2.  Trend analyses, control charts, and tolerance limits are being used for the four 

wells under the category “Comp” and for the three wells under the category “Trend.” 

Typically, differing DQOs would be set for compliance and detection wells and only one set 

of statistical tests would be performed.  However, the regulatory negotiations at this site 

mandated identical tests for both types of wells.  (This example demonstrates an opportunity 

for improving past negotiated monitoring with regulators.) 
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 4.5.3.  Additionally, the number of detections greater than the “tolerance limit” is 

specified for each well.  The 95% UTL is constructed from a set of background wells, also 

as determined in the site permit at time of negotiation with regulators.  Because there is 
background contamination the following case study provides an example of using a 

combined Shewart/CUSUM method to identify a release at a site. 
 

Table 4-1. 
Groundwater Monitoring Data for Case Study 1 

Identification 

n Avg 

Descriptive Statistics 
Trend 

Significance 

Excursions? 

Class Well Med s W MK 
Control 

Chart 

Tolerance 

Limit 

95% 90%  

Comp. 

MW1 46 5595.0 5610.0 982.0 Yes No Up Up None 3 

MW2 44 62.3 67.2 21.5 Yes No Down Down None None 

MW3 40 1295.0 1198.0 367.8 No No Down Down None None 

MW4 47 133.8 133.7 22.3 Yes No Down Down None None 

Detect. 

MW5 16 0.0 0.0 0.0 N/A N/A None None None None 

MW6 16 0.0 0.0 0.0 N/A N/A None None None None 

MW7 16 0.0 0.0 0.0 N/A N/A None None None None 

MW8 16 0.0 0.0 0.0 N/A N/A None None None None 

MW9 16 0.0 0.0 0.0 N/A N/A None None None None 

MW10 16 0.0 0.0 0.0 N/A N/A None None None None 

MW11 16 0.369 0.4 0.307 Yes No None None None None 

MW12 16 0.0 0.0 0.0 N/A N/A None None None None 

MW13 16 0.0 0.0 0.0 N/A N/A None None None None 

MW14 16 0.0 0.0 0.0 N/A N/A None None None None 

MW15 16 0.039 0.0 0.088 No No None None None None 

 

Notes: Comp Compliance 

 n Number of samples 

 Avg Sample mean 

 Med Sample median 

 s Sample standard deviation 

 W Normal according to Shapiro-Wilk test at 95% confidence? 

 MK Seasonality according to Mann-Kendall test at 95% confidence? 
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Figure 4-1.  1989 EPA Decision Tree for Groundwater Monitoring 

 



 

 

 
 

EM 200-1-16 

31 May 13 

 

4-7 

  Requirement for 
Groundwater 

Monitoring 

Interwell or  
Intrawell? 

Use Intrawell 
Statistics 

Collect a minimum 
of 4 upgradient 
data points (in  

quadruplicate for 
indicator parameters 

Calculate the  
Mean and Variance 

for Background 

Perform test comparing 
downgradient to  
background data 

Statistically 
Significant 
Difference? 

Continue 
Detection 
Monitoring 

Perform 
Resampling 

Study 

Update both 
background and 

downgradient data 

Collect 16 
independent rounds 

of data 

Plot historical data 
in an equilinear 

time plot 

Calculate and plot 
control limits 

Use Interwell 
Statistics 

Statistically 
Significant 
Difference? 

Collect the next 
round of data 

Update control limits; 
plot and compare 

new data No 

First 
Failure? 

Begin 
Compliance 
Monitoring 

First 
Failure? 

Perform 
Resampling 

Study 

Plot and compare 
to existing 

limits 

Yes 

Yes 

No 

No 

Yes 

Yes 

Statistically 
Significant 
Difference? 

Continue 
Detection 

 
 

Figure 4-2.  Statistical Decision Tree with Options for Groundwater Monitoring-Part 1. 
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Figure 4-3.  Statistical Decision Tree with Options for Groundwater Monitoring-Part 2. 
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Figure 4-4.  Statistical Decision Tree with Options for Groundwater Monitoring-Part 3. 
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Figure 4-5.  Statistical Decision Tree with Options for Groundwater Monitoring-Part 4. 
 
4.6.  Case Study 2—Shewart/CUSUM Monitoring.  A groundwater plume at a site is  
currently being addressed via pumping and treating large amounts of groundwater.  The 

system is very costly, and the site owner wishes to change the system configuration.  Project 

regulators want to know whether changing the system (in this case, shutting off the 

treatment system) will increase measured trichloroethene (TCE) values near the leading 

edge of the plume.  A special type of compliance monitoring was initiated to determine 

whether concentrations after system shutdown exceeded a “trigger” level.  Table 4-2 lists 

the eight most recent TCE measurements at monitoring well B-37 prior to altering the 

system. 

 

 4.6.1.  The sample mean for these data ( x ) is 4.3 parts per billion (ppb) and the sample 

standard deviation (s) is 1.1 ppb.  These values are used in statistical tests for normality, 

which did not indicate the data set is non-normal.  (A hypothesis of normality cannot be 

rejected at the 90% significance level using any of the Shapiro-Wilk, Anderson-Darling, 

Kolmogorov-Smirnov, or D’Agostino tests [See Appendix F].) 

 4.6.2.  Table 4-3 lists the measured TCE concentrations in this well over eight 

monitoring periods after system shutdown in mid-December 2002, and the associated 

Shewart/CUSUM statistical parameters (see Appendix Q).  The Shewart/CUSUM 

calculations shown in the table are plotted in the Figure 4-6. 
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 4.6.3.  The quantities zi and Si (discussed in Appendix Q) were calculated to determine 

whether changing the system configuration resulted in an unacceptable change (i.e., 

increase) in the TCE concentration in Well B-37.  
 

Table 4-2. 

Eight Most Recent TCE Measurements in Well B-37 

Well ID Sample Date TCEConcentration (g/L) 

B-37 7-Jun-99 3.0 

B-37 29-Nov-99 3.2 

B-37 26-Jun-00 4.5 

B-37 3-Jan-01 5.8 

B-37 16-May-01 5.9 

B-37 4-Oct-01 3.2 

B-37 27-Mar-02 4.6 

B-37 10-Dec-02 4.3 

 

 4.6.4.  The first out-of-control event occurred in winter 2003 when the zi of 4.8 

exceeded the Shewart threshold of 4.5.  In addition, although the normalized concentration 

zi decreases after the fifth sampling event following the start of shutdown, Si continues to 

increase beyond and remains greater than the threshold of 5.0 for this quantity through fall 

2004. 

 

Table 4-3. 

TCE Measurements and Shewart/CUSUM Calculations 

 

Hypothetical 

Sampling Event 

 

Sampling 

Period, i 

TCE 

Concentration 

(g/L) 

 

 

zi 

 

 

zi-1 

 

 

Si 

Winter 2002 1 4.9 0.6 –0.4 0 

Spring 2003 2 5.7 1.2 0.2 0.2 

Summer 2003 3 6.0 1.4 0.4 0.7 

Fall 2003 4 3.9 –0.4 –1.4 0.0 

Winter 2003 5 9.8 4.8 3.8 3.8 

Spring 2004 6 8.1 3.3 2.3 6.1 

Summer 2004 7 7.5 2.8 1.8 8.0 

Fall 2004 8 10.6 5.5 4.5 12.5 

zi = standardized result (or normalized concentration) 

Si = cumulative sum 

  

 4.6.5.  The results of the testing showed that reconfiguring the system appeared to 

change the concentrations of TCE in this downgradient well at a statistically significant 

level.  The reconfiguration was abandoned, and project planners began to reevaluate 

their understanding of groundwater movement at the site. 
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 4.6.6.  The Shewart/CUSUM method is commonly applied to landfills for detection 

monitoring, although it has obvious additional uses in other long-term monitoring 

applications.  For instance, by looking for an insignificant change over time, a site 

stakeholder could suggest that monitoring at a natural attenuation site could be  

discontinued. 

 
  

Figure 4-6. Shewart/CUSUM Control Chart-Well B-37
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Figure 4-6.  Shewart/CUSUM control chart, Well B-37. 
 
4.7.  Optimization.  The process of optimization is similar in many ways to the process of 

sensitivity analysis.  In both cases, one makes planned adjustments to the system and looks 

for changes in the outcome.  The process of optimization involves assessing whether or not 

a change made in the system results in a beneficial outcome—improving system 

performance, for example, by reducing cost, increasing efficiency, or shortening the time to 

completion.  This can be accomplished by comparing data taken after the adjustments have 

been made to historical data for the process using a variety of hypothesis testing tools.  

 

 4.7.1.  It is also possible to examine trends in the system after taking into account 

seasonal and other forms of cyclic correlation.  For example, when a time plot is examined 

for trend after a system modification, one may find that the slope of the time plot line 

changes, indicating a change in system performance.  A time series plot is a graph showing 

how a parameter (e.g., TCE concentration) changes over time.  A trend is a statistically 

significant change upward or downward with a certain degree of confidence.  Whether or 
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not that change is significant and an assessment of the magnitude of its impact can be 

addressed using trend tests such as Mann-Kendall and Sen’s Slope Estimator.*  

 

 4.7.2.  Another example of system optimization is in addressing such issues as the 

monitored analyte list and the frequency of sampling, both of which have economic 

implications and can have regulatory implications as well.  As a hypothetical extreme case 

for illustration, assume that a monitoring well network must be sampled four times each 

year; that there are 10 wells in the network; and that each well is monitored for 50 

constituents, all of which must be non-detects.  

 

 4.7.3.  The statistics underlying the determination of a detection limit (e.g., if 

normality is assumed and the detection limit is the “Type I detection limit” or “critical 

value” in Appendix G) are such that there is only a 1% probability of a false positive at the 

detection limit while, as the statistics employed are one-sided, there is a 50% probability of 

a false negative at the detection limit.  Thus, in the course of a given year, based on 

probability alone, the facility could falsely report itself in violation an average of 20 times, 

while falsely reporting compliance 1000 times (on the average).  In fact, it can be 

demonstrated that simply because of the inherent Type I error rate associated with any 

statistical test, where literally thousands of such comparisons may be required, whether at 

the detection limit or otherwise, the probability of a false conclusion of violation approaches 

unity.  Thus, it is always in the best interest of the regulated facility to limit the number of 

analytes for which one tests to the smallest possible number.  Every permit renewal period 

or 5-year review should be used as an opportunity to further limit the analyte list.  Even 

hypothetically, one can see that this approach is inefficient (costly), and reaching the goal of 

all non-detect is an example of a poorly defined quality objective.  Detection limits can 

differ across laboratories and over time, and, clearly, they are not related to risk 

management in any way. 

 

 4.7.4.  Another approach currently under study is the use of statistics to establish 

predictable correlation between the analyte of interest and some parameter that is more 

readily or cost-effectively measured than the analyte of interest.  This “harbinger” or 

“calibration” approach has its roots in the commonly accepted practice of monitoring for 

indicator parameters such as pH, conductivity, total organic carbon, and total organic 

halides in place of specific analytes.  If a rigorous regression analysis of historical data 

suggests a quantitative linkage between the concentration of arsenic and magnesium at a 

given site, it should be possible to delete, or at least reduce the frequency of analysis, for 

one or the other analyte, particularly in the case where both analytes have historically 

displayed compliant behavior.  It would also be useful in this type of situation if a functional 

relationship and the uncertainty associated with that relationship could be established.  

 

                                                 
*
 Appendix  P. 
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 4.7.5.  To assess the viability of monitored natural attenuation as a remedial 

alternative, it is essential to demonstrate:  i) degradation of VOCs from parent products 

through to mineralization; and  ii) correlation between that degradation and appropriate 

geochemical conditions.  An example of assessing the correlation of parameters at a site in 

Maryland is illustrated in Case Study 3.  Correlation measures show how strongly variables 

(or parameters) are related, or change with each other. 

 

4.8.  Case Study 3—Trend Analysis and Correlation in Natural Attenuation Data. 
 

 4.8.1.  The data used for a site in Maryland were organized along a single geographic 

line, from the suspected source to a groundwater discharge zone located along a creek bed.  

Location was displayed in feet from the center of the suspected source.  The parent 

constituent was PCE.  The primary geochemical indicators of interest (for purposes of this 

case study) were dissolved oxygen (DO) and oxidation-reduction potential (redox).  
 

Table 4-4. 

Attenuation Data 

Distance from Source 

(feet) 

PCE 

(μg/L) 

DO  

(mg/L) 

Redox 

(mV) 

0 320 0 –210 

50 1430 0 –220 

100 960 0.2 –170 

150 780 0.3 –140 

200 570 0.6 –80 

250 630 0.5 –30 

300 580 0.8 10 

350 340 1.1 40 

400 430 1.4 70 

450 130 1.7 90 

500 12 3.5 120 

 

 4.8.2.  The data for the three parameters of interest are presented in Table 4-4.  The 

data were then plotted against distance from the origin (source) to identify trends over 

distance.  A Mann-Kendall trend analysis showed that PCE concentration decreased over 

distance.  Redox and DO are positively correlated to one another with a Pearson’s r value of 

0.84.  Geochemical understanding of natural attenuation requires that redox and DO should 

be inversely correlated to PCE concentration, and the Pearson’s r values for DO and redox 

are –0.71 and –0.74, respectively.  The results are displayed in the Figures 4-7 and 4-8.  In 

summary, the results suggest that conditions for natural attenuation are present. 
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Figure 4-7. PCE Concentration versus distance
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Figure 4-7.  PCE Concentration Versus Distance. 

 

  

Figure 4-8. Geochemical Parameters versus Distance from Source
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Figure 4-8.  Geotechnical Parameters Versus Distance From Source. 

                  (yellow triangle-redox; blue diamond-dissolved oxygen. 
 

Section II 

Applying Cleanup Levels 

 
4.9.  Introduction.  When derived in accordance with USEPA’s risk assessment guidance, 

risk-based cleanup levels are intended to represent the average contaminant concentration 

within the exposure unit that can be left on the site following remediation (Schulz and 

Griffin, 2001).  In contrast, a “not-to-exceed” cleanup level drives remediation solutions that 

involve treating or removing any and all media with contaminant concentrations that exceed 

the cleanup level.  The result is that applying a not-to-exceed level may result in over-

remediation. 

 



 

 

 

 

EM 200-1-16 

31 May 13 

 

4-16 

 4.9.1.  Calculated using risk assessment principles, the cleanup goal concentration is 

usually defined as an exposure unit concentration that will meet the target risk level agreed 

to by the design team and regulatory authorities.  Some sample concentrations exceeding the 

cleanup objective can remain in place as long as the overall exposure concentration, 

calculated to a predetermined level of certainty, meets the cleanup goal (and likewise the 

agreed upon risk level).  Because of the uncertainty associated with estimating the true 

average concentration of a contaminant at a site, USEPA recommends use of the 95% one-

sided, upper confidence limit of the arithmetic mean (95% UCL) of the sample data to 

represent the exposure unit concentration term in risk assessments (EPA 9285.7-09A and 

EPA OSWER 9285.6-10).  Consequently, a risk-based cleanup level should generally be 

interpreted as the 95% UCL of the contaminant concentration within the exposure unit 

following remediation. 

 

 4.9.2.  However, draft USEPA guidance suggests specific situations in which 

application of the cleanup level as an area average may not be appropriate (USEPA, 2002) 

These include the following. 

 

 4.9.2.1.  Exposure within the exposure unit is not random. 

 

 4.9.2.2.  The cleanup level is based on acute rather than chronic exposure. 

 

 4.9.2.3.  The cleanup level is not risk-based (i.e., it considers factors other than risk). 

 

 4.9.2.4.  The quality of site characterization data is not optimal but it is not worth 

investing in additional sampling. 

 

 4.9.2.5.  Given the site conditions (complexity, size, characterization, contaminant 

distribution), it is not cost-effective to do the necessary sampling and statistical analysis. 

 

 4.9.2.6.  The community will not accept leaving soil with contaminant concentrations 

that exceed the cleanup level on the site. 

 

 4.9.3.  If applying cleanup levels as an area average is appropriate, there are two basic 

approaches:  i) using non-spatial statistical methods to determine a not-to-exceed 

concentration, and  ii) using spatial statistical methods to iteratively re-calculate the UCL 

until the optimal “design line” for the remedial action is determined.  

 

4.10.  Determining Not-to-Exceed Concentrations Using Non-Spatial Statistics.  Draft 

USEPA guidance (USEPA, 2002) defines the remedial action level (RAL) as the maximum 

concentration that may be left in place within an exposure unit such that the average 

concentration (or 95% UCL) within the exposure unit is at or below the cleanup level.  Non-

spatial techniques may be appropriate for calculating the RAL when there is no spatial 

correlation between contaminant concentrations, such as at a dump site where small, 
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randomly located spots of high contaminant concentrations are interspersed with areas of 

lower concentrations.  Non-spatial techniques are based on the mean and standard deviation 

of the sample contaminant concentration data and on how those metrics change as soils with 

high contaminant concentrations are replaced with post-remediation concentrations during 

remediation.  The draft guidance describes two non-spatial statistical methods for 

calculating remedial action levels that ensure that post-remediation area average 

contaminant concentrations achieve cleanup levels:  i) iterative truncation method, and  ii) 

confidence response goal method.  These methods are also reviewed in Schulz and Griffin 

(2001).  Both methods can be applied in a spreadsheet calculation or programming 

language.  

 

 4.10.1.  Iterative Truncation Method.  

 

 4.10.1.1.  The iterative truncation method is based on the identifying and removing 

(truncating) high values in the sample concentration measurements (hot spots), replacing 

them with the post-remediation concentration (e.g., concentration in clean fill), and 

calculating the hypothetical post-remediation average concentration (95% UCL) in the 

exposure unit.  Starting with the highest concentration in the data set, the process is repeated 

iteratively until the post-remediation 95% UCL is less than or equal to the cleanup level.  

The highest sample concentration remaining in the data set is designated the RAL. 

 

 4.10.1.2.  This method is sensitive to the completeness of site characterization and the 

range of resultant sample concentrations.  According to the draft USEPA guidance, to use 

this method with confidence, good site characterization through extensive, unbiased 

sampling is required and the resulting data must adequately represent random, long-term 

exposure to receptors.  This method is not reliable when samples are not independently and 

randomly located. 

 

 4.10.2.  Confidence Response Goal Method.  Bowers et al. (1996) developed a method 

for calculating a confidence response goal (CRG), which, like the RAL, is a  

not-to-exceed level.  This method can be applied at sites where there is a non-spatial, 

lognormal distribution of contamination (USEPA, 2002).  

 

 4.10.2.1.  As described in the draft USEPA guidance, the basic premise of the method 

is that the CRG can be expressed as a function of the geometric mean and the geometric 

standard deviation of contaminant concentrations, and the desired reduction in exposure, 

which is defined as the ratio of average post-remediation concentration to the average pre-

remediation concentration.  The guidance provides a summary of the method, documents 

the equation for calculating the CRG, and refers the reader to the original paper (Bowers et 

al., 1996) for details on the derivation of the function.  

 

 4.10.2.2.  The Schulz and Griffin (2001) review of the two non-spatial methods 

concludes that the CRG method is less sensitive than the iterative truncation method to 
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changes in the highest sample concentrations and recommends the use of the CRG method 

when the contaminant distribution is lognormal.  

 

 4.10.3.  Using Spatial Statistical Methods to Determine “Design Line” for 

Remediation.  The distribution of contaminant concentrations may be spatially correlated at 

many sites where there is an original source or release that is subject to environmental fate 

and transport mechanisms.  Contaminant concentrations in and around the original source or 

release may be higher than those at greater distances, or they may be higher where there is a 

mechanism of accumulation or an environmental “sink.”  Biased sampling is frequently 

applied in such cases because a high number of samples is desired in areas with high 

variance and uncertainty (for example, near the source area), and a lower number of samples 

is often sufficient to characterize areas with expected low variance and uncertainty.  The 

concept of taking “step out” samples in the vicinity of sample locations where high 

contaminant concentrations are detected also introduces bias into the sampling plan.  

Geostatistical techniques are statistical procedures designed to process spatially correlated 

data (see Appendix R on Geostatistics).  Unlike the non-spatial techniques, geostatistical 

techniques are well suited for evaluation of biased data sets.  

 

 4.10.3.1.  The draft USEPA guidance presents an example of the determination of 

RALs using geostatistical techniques.  The example has two simplifying features that can be 

found on many (but not all) sites:  i) contamination that is surface only, and  ii) the 

importance of a residential scenario.  For this example, the steps for determining RALs are 

as follows. 

 

 4.10.3.1.1.  Create an iso-concentration map of the site by modeling the spatial 

correlation underlying measured values. 

 

 4.10.3.1.2.  Superimpose a grid of exposure units over the site and compute average 

contaminant concentrations in each exposure unit. 

 

 4.10.3.1.3.  Identify zones that must be remediated to reduce average concentrations in 

all exposure units to the appropriate cleanup level.  This is an iterative process, where the 

higher contaminant concentrations are replaced with post-remediation concentrations and 

average contaminant concentrations in each exposure unit are re-calculated.  The final cutoff 

concentration is the RAL.   

 

 4.10.3.1.4.  Use the original iso-concentration map to define zones with concentrations 

in excess of the RAL.  The contoured zone is the area that requires remediation. 

 

 4.10.3.2.  The draft guidance cautions against using geostatistical techniques if 

contaminant concentrations show a random, non-spatial pattern, or if the anticipated benefits 

from geostatistical analysis do not justify the costs.  For example, even in cases of 

conservatively biased data, spatial statistical methods may not be warranted when non-
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spatial methods are determined to result in cleanup objectives that are both sufficiently 

conservative from the risk perspective and acceptable from the cleanup cost perspective. 

Additionally, conservatively biased, non-spatial methods may be needed from a practical 

view when adequate technical or computational resources are not available.  Proponents of 

geostatistical techniques counter that presenting the site contamination and remediation 

results as spatial is a highly intuitive and visually powerful approach, and therefore 

enhances communication among the parties during risk management discussions.  Available 

computational tools make it possible to find the point of diminishing returns where an 

increase in remediation has little effect on reducing risk in a cost-effective manner. 
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APPENDIX B 
Statistical Tables 

 

Table B-1. 
Binomial Distribution 
 
n k p=0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

1  0  0.9500  0.9000  0.8500  0.8000  0.7500  0.7000  0.6500  0.6000  0.5500  0.5000  0.4500  0.4000  0.3500  0.3000  0.2500  0.2000  0.1500  0.1000  0.05000  

 1  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

2  0  0.9025  0.8100  0.7225  0.6400  0.5625  0.4900  0.4225  0.3600  0.3025  0.2500  0.2025  0.1600  0.1225  0.09000  0.06250  0.04000  0.02250  0.01000  0.002500  

 1  0.9975  0.9900  0.9775  0.9600  0.9375  0.9100  0.8775  0.8400  0.7975  0.7500  0.6975  0.6400  0.5775  0.5100  0.4375  0.3600  0.2775  0.1900  0.09750  

 2  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

3  0  0.8574 0.729 0.6141 0.512 0.4219 0.343 0.2746 0.216 0.1664 0.125 0.09113 0.064 0.04288 0.027 0.01563 8.000E-03 3.375E-03 1.000E-03 1.250E-04 

 1  0.9928 0.972 0.9393 0.896 0.8438 0.784 0.7183 0.648 0.5748 0.5 0.4253 0.352 0.2818 0.216 0.1563 0.104 0.06075 0.028 7.250E-03 

 2  0.9999 0.999 0.9966 0.992 0.9844 0.973 0.9571 0.936 0.9089 0.875 0.8336 0.784 0.7254 0.657 0.5781 0.488 0.3859 0.271 0.1426 

 3  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

4  0  0.8145 0.6561 0.522 0.4096 0.3164 0.2401 0.1785 0.1296 0.09151 0.0625 0.04101 0.0256 0.01501 8.100E-03 3.906E-03 1.600E-03 5.062E-04 1.000E-04 6.250E-06 

 1  0.986 0.9477 0.8905 0.8192 0.7383 0.6517 0.563 0.4752 0.391 0.3125 0.2415 0.1792 0.1265 0.0837 0.05078 0.0272 0.01198 3.700E-03 4.812E-04 

 2  0.9995 0.9963 0.988 0.9728 0.9492 0.9163 0.8735 0.8208 0.7585 0.6875 0.609 0.5248 0.437 0.3483 0.2617 0.1808 0.1095 0.0523 0.01402 

 3  1.000  0.9999 0.9995 0.9984 0.9961 0.9919 0.985 0.9744 0.959 0.9375 0.9085 0.8704 0.8215 0.7599 0.6836 0.5904 0.478 0.3439 0.1855 

 4  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

5  0  0.7738 0.5905 0.4437 0.3277 0.2373 0.1681 0.116 0.07776 0.05033 0.03125 0.01845 0.01024 5.252E-03 2.430E-03 9.766E-04 3.200E-04 7.594E-05 1.000E-05 3.125E-07 

 1  0.9774 0.9185 0.8352 0.7373 0.6328 0.5282 0.4284 0.337 0.2562 0.1875 0.1312 0.08704 0.05402 0.03078 0.01562 6.720E-03 2.227E-03 4.600E-04 3.000E-05 

 2  0.9988 0.9914 0.9734 0.9421 0.8965 0.8369 0.7648 0.6826 0.5931 0.5 0.4069 0.3174 0.2352 0.1631 0.1035 0.05792 0.02661 8.560E-03 1.158E-03 

 3  1.000  0.9995 0.9978 0.9933 0.9844 0.9692 0.946 0.913 0.8688 0.8125 0.7438 0.663 0.5716 0.4718 0.3672 0.2627 0.1648 0.08146 0.02259 

 4  1.000  1.000  0.9999 0.9997 0.999 0.9976 0.9947 0.9898 0.9815 0.9688 0.9497 0.9222 0.884 0.8319 0.7627 0.6723 0.5563 0.4095 0.2262 
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n k p=0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

 5  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

6  0  0.7351 0.5314 0.3771 0.2621 0.178 0.1176 0.07542 0.04666 0.02768 0.01563 8.304E-03 4.096E-03 1.838E-03 7.290E-04 2.441E-04 6.400E-05 1.139E-05 1.000E-06 1.562E-08 

 1  0.9672 0.8857 0.7765 0.6554 0.5339 0.4202 0.3191 0.2333 0.1636 0.1094 0.0692 0.04096 0.02232 0.01094 4.639E-03 1.600E-03 3.987E-04 5.500E-05 1.797E-06 

 2  0.9978 0.9842 0.9527 0.9011 0.8306 0.7443 0.6471 0.5443 0.4415 0.3438 0.2553 0.1792 0.1174 0.07047 0.0376 0.01696 5.885E-03 1.270E-03 8.641E-05 

 3  0.9999 0.9987 0.9941 0.983 0.9624 0.9295 0.8826 0.8208 0.7447 0.6563 0.5585 0.4557 0.3529 0.2557 0.1694 0.09888 0.04734 0.01585 2.230E-03 

 4  1.000  0.9999 0.9996 0.9984 0.9954 0.9891 0.9777 0.959 0.9308 0.8906 0.8364 0.7667 0.6809 0.5798 0.4661 0.3446 0.2235 0.1143 0.03277 

 5  1.000  1.000  1.000  0.9999 0.9998 0.9993 0.9982 0.9959 0.9917 0.9844 0.9723 0.9533 0.9246 0.8824 0.822 0.7379 0.6229 0.4686 0.2649 

 6  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

7  0  0.6983 0.4783 0.3206 0.2097 0.1335 0.08235 0.04902 0.02799 0.01522 7.813E-03 3.737E-03 1.638E-03 6.434E-04 2.187E-04 6.104E-05 1.280E-05 1.709E-06 1.000E-07 7.812E-10 

 1  0.9556 0.8503 0.7166 0.5767 0.4449 0.3294 0.2338 0.1586 0.1024 0.0625 0.03571 0.01884 9.008E-03 3.791E-03 1.343E-03 3.712E-04 6.948E-05 6.400E-06 1.047E-07 

 2  0.9962 0.9743 0.9262 0.852 0.7564 0.6471 0.5323 0.4199 0.3164 0.2266 0.1529 0.09626 0.05561 0.0288 0.01288 4.672E-03 1.222E-03 1.765E-04 6.027E-06 

 3  0.9998 0.9973 0.9879 0.9667 0.9294 0.874 0.8002 0.7102 0.6083 0.5 0.3917 0.2898 0.1998 0.126 0.07056 0.03334 0.0121 2.728E-03 1.936E-04 

 4  1.000  0.9998 0.9988 0.9953 0.9871 0.9712 0.9444 0.9037 0.8471 0.7734 0.6836 0.5801 0.4677 0.3529 0.2436 0.148 0.07377 0.02569 3.757E-03 

 5  1.000  1.000  0.9999 0.9996 0.9987 0.9962 0.991 0.9812 0.9643 0.9375 0.8976 0.8414 0.7662 0.6706 0.5551 0.4233 0.2834 0.1497 0.04438 

 6  1.000  1.000  1.000  1.000  0.9999 0.9998 0.9994 0.9984 0.9963 0.9922 0.9848 0.972 0.951 0.9176 0.8665 0.7903 0.6794 0.5217 0.3017 

 7  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

8  0  0.6634 0.4305 0.2725 0.1678 0.1001 0.05765 0.03186 0.0168 8.373E-03 3.906E-03 1.682E-03 6.554E-04 2.252E-04 6.561E-05 1.526E-05 2.560E-06 2.563E-07 1.000E-08 3.906E-11 

 1  0.9428 0.8131 0.6572 0.5033 0.3671 0.2553 0.1691 0.1064 0.06318 0.03516 0.01812 8.520E-03 3.571E-03 1.290E-03 3.815E-04 8.448E-05 1.187E-05 7.300E-07 5.977E-09 

 2  0.9942 0.9619 0.8948 0.7969 0.6785 0.5518 0.4278 0.3154 0.2201 0.1445 0.08846 0.04981 0.02532 0.01129 4.227E-03 1.231E-03 2.423E-04 2.341E-05 4.008E-07 

 3  0.9996 0.995 0.9786 0.9437 0.8862 0.8059 0.7064 0.5941 0.477 0.3633 0.2604 0.1737 0.1061 0.05797 0.0273 0.01041 2.854E-03 4.316E-04 1.540E-05 

 4  1.000  0.9996 0.9971 0.9896 0.9727 0.942 0.8939 0.8263 0.7396 0.6367 0.523 0.4059 0.2936 0.1941 0.1138 0.05628 0.02135 5.024E-03 3.718E-04 

 5  1.000  1.000  0.9998 0.9988 0.9958 0.9887 0.9747 0.9502 0.9115 0.8555 0.7799 0.6846 0.5722 0.4482 0.3215 0.2031 0.1052 3.809E-02 5.788E-03 

 6  1.000  1.000  1.000  0.9999 0.9996 0.9987 0.9964 0.9915 0.9819 0.9648 0.9368 0.8936 0.8309 0.7447 0.6329 0.4967 0.3428 0.1869 0.05724 

 7  1.000  1.000  1.000  1.000  1.000  0.9999 0.9998 0.9993 0.9983 0.9961 0.9916 0.9832 0.9681 0.9424 0.8999 0.8322 0.7275 0.5695 0.3366 

 8  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

                     

9  0  0.6302 0.3874 0.2316 0.1342 0.07508 0.04035 0.02071 0.01008 4.605E-03 1.953E-03 7.567E-04 2.621E-04 7.882E-05 1.968E-05 3.815E-06 5.120E-07 3.844E-08 1.000E-09 1.953E-12 

 1  0.9288 0.7748 0.5995 0.4362 0.3003 0.196 0.1211 0.07054 0.03852 0.01953 9.080E-03 3.801E-03 1.396E-03 4.330E-04 1.068E-04 1.894E-05 1.999E-06 8.200E-08 3.359E-10 



 
EM 200-1-16 

31 May 13 
 

 
B-3 

n k p=0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

 2  0.9916 0.947 0.8591 0.7382 0.6007 0.4628 0.3373 0.2318 0.1495 0.08984 0.04977 0.02503 0.01118 4.291E-03 1.343E-03 3.139E-04 4.644E-05 2.998E-06 2.572E-08 

 3  0.9994 0.9917 0.9661 0.9144 0.8343 0.7297 0.6089 0.4826 0.3614 0.2539 0.1658 0.09935 0.05359 0.02529 9.995E-03 3.066E-03 6.340E-04 6.423E-05 1.151E-06 

 4  1.000  0.9991 0.9944 0.9804 0.9511 0.9012 0.8283 0.7334 0.6214 0.5 0.3786 0.2666 0.1717 0.09881 0.04893 0.01958 5.629E-03 8.909E-04 3.322E-05 

 5  1.000  0.9999 0.9994 0.9969 0.99 0.9747 0.9464 0.9006 0.8342 0.7461 0.6386 0.5174 0.3911 0.2703 0.1657 0.08564 0.03393 8.331E-03 6.426E-04 

 6  1.000  1.000  1.000  0.9997 0.9987 0.9957 0.9888 0.975 0.9502 0.9102 0.8505 0.7682 0.6627 0.5372 0.3993 0.2618 0.1409 0.05297 8.361E-03 

 7  1.000  1.000  1.000  1.000  0.9999 0.9996 0.9986 0.9962 0.9909 0.9805 0.9615 0.9295 0.8789 0.804 0.6997 0.5638 0.4005 0.2252 0.07121 

 8  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9997 0.9992 0.998 0.9954 0.9899 0.9793 0.9596 0.9249 0.8658 0.7684 0.6126 0.3698 

 9  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

10  0  0.5987 0.3487 0.1969 0.1074 0.05631 0.02825 0.01346 6.047E-03 2.533E-03 9.766E-04 3.405E-04 1.049E-04 2.759E-05 5.905E-06 9.537E-07 1.024E-07 5.767E-09 1.000E-10 9.766E-14 

 1  0.9139 0.7361 0.5443 0.3758 0.244 0.1493 0.08595 0.04636 0.02326 0.01074 4.502E-03 1.678E-03 5.399E-04 1.437E-04 2.956E-05 4.198E-06 3.325E-07 9.100E-09 1.865E-11 

 2  0.9885 0.9298 0.8202 0.6778 0.5256 0.3828 0.2616 0.1673 0.09956 0.05469 0.02739 0.01229 4.821E-03 1.590E-03 4.158E-04 7.793E-05 8.665E-06 3.736E-07 1.605E-09 

 3  0.999 0.9872 0.95 0.8791 0.7759 0.6496 0.5138 0.3823 0.266 0.1719 0.102 0.05476 0.02602 0.01059 3.506E-03 8.644E-04 1.346E-04 9.122E-06 8.198E-08 

 4  0.9999 0.9984 0.9901 0.9672 0.9219 0.8497 0.7515 0.6331 0.5044 0.377 0.2616 0.1662 0.09493 0.04735 0.01973 6.369E-03 1.383E-03 1.469E-04 2.755E-06 

 5  1.000  0.9999 0.9986 0.9936 0.9803 0.9527 0.9051 0.8338 0.7384 0.623 0.4956 0.3669 0.2485 0.1503 0.07813 0.03279 9.874E-03 1.635E-03 6.369E-05 

 6  1.000  1.000  0.9999 0.9991 0.9965 0.9894 0.974 0.9452 0.898 0.8281 0.734 0.6177 0.4862 0.3504 0.2241 0.1209 0.04997 0.0128 1.028E-03 

 7  1.000  1.000  1.000  0.9999 0.9996 0.9984 0.9952 0.9877 0.9726 0.9453 0.9004 0.8327 0.7384 0.6172 0.4744 0.3222 0.1798 0.07019 0.0115 

 8  1.000  1.000  1.000  1.000  1.000  0.9999 0.9995 0.9983 0.9955 0.9893 0.9767 0.9536 0.914 0.8507 0.756 0.6242 0.4557 0.2639 0.08614 

 9  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9997 0.999 0.9975 0.994 0.9865 0.9718 0.9437 0.8926 0.8031 0.6513 0.4013 

 10  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

11  0  0.5688 0.3138 0.1673 0.0859 0.04224 0.01977 8.7510E-03 3.6280E-03 1.3930E-03 4.8830E-04 1.532E-04 4.194E-05 9.655E-06 1.771E-06 2.384E-07 2.048E-08 8.650E-10 1.000E-11 4.883E-15 

 1  0.8981 0.6974 0.4922 0.3221 0.1971 0.113 0.06058 0.03023 0.01393 5.8590E-03 2.213E-03 7.340E-04 2.069E-04 4.724E-05 8.106E-06 9.216E-07 5.478E-08 1.000E-09 1.025E-12 

 2  0.9848 0.9104 0.7788 0.6174 0.4552 0.3127 0.2001 0.1189 0.06522 3.2710E-02 0.0148 5.924E-03 2.038E-03 5.777E-04 1.261E-04 1.894E-05 1.582E-06 4.555E-08 9.797E-11 

 3  0.9984 0.9815 0.9306 0.8389 0.7133 0.5696 0.4256 0.2963 0.1911 0.1133 0.06096 0.02928 0.01224 4.291E-03 1.188E-03 2.352E-04 2.755E-05 1.248E-06 5.624E-09 

 4  0.9999 0.9972 0.9841 0.9496 0.8854 0.7897 0.6683 0.5328 0.3971 0.2744 0.1738 0.09935 0.05014 0.02162 7.561E-03 1.965E-03 3.219E-04 2.290E-05 2.156E-07 

 5  1.000  0.9997 0.9973 0.9883 0.9657 0.9218 0.8513 0.7535 0.6331 0.5 0.3669 0.2465 0.1487 0.07822 0.03433 0.01165 2.657E-03 2.957E-04 5.801E-06 

 6  1.000  1.000  0.9997 0.998 0.9924 0.9784 0.9499 0.9006 0.8262 0.7256 0.6029 0.4672 0.3317 0.2103 0.1146 0.05041 0.01589 2.751E-03 1.119E-04 

 7  1.000  1.000  1.000  0.9998 0.9988 0.9957 0.9878 0.9707 0.939 0.8867 0.8089 0.7037 0.5744 0.4304 0.2867 0.1611 0.06944 0.01853 1.552E-03 

 8  1.000  1.000  1.000  1.000  0.9999 0.9994 0.998 0.9941 0.9852 0.9673 0.9348 0.8811 0.7999 0.6873 0.5448 0.3826 0.2212 0.08956 0.01524 



 
EM 200-1-16 
31 May 13 

 
B-4 

n k p=0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

 9  1.000  1.000  1.000  1.000  1.000  1.000  0.9998 0.9993 0.9978 0.9941 0.9861 0.9698 0.9394 0.887 0.8029 0.6779 0.5078 0.3026 0.1019 

 10  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9998 0.9995 0.9986 0.9964 0.9912 0.9802 0.9578 0.9141 0.8327 0.6862 0.4312 

 11  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

12  0  0.5404 0.2824 0.1422 0.06872 0.03168 0.01384 5.688E-03 2.177E-03 7.662E-04 0.0002441 6.895E-05 1.678E-05 3.379E-06 5.314E-07 5.960E-08 4.096E-09 1.297E-10 1.000E-12 2.441E-16 

 1  0.8816 0.659 0.4435 0.2749 0.1584 0.08503 0.04244 0.01959 8.289E-03 0.003174 1.080E-03 3.188E-04 7.869E-05 1.541E-05 2.205E-06 2.007E-07 8.952E-09 1.090E-10 5.591E-14 

 2  0.9804 0.8891 0.7358 0.5583 0.3907 0.2528 0.1513 0.08344 0.04214 0.01929 7.878E-03 2.810E-03 8.479E-04 2.064E-04 3.761E-05 4.526E-06 2.839E-07 5.455E-09 5.873E-12 

 3  0.9978 0.9744 0.9078 0.7946 0.6488 0.4925 0.3467 0.2253 0.1345 0.073 0.03557 0.01527 5.610E-03 1.692E-03 3.917E-04 6.220E-05 5.478E-06 1.658E-07 3.743E-10 

 4  0.9998 0.9957 0.9761 0.9274 0.8424 0.7237 0.5833 0.4382 0.3044 0.1938 0.1117 0.05731 0.02551 9.489E-03 2.782E-03 5.812E-04 7.170E-05 3.414E-06 1.612E-08 

 5  1.000  0.9995 0.9954 0.9806 0.9456 0.8822 0.7873 0.6652 0.5269 0.3872 0.2607 0.1582 0.08463 0.0386 0.01425 3.903E-03 6.721E-04 5.018E-05 4.949E-07 

 6  1.000  0.9999 0.9993 0.9961 0.9857 0.9614 0.9154 0.8418 0.7393 0.6128 0.4731 0.3348 0.2127 0.1178 0.0544 0.01941 4.642E-03 5.412E-04 1.111E-05 

 7  1.000  1.000  0.9999 0.9994 0.9972 0.9905 0.9745 0.9427 0.8883 0.8062 0.6956 0.5618 0.4167 0.2763 0.1576 0.07256 0.02392 4.329E-03 1.839E-04 

 8  1.000  1.000  1.000  0.9999 0.9996 0.9983 0.9944 0.9847 0.9644 0.927 0.8655 0.7747 0.6533 0.5075 0.3512 0.2054 0.09221 0.02564 2.236E-03 

 9  1.000  1.000  1.000  1.000  1.000  0.9998 0.9992 0.9972 0.9921 0.9807 0.9579 0.9166 0.8487 0.7472 0.6093 0.4417 0.2642 0.1109 0.01957 

 10  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9997 0.9989 0.9968 0.9917 0.9804 0.9576 0.915 0.8416 0.7251 0.5565 0.341 0.1184 

 11  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9998 0.9992 0.9978 0.9943 0.9862 0.9683 0.9313 0.8578 0.7176 0.4596 

 12  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

13  0  0.5133 0.2542 0.1209 0.05498 0.02376 9.689E-03 3.697E-03 1.306E-03 4.214E-04 1.221E-04 3.103E-05 6.711E-06 1.183E-06 1.594E-07 1.490E-08 8.192E-10 1.946E-11 1.000E-13 1.221E-17 

 1  0.8646 0.6213 0.3983 0.2336 0.1267 0.06367 0.02958 0.01263 4.904E-03 1.709E-03 5.240E-04 1.376E-04 2.974E-05 4.996E-06 5.960E-07 4.342E-08 1.453E-09 1.180E-11 3.027E-15 

 2  0.9755 0.8661 0.692 0.5017 0.3326 0.2025 0.1132 0.0579 0.02691 0.01123 4.139E-03 1.315E-03 3.479E-04 7.270E-05 1.106E-05 1.066E-06 5.020E-08 6.436E-10 3.468E-13 

 3  0.9969 0.9658 0.882 0.7473 0.5843 0.4206 0.2783 0.1686 0.09292 0.04614 0.02034 7.793E-03 2.515E-03 6.520E-04 1.261E-04 1.606E-05 1.063E-06 2.149E-08 2.429E-11 

 4  0.9997 0.9935 0.9658 0.9009 0.794 0.6543 0.5005 0.353 0.2279 0.1334 0.06985 0.03208 0.01257 4.031E-03 9.891E-04 1.660E-04 1.541E-05 4.906E-07 1.162E-09 

 5  1.000  0.9991 0.9925 0.97 0.9198 0.8346 0.7159 0.5744 0.4268 0.2905 0.1788 0.09767 0.0462 0.01822 5.649E-03 1.246E-03 1.618E-04 8.090E-06 4.006E-08 

 6  1.000  0.9999 0.9987 0.993 0.9757 0.9376 0.8705 0.7712 0.6437 0.5 0.3563 0.2288 0.1295 0.06238 0.02429 7.004E-03 1.268E-03 9.929E-05 1.026E-06 

 7  1.000  1.000  0.9998 0.9988 0.9944 0.9818 0.9538 0.9023 0.8212 0.7095 0.5732 0.4256 0.2841 0.1654 0.08021 0.03004 7.534E-03 9.200E-04 1.975E-05 

 8  1.000  1.000  1.000  0.9998 0.999 0.996 0.9874 0.9679 0.9302 0.8666 0.7721 0.647 0.4995 0.3457 0.206 0.09913 0.03416 6.460E-03 2.866E-04 

 9  1.000  1.000  1.000  1.000  0.9999 0.9993 0.9975 0.9922 0.9797 0.9539 0.9071 0.8314 0.7217 0.5794 0.4157 0.2527 0.118 0.03416 3.103E-03 

 10  1.000  1.000  1.000  1.000  1.000  0.9999 0.9997 0.9987 0.9959 0.9888 0.9731 0.9421 0.8868 0.7975 0.6674 0.4983 0.308 0.1339 0.02451 

 11  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9995 0.9983 0.9951 0.9874 0.9704 0.9363 0.8733 0.7664 0.6017 0.3787 0.1354 

 12  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9996 0.9987 0.9963 0.9903 0.9762 0.945 0.8791 0.7458 0.4867 



 
EM 200-1-16 

31 May 13 
 

 
B-5 

n k p=0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

 13  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

14  0  0.4877 0.2288 0.1028 0.04398 0.01782 6.782E-03 2.403E-03 7.836E-04 2.318E-04 6.104E-05 1.396E-05 2.684E-06 4.140E-07 4.783E-08 3.725E-09 1.638E-10 2.919E-12 1.000E-14 6.104E-19 

 1  0.847 0.5846 0.3567 0.1979 0.101 0.04748 0.02052 8.098E-03 2.887E-03 9.155E-04 2.529E-04 5.906E-05 1.118E-05 1.610E-06 1.602E-07 9.339E-09 2.345E-10 1.270E-12 1.630E-16 

 2  0.9699 0.8416 0.6479 0.4481 0.2811 0.1608 0.08393 0.03979 0.01701 6.470E-03 2.151E-03 6.087E-04 1.411E-04 2.531E-05 3.211E-06 2.479E-07 8.765E-09 7.498E-11 2.021E-14 

 3  0.9958 0.9559 0.8535 0.6982 0.5213 0.3552 0.2205 0.1243 0.06322 0.02869 0.01143 3.906E-03 1.106E-03 2.465E-04 3.982E-05 4.065E-06 2.021E-07 2.729E-09 1.544E-12 

 4  0.9996 0.9908 0.9533 0.8702 0.7415 0.5842 0.4227 0.2793 0.1672 0.08978 0.04262 0.01751 6.035E-03 1.666E-03 3.419E-04 4.605E-05 3.215E-06 6.840E-08 8.117E-11 

 5  1.000  0.9985 0.9885 0.9561 0.8883 0.7805 0.6405 0.4859 0.3373 0.212 0.1189 0.05832 0.02434 8.289E-03 2.154E-03 3.819E-04 3.736E-05 1.251E-06 3.107E-09 

 6  1.000  0.9998 0.9978 0.9884 0.9617 0.9067 0.8164 0.6925 0.5461 0.3953 0.2586 0.1501 0.07534 0.03147 0.01031 2.397E-03 3.276E-04 1.721E-05 8.934E-08 

 7  1.000  1.000  0.9997 0.9976 0.9897 0.9685 0.9247 0.8499 0.7414 0.6047 0.4539 0.3075 0.1836 0.09328 0.03827 0.01161 2.207E-03 1.814E-04 1.962E-06 

 8  1.000  1.000  1.000  0.9996 0.9978 0.9917 0.9757 0.9417 0.8811 0.788 0.6627 0.5141 0.3595 0.2195 0.1117 0.04385 0.01153 1.474E-03 3.309E-05 

 9  1.000  1.000  1.000  1.000  0.9997 0.9983 0.994 0.9825 0.9574 0.9102 0.8328 0.7207 0.5773 0.4158 0.2585 0.1298 0.04674 9.230E-03 4.274E-04 

 10  1.000  1.000  1.000  1.000  1.000  0.9998 0.9989 0.9961 0.9886 0.9713 0.9368 0.8757 0.7795 0.6448 0.4787 0.3018 0.1465 0.04413 4.173E-03 

 11  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9994 0.9978 0.9935 0.983 0.9602 0.9161 0.8392 0.7189 0.5519 0.3521 0.1584 0.03005 

 12  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9997 0.9991 0.9971 0.9919 0.9795 0.9525 0.899 0.8021 0.6433 0.4154 0.153 

 13  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9998 0.9992 0.9976 0.9932 0.9822 0.956 0.8972 0.7712 0.5123 

 14  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

15  0  0.4633 0.2059 0.08735 0.03518 0.01336 4.748E-03 1.562E-03 4.702E-04 1.275E-04 3.052E-05 6.283E-06 1.074E-06 1.449E-07 1.435E-08 9.313E-10 3.277E-11 4.379E-13 1.000E-15 3.052E-20 

 1  0.829 0.549 0.3186 0.1671 0.08018 0.03527 0.01418 5.172E-03 1.692E-03 4.883E-04 1.215E-04 2.523E-05 4.181E-06 5.166E-07 4.284E-08 1.999E-09 3.766E-11 1.360E-13 8.728E-18 

 2  0.9638 0.8159 0.6042 0.398 0.2361 0.1268 0.06173 0.02711 0.01065 3.693E-03 1.107E-03 2.789E-04 5.665E-05 8.719E-06 9.229E-07 5.705E-08 1.514E-09 8.641E-12 1.165E-15 

 3  0.9945 0.9444 0.8227 0.6482 0.4613 0.2969 0.1727 0.0905 0.04242 0.01758 6.327E-03 1.928E-03 4.789E-04 9.166E-05 1.236E-05 1.011E-06 3.777E-08 3.403E-10 9.641E-14 

 4  0.9994 0.9873 0.9383 0.8358 0.6865 0.5155 0.3519 0.2173 0.1204 0.05923 0.02547 9.348E-03 2.831E-03 6.722E-04 1.153E-04 1.246E-05 6.541E-07 9.296E-09 5.525E-12 

 5  0.9999 0.9978 0.9832 0.9389 0.8516 0.7216 0.5643 0.4032 0.2608 0.1509 0.07693 0.03383 0.01244 3.653E-03 7.949E-04 1.132E-04 8.338E-06 1.866E-07 2.324E-10 

 6  1.000  0.9997 0.9964 0.9819 0.9434 0.8689 0.7548 0.6098 0.4522 0.3036 0.1818 0.09505 0.04219 0.01524 4.193E-03 7.850E-04 8.090E-05 2.846E-06 7.418E-09 

 7  1.000  1.000  0.9994 0.9958 0.9827 0.95 0.8868 0.7869 0.6535 0.5 0.3465 0.2131 0.1132 0.05001 0.0173 4.240E-03 6.096E-04 3.362E-05 1.830E-07 

 8  1.000  1.000  0.9999 0.9992 0.9958 0.9848 0.9578 0.905 0.8182 0.6964 0.5478 0.3902 0.2452 0.1311 0.05662 0.01806 3.606E-03 3.106E-04 3.518E-06 

 9  1.000  1.000  1.000  0.9999 0.9992 0.9963 0.9876 0.9662 0.9231 0.8491 0.7392 0.5968 0.4357 0.2784 0.1484 0.06105 0.01681 2.250E-03 5.281E-05 

 10  1.000  1.000  1.000  1.000  0.9999 0.9993 0.9972 0.9907 0.9745 0.9408 0.8796 0.7827 0.6481 0.4845 0.3135 0.1642 0.06171 0.01272 6.147E-04 

 11  1.000  1.000  1.000  1.000  1.000  0.9999 0.9995 0.9981 0.9937 0.9824 0.9576 0.9095 0.8273 0.7031 0.5387 0.3518 0.1773 0.05556 5.467E-03 



 
EM 200-1-16 
31 May 13 

 
B-6 

n k p=0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

 12  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9997 0.9989 0.9963 0.9893 0.9729 0.9383 0.8732 0.7639 0.602 0.3958 0.1841 0.0362 

 13  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9995 0.9983 0.9948 0.9858 0.9647 0.9198 0.8329 0.6814 0.451 0.171 

 14  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9995 0.9984 0.9953 0.9866 0.9648 0.9126 0.7941 0.5367 

 15  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

16  0  0.4401 0.1853 0.07425 0.02815 0.01002 3.323E-03 1.015E-03 2.821E-04 7.011E-05 1.526E-05 2.827E-06 4.295E-07 5.071E-08 4.305E-09 2.328E-10 6.554E-12 6.568E-14 1.000E-16 1.526E-21 

 1  0.8108 0.5147 0.2839 0.1407 0.06348 0.02611 9.763E-03 3.291E-03 9.880E-04 2.594E-04 5.812E-05 1.074E-05 1.558E-06 1.650E-07 1.141E-08 4.260E-10 6.021E-12 1.450E-14 4.654E-19 

 2  0.9571 0.7892 0.5614 0.3518 0.1971 0.09936 0.04509 0.01834 6.620E-03 2.090E-03 5.650E-04 1.267E-04 2.254E-05 2.977E-06 2.629E-07 1.301E-08 2.591E-10 9.865E-13 6.657E-17 

 3  0.993 0.9316 0.7899 0.5981 0.405 0.2459 0.1339 0.06515 0.02813 0.01064 3.456E-03 9.385E-04 2.044E-04 3.360E-05 3.783E-06 2.479E-07 6.952E-09 4.181E-11 5.928E-15 

 4  0.9991 0.983 0.9209 0.7982 0.6302 0.4499 0.2892 0.1666 0.08531 0.03841 0.01494 4.896E-03 1.302E-03 2.658E-04 3.811E-05 3.301E-06 1.302E-07 1.236E-09 3.678E-13 

 5  0.9999 0.9967 0.9765 0.9183 0.8103 0.6598 0.49 0.3288 0.1976 0.1051 0.04862 0.01914 6.196E-03 1.566E-03 2.852E-04 3.261E-05 1.807E-06 2.703E-08 1.687E-11 

 6  1.000  0.9995 0.9944 0.9733 0.9204 0.8247 0.6881 0.5272 0.366 0.2272 0.1241 0.05832 0.02286 7.130E-03 1.644E-03 2.476E-04 1.922E-05 4.526E-07 5.917E-10 

 7  1.000  0.9999 0.9989 0.993 0.9729 0.9256 0.8406 0.7161 0.5629 0.4018 0.2559 0.1423 0.06706 0.02567 7.470E-03 1.476E-03 1.602E-04 5.924E-06 1.620E-08 

 8  1.000  1.000  0.9998 0.9985 0.9925 0.9743 0.9329 0.8577 0.7441 0.5982 0.4371 0.2839 0.1594 0.07435 0.02713 7.004E-03 1.059E-03 6.133E-05 3.497E-07 

 9  1.000  1.000  1.000  0.9998 0.9984 0.9929 0.9771 0.9417 0.8759 0.7728 0.634 0.4728 0.3119 0.1753 0.07956 0.02666 5.586E-03 5.045E-04 5.983E-06 

 10  1.000  1.000  1.000  1.000  0.9997 0.9984 0.9938 0.9809 0.9514 0.8949 0.8024 0.6712 0.51 0.3402 0.1897 0.08169 0.02354 3.297E-03 8.090E-05 

 11  1.000  1.000  1.000  1.000  1.000  0.9997 0.9987 0.9951 0.9851 0.9616 0.9147 0.8334 0.7108 0.5501 0.3698 0.2018 0.07905 0.017 8.573E-04 

 12  1.000  1.000  1.000  1.000  1.000  1.000  0.9998 0.9991 0.9965 0.9894 0.9719 0.9349 0.8661 0.7541 0.595 0.4019 0.2101 0.06841 7.004E-03 

 13  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9994 0.9979 0.9934 0.9817 0.9549 0.9006 0.8029 0.6482 0.4386 0.2108 0.04294 

 14  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9997 0.999 0.9967 0.9902 0.9739 0.9365 0.8593 0.7161 0.4853 0.1892 

 15  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9997 0.999 0.9967 0.99 0.9719 0.9257 0.8147 0.5599 

 16  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

17  0  0.4181 0.1668 0.06311 0.02252 7.517E-03 2.326E-03 6.600E-04 1.693E-04 3.856E-05 7.629E-06 1.272E-06 1.718E-07 1.775E-08 1.291E-09 5.821E-11 1.311E-12 9.853E-15 1.000E-17 7.629E-23 

 1  0.7922 0.4818 0.2525 0.1182 0.05011 0.01928 6.701E-03 2.088E-03 5.749E-04 1.373E-04 2.771E-05 4.553E-06 5.781E-07 5.252E-08 3.027E-09 9.044E-11 9.590E-13 1.540E-15 2.472E-20 

 2  0.9497 0.7618 0.5198 0.3096 0.1637 0.07739 0.03273 0.01232 4.086E-03 1.175E-03 2.862E-04 5.712E-05 8.903E-06 1.009E-06 7.427E-08 2.943E-09 4.399E-11 1.117E-13 3.770E-18 

 3  0.9912 0.9174 0.7556 0.5489 0.353 0.2019 0.1028 0.04642 0.01845 6.363E-03 1.866E-03 4.514E-04 8.621E-05 1.216E-05 1.143E-06 5.999E-08 1.263E-09 5.069E-12 3.596E-16 

 4  0.9988 0.9779 0.9013 0.7582 0.5739 0.3887 0.2348 0.126 0.05958 0.02452 8.623E-03 2.521E-03 5.887E-04 1.033E-04 1.236E-05 8.586E-07 2.544E-08 1.612E-10 2.402E-14 

 5  0.9999 0.9953 0.9681 0.8943 0.7653 0.5968 0.4197 0.2639 0.1471 0.07173 0.0301 0.01059 3.015E-03 6.560E-04 9.989E-05 9.164E-06 3.817E-07 3.815E-09 1.193E-12 

 6  1.000  0.9992 0.9917 0.9623 0.8929 0.7752 0.6188 0.4478 0.2902 0.1662 0.08259 0.03481 0.01203 3.235E-03 6.250E-04 7.561E-05 4.419E-06 6.959E-08 4.561E-11 

 7  1.000  0.9999 0.9983 0.9891 0.9598 0.8954 0.7872 0.6405 0.4743 0.3145 0.1834 0.0919 0.03833 0.01269 3.101E-03 4.932E-04 4.037E-05 9.998E-07 1.372E-09 



 
EM 200-1-16 

31 May 13 
 

 
B-7 

n k p=0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

 8  1.000  1.000  0.9997 0.9974 0.9876 0.9597 0.9006 0.8011 0.6626 0.5 0.3374 0.1989 0.09938 0.04028 0.01238 2.581E-03 2.950E-04 1.146E-05 3.287E-08 

 9  1.000  1.000  1.000  0.9995 0.9969 0.9873 0.9617 0.9081 0.8166 0.6855 0.5257 0.3595 0.2128 0.1046 0.04024 0.01093 1.738E-03 1.056E-04 6.314E-07 

 10  1.000  1.000  1.000  0.9999 0.9994 0.9968 0.988 0.9652 0.9174 0.8338 0.7098 0.5522 0.3812 0.2248 0.1071 0.03766 8.280E-03 7.838E-04 9.728E-06 

 11  1.000  1.000  1.000  1.000  0.9999 0.9993 0.997 0.9894 0.9699 0.9283 0.8529 0.7361 0.5803 0.4032 0.2347 0.1057 0.03187 4.667E-03 1.197E-04 

 12  1.000  1.000  1.000  1.000  1.000  0.9999 0.9994 0.9975 0.9914 0.9755 0.9404 0.874 0.7652 0.6113 0.4261 0.2418 0.09871 0.02214 1.165E-03 

 13  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9995 0.9981 0.9936 0.9816 0.9536 0.8972 0.7981 0.647 0.4511 0.2444 0.08264 8.801E-03 

 14  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9997 0.9988 0.9959 0.9877 0.9673 0.9226 0.8363 0.6904 0.4802 0.2382 0.05025 

 15  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9994 0.9979 0.9933 0.9807 0.9499 0.8818 0.7475 0.5182 0.2078 

 16  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9998 0.9993 0.9977 0.9925 0.9775 0.9369 0.8332 0.5819 

 17  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

18  0  0.3972 0.1501 0.05365 0.01801 5.638E-03 1.628E-03 4.290E-04 1.016E-04 2.121E-05 3.815E-06 5.726E-07 6.872E-08 6.212E-09 3.874E-10 1.455E-11 2.621E-13 1.478E-15 1.000E-18 3.815E-24 

 1  0.7735 0.4503 0.2241 0.09908 0.03946 0.01419 4.587E-03 1.320E-03 3.336E-04 7.248E-05 1.317E-05 1.924E-06 2.139E-07 1.666E-08 8.004E-10 1.914E-11 1.522E-13 1.630E-16 1.308E-21 

 2  0.9419 0.7338 0.4797 0.2713 0.1353 0.05995 0.02362 8.226E-03 2.506E-03 6.561E-04 1.440E-04 2.558E-05 3.492E-06 3.394E-07 2.084E-08 6.609E-10 7.413E-12 1.256E-14 2.120E-19 

 3  0.9891 0.9018 0.7202 0.501 0.3057 0.1646 0.07827 0.03278 0.01198 3.769E-03 9.971E-04 2.148E-04 3.596E-05 4.355E-06 3.414E-07 1.435E-08 2.269E-10 6.074E-13 2.156E-17 

 4  0.9985 0.9718 0.8794 0.7164 0.5187 0.3327 0.1886 0.09417 0.04107 0.01544 4.907E-03 1.279E-03 2.621E-04 3.950E-05 3.948E-06 2.197E-07 4.890E-09 2.068E-11 1.543E-15 

 5  0.9998 0.9936 0.9581 0.8671 0.7175 0.5344 0.355 0.2088 0.1077 0.04813 0.01829 5.750E-03 1.438E-03 2.691E-04 3.425E-05 2.520E-06 7.888E-08 5.266E-10 8.247E-14 

 6  1.000  0.9988 0.9882 0.9487 0.861 0.7217 0.5491 0.3743 0.2258 0.1189 0.05372 0.02028 6.169E-03 1.430E-03 2.312E-04 2.245E-05 9.873E-07 1.039E-08 3.414E-12 

 7  1.000  0.9998 0.9973 0.9837 0.9431 0.8593 0.7283 0.5634 0.3915 0.2403 0.128 0.05765 0.02123 6.073E-03 1.244E-03 1.591E-04 9.812E-06 1.626E-07 1.119E-10 

 8  1.000  1.000  0.9995 0.9957 0.9807 0.9404 0.8609 0.7368 0.5778 0.4073 0.2527 0.1347 0.05969 0.02097 5.422E-03 9.109E-04 7.857E-05 2.046E-06 2.947E-09 

 9  1.000  1.000  0.9999 0.9991 0.9946 0.979 0.9403 0.8653 0.7473 0.5927 0.4222 0.2632 0.1391 0.05959 0.01935 4.252E-03 5.115E-04 2.088E-05 6.280E-08 

 10  1.000  1.000  1.000  0.9998 0.9988 0.9939 0.9788 0.9424 0.872 0.7597 0.6085 0.4366 0.2717 0.1407 0.05695 0.01628 2.719E-03 1.735E-04 1.086E-06 

 11  1.000  1.000  1.000  1.000  0.9998 0.9986 0.9938 0.9797 0.9463 0.8811 0.7742 0.6257 0.4509 0.2783 0.139 0.05127 0.01182 1.172E-03 1.523E-05 

 12  1.000  1.000  1.000  1.000  1.000  0.9997 0.9986 0.9942 0.9817 0.9519 0.8923 0.7912 0.645 0.4656 0.2825 0.1329 0.0419 6.415E-03 1.720E-04 

 13  1.000  1.000  1.000  1.000  1.000  1.000  0.9997 0.9987 0.9951 0.9846 0.9589 0.9058 0.8114 0.6673 0.4813 0.2836 0.1206 0.02819 1.546E-03 

 14  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9998 0.999 0.9962 0.988 0.9672 0.9217 0.8354 0.6943 0.499 0.2798 0.0982 0.01087 

 15  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9993 0.9975 0.9918 0.9764 0.94 0.8647 0.7287 0.5203 0.2662 0.05813 

 16  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9997 0.9987 0.9954 0.9858 0.9605 0.9009 0.7759 0.5497 0.2265 

 17  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9996 0.9984 0.9944 0.982 0.9464 0.8499 0.6028 

 18  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  



 
EM 200-1-16 
31 May 13 

 
B-8 

n k p=0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

 

19  0  0.3774 0.1351 0.0456 0.01441 4.228E-03 1.140E-03 2.788E-04 6.094E-05 1.167E-05 1.907E-06 2.577E-07 2.749E-08 2.174E-09 1.162E-10 3.638E-12 5.243E-14 2.217E-16 1.000E-19 1.907E-25 

 1  0.7547 0.4203 0.1985 0.08287 0.03101 0.01042 3.132E-03 8.328E-04 1.930E-04 3.815E-05 6.241E-06 8.109E-07 7.889E-08 5.269E-09 2.110E-10 4.037E-12 2.409E-14 1.720E-17 6.905E-23 

 2  0.9335 0.7054 0.4413 0.2369 0.1113 0.04622 0.01696 5.464E-03 1.528E-03 3.643E-04 7.206E-05 1.139E-05 1.361E-06 1.135E-07 5.810E-09 1.475E-10 1.241E-12 1.402E-15 1.184E-20 

 3  0.9868 0.885 0.6841 0.4551 0.2631 0.1332 0.05914 0.02296 7.719E-03 2.213E-03 5.279E-04 1.013E-04 1.486E-05 1.544E-06 1.010E-07 3.399E-09 4.033E-11 7.204E-14 1.280E-18 

 4  0.998 0.9648 0.8556 0.6733 0.4654 0.2822 0.15 0.06961 0.02798 9.605E-03 2.756E-03 6.407E-04 1.151E-04 1.490E-05 1.243E-06 5.542E-08 9.263E-10 2.615E-12 9.762E-17 

 5  0.9998 0.9914 0.9463 0.8369 0.6678 0.4739 0.2968 0.1629 0.07771 0.03178 0.01093 3.068E-03 6.736E-04 1.084E-04 1.152E-05 6.797E-07 1.599E-08 7.128E-11 5.589E-15 

 6  1.000  0.9983 0.9837 0.9324 0.8251 0.6655 0.4812 0.3081 0.1727 0.08353 0.03423 0.01156 3.094E-03 6.173E-04 8.348E-05 6.506E-06 2.151E-07 1.513E-09 2.491E-13 

 7  1.000  0.9997 0.9959 0.9767 0.9225 0.818 0.6656 0.4878 0.3169 0.1796 0.08713 0.03523 0.01144 2.823E-03 4.844E-04 4.979E-05 2.311E-06 2.561E-08 8.840E-12 

 8  1.000  1.000  0.9992 0.9933 0.9713 0.9161 0.8145 0.6675 0.494 0.3238 0.1841 0.08847 0.03469 0.01054 2.288E-03 3.095E-04 2.013E-05 3.510E-07 2.537E-10 

 9  1.000  1.000  0.9999 0.9984 0.9911 0.9674 0.9125 0.8139 0.671 0.5 0.329 0.1861 0.08747 0.03255 8.903E-03 1.579E-03 1.435E-04 3.930E-06 5.939E-09 

 10  1.000  1.000  1.000  0.9997 0.9977 0.9895 0.9653 0.9115 0.8159 0.6762 0.506 0.3325 0.1855 0.08392 0.02875 6.658E-03 8.427E-04 3.614E-05 1.140E-07 

 11  1.000  1.000  1.000  1.000  0.9995 0.9972 0.9886 0.9648 0.9129 0.8204 0.6831 0.5122 0.3344 0.182 0.07746 0.02328 4.084E-03 2.733E-04 1.793E-06 

 12  1.000  1.000  1.000  1.000  0.9999 0.9994 0.9969 0.9884 0.9658 0.9165 0.8273 0.6919 0.5188 0.3345 0.1749 0.0676 0.01633 1.696E-03 2.306E-05 

 13  1.000  1.000  1.000  1.000  1.000  0.9999 0.9993 0.9969 0.9891 0.9682 0.9223 0.8371 0.7032 0.5261 0.3322 0.1631 0.0537 8.593E-03 2.407E-04 

 14  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9994 0.9972 0.9904 0.972 0.9304 0.85 0.7178 0.5346 0.3267 0.1444 0.03519 2.013E-03 

 15  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9995 0.9978 0.9923 0.977 0.9409 0.8668 0.7369 0.5449 0.3159 0.115 0.01324 

 16  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9996 0.9985 0.9945 0.983 0.9538 0.8887 0.7631 0.5587 0.2946 0.06655 

 17  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9998 0.9992 0.9969 0.9896 0.969 0.9171 0.8015 0.5797 0.2453 

 18  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9997 0.9989 0.9958 0.9856 0.9544 0.8649 0.6226 

 19  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

 

20  0  0.3585 0.1216 0.03876 0.01153 3.171E-03 7.979E-04 1.812E-04 3.656E-05 6.416E-06 9.537E-07 1.159E-07 1.100E-08 7.610E-10 3.487E-11 9.095E-13 1.049E-14 3.325E-17 1.000E-20 9.537E-27 

 1  0.7358 0.3917 0.1756 0.06918 0.02431 7.637E-03 2.133E-03 5.240E-04 1.114E-04 2.003E-05 2.950E-06 3.408E-07 2.903E-08 1.662E-09 5.548E-11 8.493E-13 3.802E-15 1.810E-18 3.633E-24 

 2  0.9245 0.6769 0.4049 0.2061 0.09126 0.03548 0.01212 3.611E-03 9.274E-04 2.012E-04 3.586E-05 5.041E-06 5.277E-07 3.773E-08 1.611E-09 3.273E-11 2.067E-13 1.557E-16 6.578E-22 

 3  0.9841 0.867 0.6477 0.4114 0.2252 0.1071 0.04438 0.01596 4.933E-03 1.288E-03 2.772E-04 4.734E-05 6.084E-06 5.427E-07 2.960E-08 7.978E-10 7.105E-12 8.466E-15 7.523E-20 

 4  0.9974 0.9568 0.8298 0.6296 0.4148 0.2375 0.1182 0.05095 0.01886 5.909E-03 1.531E-03 3.170E-04 4.994E-05 5.550E-06 3.865E-07 1.380E-08 1.732E-10 3.263E-13 6.097E-18 

 5  0.9997 0.9887 0.9327 0.8042 0.6172 0.4164 0.2454 0.1256 0.05533 0.02069 6.434E-03 1.612E-03 3.106E-04 4.294E-05 3.813E-06 1.803E-07 3.186E-09 9.481E-12 3.722E-16 

 6  1.000  0.9976 0.9781 0.9133 0.7858 0.608 0.4166 0.25 0.1299 0.05766 0.02141 6.466E-03 1.521E-03 2.610E-04 2.951E-05 1.845E-06 4.586E-08 2.155E-10 1.776E-14 

 7  1.000  0.9996 0.9941 0.9679 0.8982 0.7723 0.601 0.4159 0.252 0.1316 0.05803 0.02103 6.015E-03 1.279E-03 1.837E-04 1.516E-05 5.295E-07 3.923E-09 6.786E-13 

 8  1.000  0.9999 0.9987 0.99 0.9591 0.8867 0.7624 0.5956 0.4143 0.2517 0.1308 0.05653 0.01958 5.138E-03 9.354E-04 1.017E-04 4.983E-06 5.815E-08 2.108E-11 
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n k p=0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

 9  1.000  1.000  0.9998 0.9974 0.9861 0.952 0.8782 0.7553 0.5914 0.4119 0.2493 0.1275 0.05317 0.01714 3.942E-03 5.634E-04 3.863E-05 7.089E-07 5.380E-10 

 10  1.000  1.000  1.000  0.9994 0.9961 0.9829 0.9468 0.8725 0.7507 0.5881 0.4086 0.2447 0.1218 0.04796 0.01386 2.5950E-03 2.484E-04 7.151E-06 1.134E-08 

 11  1.000  1.000  1.000  0.9999 0.9991 0.9949 0.9804 0.9435 0.8692 0.7483 0.5857 0.4044 0.2376 0.1133 0.04093 9.982E-03 1.329E-03 5.986E-05 1.979E-07 

 12  1.000  1.000  1.000  1.000  0.9998 0.9987 0.994 0.979 0.942 0.8684 0.748 0.5841 0.399 0.2277 0.1018 0.03214 5.921E-03 4.156E-04 2.857E-06 

 13  1.000  1.000  1.000  1.000  1.000  0.9997 0.9985 0.9935 0.9786 0.9423 0.8701 0.75 0.5834 0.392 0.2142 0.08669 0.02194 2.386E-03 3.395E-05 

 14  1.000  1.000  1.000  1.000  1.000  1.000  0.9997 0.9984 0.9936 0.9793 0.9447 0.8744 0.7546 0.5836 0.3828 0.1958 0.06731 0.01125 3.293E-04 

 15  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9997 0.9985 0.9941 0.9811 0.949 0.8818 0.7625 0.5852 0.3704 0.1702 0.04317 2.574E-03 

 16  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9997 0.9987 0.9951 0.984 0.9556 0.8929 0.7748 0.5886 0.3523 0.133 0.0159 

 17  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9998 0.9991 0.9964 0.9879 0.9645 0.9087 0.7939 0.5951 0.3231 0.07548 

 18  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9999 0.9995 0.9979 0.9924 0.9757 0.9308 0.8244 0.6083 0.2642 

 19  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.9998 0.9992 0.9968 0.9885 0.9612 0.8784 0.6415 

 20  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

K has the binomial distribution with parameters n and p. The entries are the values of P(K ≤ k) for p ranging from 0.05 to 0.95 for values of n 
ranging from 1 to 20. 
For n > 20, the qth quantile of K (a binomial random variable) may be approximated using the formula: Kq = np + Zq [np(1-p)]1/2, where Zq is 
the qth quantile of the standard normal distribution. 
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Table B-2. 
Percentiles of the Chi-Square Distribution 

 p          
df 0.005 0.010 0.025 0.050 0.1 0.900 0.950 0.975 0.990 0.995 
1 3.93E-05 0.000157 0.000982 0.003932 0.01579 2.706 3.841 5.024 6.635 7.879 
2 0.01003 0.0201 0.05064 0.1026 0.2107 4.605 5.991 7.378 9.21 10.6 
3 0.07172 0.1148 0.2158 0.3518 0.5844 6.251 7.815 9.348 11.34 12.84 
4 0.207 0.2971 0.4844 0.7107 1.064 7.779 9.488 11.14 13.28 14.86 
5 0.4117 0.5543 0.8312 1.145 1.61 9.236 11.07 12.83 15.09 16.75 
6 0.6757 0.8721 1.237 1.635 2.204 10.64 12.59 14.45 16.81 18.55 
7 0.9893 1.239 1.69 2.167 2.833 12.02 14.07 16.01 18.48 20.28 
8 1.344 1.646 2.18 2.733 3.49 13.36 15.51 17.53 20.09 21.95 
9 1.735 2.088 2.7 3.325 4.168 14.68 16.92 19.02 21.67 23.59 

10 2.156 2.558 3.247 3.94 4.865 15.99 18.31 20.48 23.21 25.19 
11 2.603 3.053 3.816 4.575 5.578 17.28 19.68 21.92 24.72 26.76 
12 3.074 3.571 4.404 5.226 6.304 18.55 21.03 23.34 26.22 28.3 
13 3.565 4.107 5.009 5.892 7.042 19.81 22.36 24.74 27.69 29.82 
14 4.075 4.66 5.629 6.571 7.79 21.06 23.68 26.12 29.14 31.32 
15 4.601 5.229 6.262 7.261 8.547 22.31 25 27.49 30.58 32.8 
16 5.142 5.812 6.908 7.962 9.312 23.54 26.3 28.85 32 34.27 
17 5.697 6.408 7.564 8.672 10.09 24.77 27.59 30.19 33.41 35.72 
18 6.265 7.015 8.231 9.39 10.86 25.99 28.87 31.53 34.81 37.16 
19 6.844 7.633 8.907 10.12 11.65 27.2 30.14 32.85 36.19 38.58 
20 7.434 8.26 9.591 10.85 12.44 28.41 31.41 34.17 37.57 40 
21 8.034 8.897 10.28 11.59 13.24 29.62 32.67 35.48 38.93 41.4 
22 8.643 9.542 10.98 12.34 14.04 30.81 33.92 36.78 40.29 42.8 
23 9.26 10.2 11.69 13.09 14.85 32.01 35.17 38.08 41.64 44.18 
24 9.886 10.86 12.4 13.85 15.66 33.2 36.42 39.36 42.98 45.56 
25 10.52 11.52 13.12 14.61 16.47 34.38 37.65 40.65 44.31 46.93 
26 11.16 12.2 13.84 15.38 17.29 35.56 38.89 41.92 45.64 48.29 
27 11.81 12.88 14.57 16.15 18.11 36.74 40.11 43.19 46.96 49.64 
28 12.46 13.56 15.31 16.93 18.94 37.92 41.34 44.46 48.28 50.99 
29 13.12 14.26 16.05 17.71 19.77 39.09 42.56 45.72 49.59 52.34 
30 13.79 14.95 16.79 18.49 20.6 40.26 43.77 46.98 50.89 53.67 
40 20.71 22.16 24.43 26.51 29.05 51.81 55.76 59.34 63.69 66.77 
50 27.99 29.71 32.36 34.76 37.69 63.17 67.5 71.42 76.15 79.49 
60 35.53 37.48 40.48 43.19 46.46 74.4 79.08 83.3 88.38 91.95 
70 43.28 45.44 48.76 51.74 55.33 85.53 90.53 95.02 100.4 104.2 
80 51.17 53.54 57.15 60.39 64.28 96.58 101.9 106.6 112.3 116.3 
90 59.2 61.75 65.65 69.13 73.29 107.6 113.1 118.1 124.1 128.3 
100 67.33 70.06 74.22 77.93 82.36 118.5 124.3 129.6 135.8 140.2 

NOTE: Table generated using SAS, a statistical software package.  Percentiles of the  
Chi-square distribution χp,υ are listed for various degrees of freedom υ:   p = P( χυ ≤ χp,υ). 
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Table B-3. 
Values of the Parameter λ for Cohen’s Estimates 

 

 
Source: EPA/600/R-96/084.  
 
 

r h 
.01 .02 .03 .04 .OS .06 .07 .08 .09 .10 .iS .20 

.00 .010100 .020400 .030902 .041SB3 .OS2S01 .06362S .0749S3 .08649 .09824 .11020 .17342 .24268 

.OS .OIOSSi .021294 .03222S .0433SO .OS4610 .066iS9 .077909 .08983 .10197 .11431 .i192S .2S033 

.10 .Oi09SO .022082 .033398 .044902 .OS6S96 .068483 .080S63 .092BS .10S34 .11804 .18479 .2S741 

.IS .011310 .022798 .034466 .046318 .OSB3S6 .070S86 .083009 .09S63 ,1084S .12148 .IB98S .2640S 

.20 .011642 .0234S9 .03S4S3 .047829 .OS9990 .072S39 .OBS2BO .09822 .1113S .12469 .19460 .27031 

.2S .0119S2 .024076 .036377 .048BSB .06iS22 .074372 .087413 .1006S .11408 .12712 .19910 .2762 

.30 .012243 .0246SB .037249 .OSOOIB .062969 .076106 .089433 .1029S .11667 .13059 .20338 .28193 

.3S .012520 .02S211 .038077 .051120 .064345 .om36 .09135S .10515 .11914 .13333 .20747 .2873 

.40 .012784 .025738 .038866 .052173 .06S660 .079332 .093193 .1012S .121SO .i3S9S .21129 .292SO 
AS .013036 .026243 .039624 .053182 .066921 .080845 .0949SB .10926 .12377 .13847 .21517 .2916S 

.so .013279 .026728 .040352 .OS4153 .068135 .082301 .096651 .11121 .12595 .14090 .21882 .30253 

.55 .013SI3 .027196 .041054 .OS5089 .069306 .083708 .098298 .11208 .12806 .14325 .22225 .30725 

.60 .013739 .027849 .041733 .055995 .070439 .085068 .099887 .11490 .13011 .14552 .22578 .31184 

.65 .013958 .028087 .042391 .056874 .071538 .086388 .10143 .11666 .13209 .14773 .22910 .31630 

.70 .014171 .028513 .043030 .o5m6 .012505 .087670 .10292 .11837 .13402 .14987 .23234 .3206S 

.15 .014378 .029927 .043652 .058556 .073643 .088917 .10438 .12004 .13590 .15196 .23550 .32489 

.80 .014579 .029330 .044258 .059364 .014655 .090133 .10580 .12167 .13775 .IS400 .23858 .32903 

.BS .014773 .029723 .044848 .060153 .075642 .091319 .10719 .12225 .139S2 .ISS99 .241SB .33307 

.90 .014967 .030107 .045425 .060923 .015606 .092477 .10854 .12480 .14126 .15793 .24452 .33703 

.95 .015154 .030483 .045989 .061676 .077549 .093611 .10987 .12632 .14297 .15983 .24740 .34091 
1.00 .015338 .030850 .046540 .062413 .078471 .094720 .11116 .12780 .1446S .16170 .25022 .34471 

r. h 
.2S .30 .35 .40 .45 .so .55 .60 .65 .70 .80 .90 

.00 .31862 .4021 .4941 .5961 .7096 .8388 .9808 1.145 1.336 1.561 2.176 3.283 
.OS 32793 .4130 .5066 .6101 .7252 .8540 .9994 1.166 1.3S8 l.SBS 2.203 3.314 
.10 .33662 .4233 .Sl84 .6234 .7400 .8703 1.017 I. ISS 1.379 1.608 2.229 3.34S 
.IS .34480 .4330 .S296 .6361 .1S42 .8860 1.03S 1.204 1.400 1.630 2.2SS 3.376 
.20 .352SS .4422 .S403 .6483 .7673 .9012 l.OSi 1.222 1.419 i.6Si 2.280 3.40S 

.2S .3S993 .4SIO .SS06 .6600 .7810 .91SB 1.067 1.240 ).439 1.672 2.30S 3.43S 

.30 .36700 .4S9S .S604 .6713 .7937 .9300 1.083 1.257 l.4S1 1.693 2.329 3.464 

.3S .37379 .4676 .S699 .6821 .8060 .9437 1.098 1.274 l.41S 1.713 2.3S3 3.492 

.40 .38033 .413S .S19i .6927 .8179 .9S10 1.113 1.290 1.494 1.732 2.376 3.S20 
AS .3866S .4831 .S880 .7029 .8295 .9700 1.127 1.306 I.S11 1.7SI 2.399 3.547 

.so .39276 .4904 .S961 .7129 .8408 .9826 1.141 1.321 I.S28 1.770 2.421 3.S1S 

.ss .39679 .4976 .6061 .122S .8517 .99SO l.ISS 1.337 i.S45 1.788 2.443 3.601 

.60 .40447 .S04S .6133 .7320 .8625 1.007 1.169 1.3Sl l.S61 1.806 2.46S 3.628 

.6S .41008 .SI14 .6213 .7412 .8729 1.019 1.182 1.368 1.577 1.824 2.486 3.6S4 

.70 .41SSS .SIBO .6291 .1S02 .8832 1.030 1.195 1.380 l.S93 1.841 2.S01 3.679 

.75 .42090 .S24S .6367 .1S90 .8932 1.042 1.207 1.394 1.608 l.BSI 2.S2B 3.705 

.so .42612 .S308 .6441 .7676 .9031 I.OS3 1.220 1.408 1.624 !.87S 2.S4B 3.730 

.BS .43122 .S370 .6SiS .7781 .9127 1.064 1.232 1.422 1.639 1.892 2.S6B 3.7S4 

.90 .43622 .S430 .6SS6 .7844 .9222 1.074 1.244 1.43S 1.6S3 1.908 2.588 3.779 

.9S .44112 .5490 .66S6 .192S .9314 1.085 l.2SS 1.448 1.668 1.924 2.607 3.803 
1.00 .44S92 .5548 .6724 .BOOS .9406 l.09S 1.287 1.461 1.882 1.940 2.626 3.827 
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Table B-4. 
Critical Values of D for the Discordance Test 

 
n Level of Significance, α  n Level of Significance, α 
 0.01 0.05   0.01 0.05 
3 1.155 1.153  31 3.119 2.759 
4 1.492 1.463  32 3.135 2.773 
5 1.749 1.672  33 3.150 2.786 
6 1.944 1.822  34 3.164 2.799 
7 2.097 1.938  35 3.178 2.811 
8 2.221 2.032  36 3.191 2.823 
9 2.323 2.110  37 3.204 2.835 
10 2.410 2.176  38 3.216 2.846 
    39 3.228 2.857 

11 2.485 2.234  40 3.240 2.866 
12 2.550 2.285     
13 2.607 2.331  41 3.251 2.877 
14 2.659 2.371  42 3.261 2.887 
15 2.705 2.409  43 3.271 2.896 
16 2.747 2.443  44 3.282 2.905 
17 2.785 2.475  45 3.292 2.914 
18 2.821 2.504  46 3.302 2.923 
19 2.854 2.532  47 3.310 2.931 
20 2.884 2.557  48 3.319 2.940 
    49 3.329 2.948 

21 2.912 2.580  50 3.336 2.956 
22 2.939 2.603     
23 2.963 2.624     
24 2.987 2.644     
25 3.009 2.663     
26 3.029 2.681     
27 3.049 2.698     
28 3.068 2.714     
29 3.085 2.730     
30 3.103 2.745     
       

Source: EPA/600/R-96/084. 
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Table B-5. 
Critical Values for Dixon’s Test (Extreme Value Test) 

n Level of Significance, α  
 0.10 0.05 0.01 
3 0.886 0.941 0.988 
4 0.679 0.765 0.889 
5 0.557 0.642 0.780 
6 0.482 0.560 0.698 
7 0.434 0.507 0.637 
8 0.479 0.554 0.683 
9 0.441 0.512 0.635 
10 0.409 0.477 0.597 
11 0.517 0.576 0.679 
12 0.490 0.546 0.642 
13 0.467 0.521 0.615 
14 0.492 0.546 0.641 
15 0.472 0.525 0.616 
16 0.454 0.507 0.595 
17 0.438 0.490 0.577 
18 0.424 0.475 0.561 
19 0.412 0.462 0.547 
20 0.401 0.450 0.535 
21 0.391 0.440 0.524 
22 0.382 0.430 0.514 
23 0.374 0.421 0.505 
24 0.367 0.413 0.497 
25 0.360 0.406 0.489 

Source: EPA/600/R-96/084. 
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Table B-6. 
Critical Values for Duncan’s Multiple Range Test 
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" 3.001 1.n5 3.113 ).]70 3.410 1.43~ l.459 ),474 ),484 1.4111 3.496 3.498 3.4!>'9 ].499 3.4\19 ).4!1~ ],4!1>1 1.4~!1 

" 3.055 1.100 1,28~ ),348 1.3~9 ),419 ),442 3.45~ 3.470 ].478 ),484 3,46~ 3.4\10 ].4~ 1.490 3.490 1.490 ).490 

" 3.0ll 3.176 '·"" l.lZ~ 3.172 3.401 ).420 ],444 3.457 3.467 1.474 3.479 1.482 1.464 3.484 ),484 1,4il5 ).485 

" ],014 ],160 ),150 ],]11 ],]56 ],)6\l ),41] 3.4JZ ).446 ],457 ),405 3.471 3.470 3.47·1 ),41)0 3.4BI 1.481 ).481 

" '·"' l.l44 ).235 1.29B l.143 l.J76 ).402 3,422 ),4)7 3.449 1.45~ ).465 3.470 3.471 3.477 3.478 ),476 '"'"' " 2.984 l.IJO l,2U l.Z85 l.lll 3.160 1,192 ].412 1.42!1 ).441 3.451 ].459 ],465 1.4611 ),471 ],475 ].470 1.470 w 2.9'71 ).I Ill 1.310 1.274 J.JZ1 J.JSO ].Jill ].405 1,421 3.415 3.445 3.454 3.460 ],46S ].470 1.472 1.474 ],474 
>0 2,960 ],107 3,1911 ],21'>4 ],311 ),]47 ].)75 J.J\)7 1.415 ),42!1 3,440 ),44!1 ).456 ).461 ).467 ).470 l.472 3.47l 

" 2.!150 '-"'' 1.190 ),255 1,l0l ),))II 3,368 3.]';11 '·"" 3.424 ),436 3,445 3,451 1.459 3.464 3,467 ),470 1.472 .. 2.!11!1 3.006 1.160 1.226 3,270 ].115 ),)45 1.170 '·"" 1.406 l.4ZO ].4lZ 3.441 ],449 1.456 ],461 ),465 l.46'il 
lO '·""' J.OlS ),Ill 1.1!19 wo J.Z\JO J,lU ],]49 l.l71 J.JW ].405 J.4W ].4JO '"'" 1,447 ].454 ),460 ),406 

" z.8se '·""' ).102 3.171 3,ZZ4 '·"' 1.100 ),338 l.152 ),373 l.WO 3.405 1,418 1,429 1.439 3.448 ),456 ).46) 
w 2.82!1 2.!176 1.073 3.141 3.1!l!l 3.241 ),277 J.l07 .,, J.l55 1.1H l.WI >.000 3,419 ],UI 3.442 ),451 3.460 

"' '·""' 2.947 ).045 ).116 3.172 1,217 l.254 1.Vl7 1.114 J.ll7 ).)59 1.177 3.394 ),409 3.423 3.435 '·"' 1.457 
2,'1'72 2.!118 "'" l.OOO ).146 3.191 3.212 1.265 ),294 J.UO 1.)41 l.ll"il l.JBZ J.JQP 3,414 J.4ZB 1.442 ).454 

" = .01 ,,, ' "' " " " " " " " " " 
I '~"' "'"' 010,01 90.03 !10.03 90.01 90,0] 90,01 90,03 90,0) 90.01 !IO.OJ 1.10,03 010.03 90.01 !10.01 !10.01 !10.0 

' 14.04 14,04 14,04 14.04 14,04 14,04 14,04 14,04 14,04 14.04 14.04 14.04 14,04 14,04 14.04 14.04 14.04 14,0 

' 8.261 8.321 8,lZI 8.121 8.lZI 8,lZI 8.lZI 8,lZI 8,111 8.lZI 8.]21 !J.lZ1 !J,lZ1 8.121 8.311 8.121 8,321 8.n 

• 6,512 6,677 6,740 6,756 6,756 6,756 6,756 6.756 6.756 6.756 6,756 6,756 6,756 6,756 6,756 6,756 6.751'\ 6,75-

' 5.702 5,1l&l1 5,01801 6,040 6,005 6,074 6,074 6.074 6,074 6,074 6,074 6,074 6,074 6,074 6,074 6,074 0.074 '-"' 
6 5.143 5,4)\;1 5,549 5,614 5,655 5,61)0 5,6!14 5.701 5.70l 5.703 5.701 5.70l 5.701 5.703 5,70] 5,701 5,70) '·"' ' 4,949 5,145 5,260 5,))4 1,1e1 5,416 5.439 5.454 5.464 5.470 5.47l 5.4n 5.472 5.47Z 5,472 5,472 5,472 5,47 
6 4.746 4.!1)\;1 5,057 J.IJ5 5.18!1 5.227 5.251'\ S.Z71"i 5.291 5,302 5.10!1 5.314 5.116 5.317 5.117 5.317 5.117 5.11 

' 4.5!16 •• 787 4.!100 4.!l86 5.04) 5,006 5.118 5,142 5,100 5,174 5,185 5,193 5.1~ 5,203 5,105 5,206 Ul6 5.20 

" 4.482 4.671 4,'Xl0 4,871 4,!131 4,!175 5.010 5,037 5,05!\ 5,074 5,01l8 5,1);18 5,106 5,112 5,117 5,110 5,122 s.u 

" 4.Jn 4,5711 '·"' 4,760 4,841 4.1!~7 4,924 4,952 4,975 4,9!14 '·""' 5,021 5,0JI 5,039 5,045 5.050 5.054 5.05 

" 4,120 '·"" 4,6ZJ '·"" 4.707 4.1!15 4.852 4.881 4.907 4,QZ7 4.944 4.!158 4.!169 4.!178 4.!l86 4.911) 4.996 5.00 

" 4.260 4.4U 4,560 4,644 4,706 4.755 4,'Xll 4,824 4,850 4,872 4,Bil!l 4.!l04 4,1117 4,!128 4,9]7 4,!144 4.!150 4,!15 

" 4,210 4,J!ll 4,508 4,591 ..... 4.704 4.741 4.775 4.802 4.824 4,84J 4.859 4.872 4,884 4,894 4.902 4.910 4.91 

" 4,11'18 4.147 4.461 4.~7 4.610 4,060 4.700 4.711 4.700 4.781 4.001 4.010 MlO 4.846 4.857 4,866 4.874 •• 98 

" 4.IJI '·"" 4.425 '"'"" 4.572 4.622 4.61'\J 4,1"i!ll"i 4.724 4,748 4.768 uel"i 0.000 4.Bil 4.825 4.815 4.844 •.as 
17 4.0>1!1 4,275 4,1!11 4,475 4,5]9 4,58\1 4,630 4,664 4,1"i!ll 4,717 4.7)8 4.756 4.771 4,785 4.7!l7 4.807 4,Bio'i .. , 
IS 4.071 4,246 4,362 4,445 '·"" 4,51'\0 4,601 4,635 4,664 4,689 4,711 4.7201 4,745 4,759 4,771 4,781 4,792 .. , 
" 4.046 4.220 4.ll5 4.419 4.483 4.514 4.575 4.610 4.6)\;1 4.665 4,686 4.705 4.722 4.Tl6 4.749 4.761 4.7'11 ..,, 
" 4,024 4.197 4.112 4,395 4.459 4.510 4.552 4.587 4.617 4.642 4.664 4.oe4 4.701 4.716 4.72!1 4.741 4.751 4.76 .. 3.!156 4.1l16 4,2J'il 4,)22 4,JBO 4.437 4,480 4,516 4.546 4.571 4.590 4.616 4.614 4,651 '-"5 4.678 4.6!10 '·"' lO 1.869 '""" 4.1ri! 4,250 4,)14 4,366 4.40') 4.445 4.477 4.504 4.5ze 4.550 '·"' '"'" 4.001 4.615 ""' 4.64 

"' 1.625 ],QBil ...... 4,180 4,244 4.2!16 4.]19 4,370 4,408 4,436 4.461 4,481 4.50] 4.521 4.537 4.551 4,566 '·" 00 1.701 ),QZJ 4,0)1 4.111 4.174 4,216 4.170 '·"" 4,340 4,ll"iB 4,1\<4 4.417 4,4)8 4,456 4,474 ... ., 4,504 4,51 
llDo ),702 ),8.58 ),965 4.044 4.107 4.151! 4,202 4,H9 4,272 4,301 4.JZ7 4,151 4.372 4 • .W2 4,410 4,426 4,442 4.45 
~ J.64J J.'XlO '·"" 1.!178 4.040 4.0>11 4.135 4.172 4.Z05 4,235 4.261 4,285 4.307 4,JZ7 4,)45 4.36) 4.379 '·" 
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Source: Mason et al. (1989). 
 
Table B-7. 
Percentiles of the F Distribution 
 α = .01

df2\df1 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 60 120
1 4052 5000 5403 5625 5764 5859 5928 5981 6022 6056 6106 6157 6209 6235 6261 6313 6339
2 98.5 99 99.17 99.25 99.3 99.33 99.36 99.37 99.39 99.4 99.42 99.43 99.45 99.46 99.47 99.48 99.49
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23 27.05 26.87 26.69 26.6 26.5 26.32 26.22
4 21.2 18 16.69 15.98 15.52 15.21 14.98 14.8 14.66 14.55 14.37 14.2 14.02 13.93 13.84 13.65 13.56
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.888 9.722 9.553 9.466 9.379 9.202 9.112
6 13.75 10.92 9.78 9.148 8.746 8.466 8.26 8.102 7.976 7.874 7.718 7.559 7.396 7.313 7.229 7.057 6.969
7 12.25 9.547 8.451 7.847 7.46 7.191 6.993 6.84 6.719 6.62 6.469 6.314 6.155 6.074 5.992 5.824 5.737
8 11.26 8.649 7.591 7.006 6.632 6.371 6.178 6.029 5.911 5.814 5.667 5.515 5.359 5.279 5.198 5.032 4.946
9 10.56 8.022 6.992 6.422 6.057 5.802 5.613 5.467 5.351 5.257 5.111 4.962 4.808 4.729 4.649 4.483 4.398

10 10.04 7.559 6.552 5.994 5.636 5.386 5.2 5.057 4.942 4.849 4.706 4.558 4.405 4.327 4.247 4.082 3.996
12 9.33 6.927 5.953 5.412 5.064 4.821 4.64 4.499 4.388 4.296 4.155 4.01 3.858 3.78 3.701 3.535 3.449
15 8.683 6.359 5.417 4.893 4.556 4.318 4.142 4.004 3.895 3.805 3.666 3.522 3.372 3.294 3.214 3.047 2.959
20 8.096 5.849 4.938 4.431 4.103 3.871 3.699 3.564 3.457 3.368 3.231 3.088 2.938 2.859 2.778 2.608 2.517
24 7.823 5.614 4.718 4.218 3.895 3.667 3.496 3.363 3.256 3.168 3.032 2.889 2.738 2.659 2.577 2.403 2.31
30 7.562 5.39 4.51 4.018 3.699 3.473 3.304 3.173 3.067 2.979 2.843 2.7 2.549 2.469 2.386 2.208 2.111
60 7.077 4.977 4.126 3.649 3.339 3.119 2.953 2.823 2.718 2.632 2.496 2.352 2.198 2.115 2.028 1.836 1.726

120 6.851 4.787 3.949 3.48 3.174 2.956 2.792 2.663 2.559 2.472 2.336 2.192 2.035 1.95 1.86 1.656 1.533

α = .025

df2\df1 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 60 120
1 647.8 799.5 864.2 899.6 921.8 937.1 948.2 956.7 963.3 968.6 976.7 984.9 993.1 997.2 1001 1010 1014
2 38.51 39 39.17 39.25 39.3 39.33 39.36 39.37 39.39 39.4 39.41 39.43 39.45 39.46 39.46 39.48 39.49
3 17.44 16.04 15.44 15.1 14.88 14.73 14.62 14.54 14.47 14.42 14.34 14.25 14.17 14.12 14.08 13.99 13.95
4 12.22 10.65 9.979 9.605 9.364 9.197 9.074 8.98 8.905 8.844 8.751 8.657 8.56 8.511 8.461 8.36 8.309
5 10.01 8.434 7.764 7.388 7.146 6.978 6.853 6.757 6.681 6.619 6.525 6.428 6.329 6.278 6.227 6.123 6.069
6 8.813 7.26 6.599 6.227 5.988 5.82 5.695 5.6 5.523 5.461 5.366 5.269 5.168 5.117 5.065 4.959 4.904
7 8.073 6.542 5.89 5.523 5.285 5.119 4.995 4.899 4.823 4.761 4.666 4.568 4.467 4.415 4.362 4.254 4.199
8 7.571 6.059 5.416 5.053 4.817 4.652 4.529 4.433 4.357 4.295 4.2 4.101 3.999 3.947 3.894 3.784 3.728
9 7.209 5.715 5.078 4.718 4.484 4.32 4.197 4.102 4.026 3.964 3.868 3.769 3.667 3.614 3.56 3.449 3.392

10 6.937 5.456 4.826 4.468 4.236 4.072 3.95 3.855 3.779 3.717 3.621 3.522 3.419 3.365 3.311 3.198 3.14
12 6.554 5.096 4.474 4.121 3.891 3.728 3.607 3.512 3.436 3.374 3.277 3.177 3.073 3.019 2.963 2.848 2.787
15 6.2 4.765 4.153 3.804 3.576 3.415 3.293 3.199 3.123 3.06 2.963 2.862 2.756 2.701 2.644 2.524 2.461
20 5.871 4.461 3.859 3.515 3.289 3.128 3.007 2.913 2.837 2.774 2.676 2.573 2.464 2.408 2.349 2.223 2.156
24 5.717 4.319 3.721 3.379 3.155 2.995 2.874 2.779 2.703 2.64 2.541 2.437 2.327 2.269 2.209 2.08 2.01
30 5.568 4.182 3.589 3.25 3.026 2.867 2.746 2.651 2.575 2.511 2.412 2.307 2.195 2.136 2.074 1.94 1.866
60 5.286 3.925 3.343 3.008 2.786 2.627 2.507 2.412 2.334 2.27 2.169 2.061 1.944 1.882 1.815 1.667 1.581

120 5.152 3.805 3.227 2.894 2.674 2.515 2.395 2.299 2.222 2.157 2.055 1.945 1.825 1.76 1.69 1.53 1.433
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Table B-8. 
H-statistic for Confidence Limit on a Lognormal Mean 
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Values of Ha H0.10 for Computing a One-Sided Lower 10% Confidence Limit on 
a Lognormal Mean 

n 

• 3 s 7 10 12 15 21 31 51 101 

0.10 -1 •• 31 -1.320 -1.296 -1.285 -1.281 -1.279 -1.277 -1.277 -1.278 -1.279 
0.20 ·1.350 ·1 .261 -1.266 ·1.266 ·1.266 -1.266 -1.258 -1.272 ·1 .275 -1.200 
0.30 ·1 .209 -1 .252 _, .250 ·1 .25~ -1.257 -1 .260 ·1 .266 -1.272 -1.260 -1 .267 
o ... o ·1 .2~5 ·1 .233 ·1.239 -1.2"9 -1 .2s• -1.261 ·1.270 -1.279 -1.289 -1.301 
o.so -1.213 -1.221 •1.23~ ·1.250 ·1.257 •1,266 •1 .279 ·1 .2511 -1.3~ -1.319 

0.60 ·1.190 ·1 .215 -1.235 -1.256 -1.266 ·1.277 -1.292 ·1.307 -1.1a -1.342 
0.70 -1 .176 •1 .215 ·1.2~1 -1.266 -1.276 ·1.292 -1,310 -1.329 -1 .3~9 -1.370 
0.60 -1.166 -1.219 -1.251 -1.280 -1.29~ ·1.311 -1.332 •1,354 -1.377 -1.1103 
0.90 -1.165 -1.227 -1.264 -1.298 •1,3111 -1.333 •1,358 •1 .303 ·1.1109 •1 ... 39 
1.00 ·1.Hi6 ·1 .239 ·1,281 ·1 .320 ·1 ,3]7 -1.358 -1.367 -1 ... 14 -1.11115 ·1.\78 

1,25 -1.184 -1.280 •1,3311 -1.3811 -1.1107 •1 .11311 "-1.1170 -1.507 -1,5117 -1.569 
1.50 ·1.2H -1 .334 •1,1100 ·1.462 -1.491 -1 .523 -1.568 -1.613 -1.063 -1.716 
1.75 -1.260 -1.398 •1,1477 -1.551 -1.585 -1.6211 -1.677 -1.732 -1.790 -1.855 
2.00 •1,310 _, .1170 ·1.562 -1.6117 -1.688 -1.733 -1.795 -1.859 -1.926 -2.003 
2.50 ·1,1426 -1.634 ·1.751 ·1 .862 -1.913 -1.971 -2.051 -2.133 -2.223 -2.321 

3.00 ·1.560 -1.617 ·1.960 -2.095 -2.157 -2.229 -2.326 -2.1127 -2.536 -2.657 
3.50 -1.710 -2.014 -2.163 -2.3111 -2.1115 -2.1t99 -2.615 -2.731 -2 .864 -3.007 
11.00 -1.871 -2.221 ·2.415 -2.596 -2.681 ·2.778 ·2.911 •3,050 -3.200 ·3.366 
~.so -2.041 -2.1135 -2.653 -2.858 -2.955 •3,0M -3.217 ·3.372 -3.542 -3.731 
s.oo -2.217 -2.65~ -2.mn -3.126 -3.233 ·3.356 ·3.525 -3.696 -3.609 -4.100 

6.00 -2.561 -3.104 -3.396 ·3.671 -3.800 -3.949 -11.153 -4.363 -11.594 -11.849 
7.00 ·2.9S5 -3.5611 -3.904 ·4.226 ·11.377 -11.5~9 -4.790 -5.037 -5.307 -5.607 
8.00 -3.336 -11.030 --.1118 -11.787 -11.960 -5.159 -5.1133 -5.715 -6.026 -6.370 
9.00 -3.721 --.500 -11.937 -5.352 -5.5'+7 -5.771 -6.060 ·6.399 -6.748 ·7 .136 

10.00 -14.109 -4.973 ·5.459 -5.920 ·6.137 -6.386 -6,730 ·7 .085 -7 ... 7 .. -7.906 

Values of H1 _,. Ho.9s for Computing a One-Sided Upper 95% Confidence Limit 
on a Lognormal Mean 

n 

3 5 1 10 12 15 21 31 51 101 

0.10 2.750 2.035 , .886 1.802 1.775 1. ,..9 , .722 1.701 1,6811 1.670 
0.20 3.295 2.198 1.992 1.881 1.843 1.609 1.771 1.7112 1.718 1.697 
0.30 11.109 2.402 2.125 1.977 1.927 1.862 1.833 1.793 1.761 1.733 
0.40 5.220 2.651 2.262 2,089 2.026 1.968 1.905 1.656 1.613 1.777 
0.50 6.1195 2.9117 2.1165 2,220 2.1111 2.066 1.989 1.928 1.876 1.830 

0.60 7.607 3,287 2.673 2.368 2.271 2.161 2.085 2.010 1.9116 1.691 
0.70 9.120 3,662 2.9011 2.532 2.1114 2,306 2.191 2.102 2.025 1.960 
0.80 10.43 11.062 3.155 2.710 2.570 2.1143 2.307 2.202 2.112 2.035 
0.90 11.74 ~.1170 3.1120 2.902 2.738 2.569 2.432 2.310 2.206 2.117 
1.00 13.05 11.905 3.696 3.103 2.915 2.744 2.564 2.423 2.306 2.205 

1.25 16.33 6.001 ~ .1126 3.639 3.389 3.163 2.923 2.137 2.560 2.11H 
1.50 19.60 7.120 5.1611 14.207 3.896 3.612 3,311 3.077 2.861 2.713 
1.75 22.67 8,250 5.960 11.795 11.1122 4.001 3.719 3.1137 3.200 2.997 
2.00 26.1~ 9.367 6.7117 5.396 11.962 11.564 11.1111 3.612 3.533 3.295 
2.50 32.69 11.67 6.339 6.621 6.067 5.557 5.013 11.586 11.228 3.920 

3.00 39.23 13.97 9.9115 7,6611 7.1511 6.570 5.907 5.308 11.9117 11.569 
3.50 ~5.77 16.27 11.56 9.116 8.326 7,596 6.815 6.201 5.661 5.233 
11.00 52.31 18.56 13.18 10.38 9.1169 6.630 7.731 7.024 6.1124 5.900 
11.50 56.85 20.88 H.BO 11,611 10.62 9.669 8.652 7.6Sio 7.174 6.590 
5.00 65.39 23.19 16.113 12,91 11.77 10.71 9.579 8.688 7.929 7.277 

6.00 76.47 27.61 19.68 15.115 111.06 12.81 11.114 10.36 9.4119 8.661 
7.00 91.55 32.1o3 22.94 16.00 16.39 H.90 13.31 12.0S 10.98 10.05 
6.00 1011.6 37.06 26.20 20.55 16.71 "17.01 15.18 13.74 12.51 11.-5 
9.00 117.7 41.66 29.116 23.10 21.03 19.11 17.05 15.113 111.05 12.85 

10.00 130.8 116.31 32.73 25.66 23.35 21.22 18.93 17.13 15.59 1~.26 
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Source: Gilbert (1987). 
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Table B-9. 
Quantiles of D’Agostino’s Test for Normality 
  

 
 
Source: Gilbert (1987).  
 
Table B-10. 
Probabilities for the Small-Sample Mann-Kendall Test for Trend 
 

S n S n 

 4 5 8 9  6 7 10 

0 0.625 0.592 0.548 0.540 1 0.500 0.500 0.500 

2 0.375 0.408 0.452 0.460 3 0.360 0.386 0.431 

4 0.167 0.242 0.360 0.381 5 0.235 0.281 0.364 

6 0.042 0.117 0.274 0.306 7 0.136 0.191 0.300 

8  0.042 0.199 0.238 9 0.068 0.199 0.242 

10  0.0083 0.138 0.179 11 0.028 0.068 0.190 

12   0.089 0.130 13 0.0083 0.035 0.146 

14   0.054 0.090 15 0.0014 0.015 0.108 
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S n S n 

 4 5 8 9  6 7 10 

16   0.031 0.060 17  0.0054 0.078 

18   0.016 0.038 19  0.0014 0.054 

20   0.0071 0.022 21  0.00020 0.036 

22   0.0028 0.012 23   0.023 

24   0.00087 0.0063 25   0.014 

26   0.00019 0.0029 27   0.0083 

28   0.000025 0.0012 29   0.0046 

30    0.00043 31   0.0023 

32    0.00012 33   0.0011 

34    0.000025 35   0.00047 

36    0.0000028 37   0.00018 

     39   0.000058 

     41   0.000015 

     43   0.0000028 

     45   0.00000028 

Source: EPA/600/R-96/084. 
 



 
EM 200-1-16 

31 May 13 
 

 
B-21 

Table B-11. 
Confidence Levels for Nonparametric Prediction Limits 
 
 

 

NUMBER OF FUTURE SAMPLES 

N k=l k=l k=J k=4 k=S k=6 k=7 k=8 

I 50.0 33.3 25.0 20.0 16.7 14.3 12.5 11.1 
2 66.7 50.0 40.0 33.3 28.6 25.0 22.2 20.0 
3 75.0 60.0 50.0 42.9 37.5 33.3 30.0 27.3 
4 80.0 66.7 57.1 50.0 44.4 40.0 36.4 33.3 
5 83.3 71.4 62.5 55.6 so.o 4S.S 41.7 38.5 
6 85.7 75.0 66.7 60.0 S4.S so.o 46.2 42.9 
7 87.5 77.8 70.0 63.6 58.3 53.8 50.0 46.7 
8 88.9 80.0 72.7 66.7 61.5 57.1 53.3 so.o 
9 90.0 81.8 75.0 69.2 64.3 60.0 56.3 52.9 

10 90.9 83.3 76.9 71.4 66.7 62.5 58.8 SS.6 

11 91.7 84.6 78.6 73.3 68.8 64.7 6Ll 57.9 
12 92.3 85.7 80.0 75.0 70.6 66.7 63.2 60.0 
13 92.9 86.7 81.3 76.5 72.2 68.4 65.0 61.9 
14 93.3 87.5 82.4 77.8 73.7 70.0 66.7 63.6 
iS 93.8 88.2 83.3 78.9 75.0 71.4 68.2 65.2 
16 94.1 88.9 84.2 80.0 76.2 72.7 69.6 66.7 
17 94.4 89.5 85.0 81.0 77.3 73.9 70.8 68.0 
18 94.7 90.0 85.7 81.8 78.3 75.0 72.0 69.2 
19 9S.O 90.S 86.4 82.6 79.2 76.0 73.1 70.4 
20 95.2 90.9 87.0 83.3 80.0 76.9 74.1 71.4 

21 9S.S 91.3 87.5 84.0 80.8 77.8 75.0 72.4 
22 95.7 91.7 88.0 84.6 81.5 78.6 75.9 73.3 
23 95.8 92.0 88.5 85.2 82.1 79.3 76.7 74.2. 
24 96.0 92.3 88.9 85.7 82.8 80.0 77.4 75.0 
2S 96.2 92.6 89.3 86.2 83.3 80.6 78.1 75.8 
26 96.3 92.9 89.7 86.7 83.9 81.3 78.8 76.5 
27 96.4 93.1 90.0 87.1 84.4 81.8 79.4 77.1 
28 96.6 93.3 90.3 87.5 84.8 82.4 80.0 77.8 
29 96.7 93.5 90.6 87.9 85.3 82.9 80.6 78.4 
30 96.8 93.8 90.9 88.2 85.7 83.3 81.1 78.9 

31 96.9 93.9 91.2 88.6 86.1 83.8 81.6 79.5 
32 97.0 94.1 91.4 88.9 86.5 84.2 82.1 80.0 
33 97.1 94.3 91.7 89.2 86.8 84.6 82.5 80.5 
34 97.1 94.4 91.9 89.5 87.2 85.0 82.9 81.0 
35 97.2 94.6 92.1 89.7 87.5 85.4 83.3 81.4 
36 97.3 94.7 92.3 90.0 87.8 85.7 83.7 81.8 
37 97.4 94.9 92.S 90.2 88.1 86.0 84.1 82.2 
38 97.4 95.0 92.7 90.5 88.4 86.4 84.4 82.6 
39 97.5 95.1 92.9 90.7 88.6 86.7 84.8 83.0 
40 97.6 95.2 93.0 90.9 88.9 87.0 85.1 83.3 
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NUMBER OF FUTURE SAMPLES 

N k=l k=2 k=3 k=4 k=S k:6 k=7 k=8 

41 97.6 95.3 93.2 91.1 89.1 87.2 85.4 83.7 
42 97.7 95.5 93.3 91.3 89.4 87.5 85.7 84.0 
43 97.7 95.6 93.5 91.5 89.6 87.8 86.0 84.3 
44 97.8 95.7 93.6 91.7 89.8 81:i.O 86.3 84.6 
45 97.8 95.7 93.8 91.8 90.0 88.2 86.5 84.9 
46 97.9 95.8 93.9 92.0 90.2 88.5 86.8 85.2 
47 97.9 95.9 94.0 92.2 90.4 88.7 87.0 85.5 
48 98.0 96.0 94.1 92.3 90.6 88.9 87.3 85.7 
49 98.0 96.1 94.2 92.5 90.7 89.1 87.5 86.0 
so 98.0 96.2 94.3 92.6 90.9 89.3 87.7 86.2 

51 98.1 96.2 94.4 92.7 91.1 89.5 87.9 86.4 
52 98.1 96.3 94.5 92.9 91.2 89.7 88.1 86.7 
53 98.1 96.4 94.6 93.0 91.4 89.8 88.3 86.9 
S4 98.2 96.4 94.7 93.1 91.5 90.0 88.5 87.1 
55 98.2 96.5 94.8 93.2 91.7 90.2 88.7 87.3 
56 98.2 96.6 94.9 93.3 91.8 90.3 88.9 87.5 
57 98.3 96.6 95.0 93.4 91.9 90.5 89.1 87.7 
58 98.3 96.7 95.1 93.5 92.1 90.6 89.2 87.9 
59 98.3 96.7 95.2 93.7 92.2 90.8 89.4 88.1 
60 98.4 96.8 95.2 93.8 92.3 90.9 89.6 88.2 

61 98.4 96.8 95.3 93.8 92.4 91.0 89.7 88.4 
62 98.4 96.9 95.4 93.9 92.5 91.2 89.9 88.6 
63 98.4 96.9 95.5 94.0 92.6 91.3 90.0 88.7 
64 98.5 97.0 95.5 94.1 92.8 91.4 90.1 88.9 
6S 98.5 97.0 95.6 94.2 92.9 91.5 90.3 89.0 
66 98.5 97.1 95.7 94.3 93.0 91.7 90.4 89.2 
67 98.5 97.1 95.7 94.4 93.1 91.8 90.5 89.3 
68 98.6 97.1 95.8 94.4 93.2 91.9 90.7 89.5 
(f) 98.6 97.2 95.8 94.5 93.2 92.0 90.8 89.6 
70 98.6 97.2 95.9 94.6 93.3 92.1 90.9 89.7 

71 98.6 97.3 95.9 94.7 93.4 92.2 91.0 89.9 
72 98.6 97.3 96.0 94.7 93.5 92.3 91.1 90.0 
73 98.6 97.3 96.1 94.8 93.6 92.4 91.3 90.1 
74 98.7 97.4 96.1 94.9 93.7 92.5 91.4 90.2 
75 98.7 97.4 96.2 94.9 93.8 92.6 91.5 90.4 
76 98.7 97.4 96.2 95.0 93.8 92.7 91.6 90.5 
77 98.7 97.5 96.3 95.1 93.9 92.8 91.7 90.6 
78 98.7 97.5 96.3 95.1 94.0 92.9 91.8 90.7 
79 98.8 97.5 96.3 95.2 94.0 92.9 91.9 90.8 
80 98.8 97.6 96.4 95.2 94.1 93.0 92.0 90.9 
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Source: EPA/530-SW-89-026. 
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Table B-12. 
Nonparametric Confidence Intervals on a Proportion 
 

 
Source: Gilbert (1987). 
 
 
 

Nonparametric 95% and 99% Confidence Intervals on a Proportion 

" n • I •• z .. , ••• •• s • • 6 

0 0 0 .9S .9'1 0 0 .78 .90 0 0 .61 .78 0 0 ·" .68 0 0 .50 .60 0 0 ·" ... 0 
I .01 .os I I .01 .Ol .97 .99 .00 .02 .66 .9' .oo .01 .75 .86 .00 .01 .66 .7& .00 .01 .S9 .71 I 
z .10 .22 I I .06 .14 .98 .oo .10 .90 .% .Ol .08 .81 .89 .Ol .06 ·" .83 1 

' .22 .37 I ... .25 .951 1 .11 .19 .92 .97 .08 ... • 8S .92 ' 
• •• 7 n = 8 •• 9 " = 10 n • 11 n., 12 

" 
0 0 0 .>a .so 0 0 ·" ... 0 0 ·" ... 0 0 .29 .18 0 0 .26 .16 0 0 ·" ... 0 
1 .oo .01 .5S .6. .00 .01 .so .S9 .00 .01 ... • S7 • oo .01 ... .51 .oo .oo .•o .so .00 .00 .37 .o\5 I 
1 .02 .OS .66 .76 .01 .os .611 .71 .02 .<:!' .56 .66 .02 .00 .S6 .62 .01 .03 .so .59 .01 .03 .lt6 .ss 2 
3 .07 .13 .77 .06 • 06 • , .71 .80 .OS .10 .68 .75 .os .09 .62 .70 .o• .00 .60 .66 .o • .07 .Sit .65 3 • ·" .23 .87 .93 .12 .19 .81 .eo .11 .17 .75 .83 ·"" ... .70 .78 .00 .14 .67 ·" .013 .12 .63 .70 • s .211 .311 .95 .98 .20 .29 .BS ·" • 17 .:15 .83 .89 ... • 22 .78 .OS .13 .20 .7.1t .81 .12 .18 .71 .77 s 
6 .36 .,.s .99 I .29 .36 .95 .98 ·" ·" .90 .95 .21 .29 .OS .91 .19 .26 .80 .67 ·" ·" .n ·" • 
• r: = , 3 " = , .. n • 15 n == 16 n = 17 n = HI • 
c 0 0 .23 .32 0 0 .23 .30 0 0 .22 .28 0 0 .20 .26 0 0 ·" .26 0 0 ·" ... 0 
1 .oo . oo ... ... .00 • 00 .32 ... .00 .00 .30 .39 .oo .00 .30 .36 .oo .00 ·" ·" .00 .00 .27 .]It 1 
2 .01 • 03 ... ·" .01 .03 ·" .sc .01 .02 .39 •• 6 .01 • 02 .37 ... .01 .02 ·" ... .01 .02 .33 _,, ' 3 ·"' .07 ·" .59 .03 .06 .so • SB .03 .06 .47 ... .Ol • OS ... .>2 .03 .OS ·" .so .03 .os ·" ·" 3 • .07 • 11 .59 .68 .06 .10 .58 .6 • .06 .10 .53 .61 .06 .09 .50 .58 .OS .08 ·" .57 .OS .08 .lt7 .53 • 5 .11 .17 .66 .73 .10 .15 .6] .70 .o9 .n .61 .67 .09 .13 .56 .61t • 08 . 12 ... .62 .08 .12 .53 .59 s 
6 .16 .22 .711 .79 .15 .21 .68 .75 .13 .19 ,67 .72 .13 .18 .63 .70 .12 .17 .59 .66 .11 .16 .59 ... • 7 ·" .26 .78 .Bit • 19 .21t .76 .81 .18 .22 .71 .77 .17 .20 .70 ·'" .16 .19 .65 .73 .15 .18 .63 .69 7 
0 .27 ... .83 .09 .2> ·" .79 .85 ,23 .29 .78 .82 .21 .27 .73 .79 .20 .25 .72 .76 .18 . .. .67 .75 8 
9 .32 ... • 89 .93 .10 .11 .as .Sio .29 ,]] .51 .87 .26 .10 .eo .01 ·" .28 .75 .80 .23 .27 .73 .77 9 

• n = 19 n • 20 n • 21 n • 22 n • 23 n • 21t • 
0 0 0 .17 .21t 0 0 • 16 .22 0 0 .15 .21 0 0 .15 .20 0 0 ... • 19 0 0 .13 .19 0 
1 .oo .oo .:s .32 .oo .00 ·" .31 .00 .oo ·" ·" .oo .oo .22 .20 .00 .00 .21 .27 .DO .00 .20 .26 1 
2 .01 .02 .32 ·" .01 .02 ,32 ·" .01 .02 .10 ·" .01 • 02 .29 ... .01 .02 .27 .33 .01 .02 .26 .32 ' 3 .02 .o • • lSI ,lt6 • 02 .o• ·" ••• • 02 -~ .lS ... .02 • oo ... .• o .02 ·"' .32 .39 .02 .Ol .31 .39 3 

' .os .08 .o\5 .52 .a. .07 .112 .50 .0'1 ,07 .itO .47 ·"' .06 .39 .ItS ·"' .06 .39 .itS .0'1 .06 .37 .lt3 • 5 .fY1 .11 .50 .56 .07 .10 ,.lt7 .56 ,07 .10 • .lt6 .53 .06 .09 .115 .so .06 .00 .113 .50 .06 .09 .41 .•o 5 
6 .10 .15 .55 ,61 .10 ·" .53 .60 .OSI .13 .51 .sa .oSI .n .5o .55 .08 .12 .ItS .55 .08 .11 .46 .52 6 
7 .14 .17 .61 .60 .13 .16 .58 .6.1t ,12 .15 .55 .63 .12 .15 .55 .50 • 11 ... .52 .58 .11 .13 .so .57 7 
8 .17 .22 ,66 .71 .16 .21 .63 ,69 .15 .20 ,60 ,66 ,15 .19 .5B .6S • 11t .18 .57 .62 .13 .17 .Sit ,61 ' 9 ·" .25 .69 .76 • 20 ... .68 .73 .19 .23 ,65 .71 .18 .22 .62 .68 .17 .21 .61 .67 .16 .20 .59 ,&1 9 

10 .24 .31 .75 ,79 .22 .29 .71 .78 .21 .28 .70 ,71; .20 ,26 .66 .72 .19 .25 .6111 .70 .19 .23 .63 .68 10 
11 .29 .M ,78 ,83 .27 .32 .76 .so ,26 ,30 .72 .79 ... .29 .71 .76 .23 .27 .68 .73 .22 .26 .66 .7'1. 11 
12 .32 ,]Sl ,53 .86 ·" .37 .79 .Bit .29 .35 .77 .81 .28 ,]It .7111 .80 .27 .32 .73 .77 ,26 .]1 .69 .7111 12 

• n • 25 n • 26 n • 27 n • 28 n • 29 n • 30 " 
0 0 0 .13 ·" 0 c .12 .17 0 0 .12 .17 0 0 .12 .16 0 0 .11 .16 0 c .11 .16 0 
1 .oo .oo • 19 .26 .00 .00 .19 .25 .00 .00 .18 ,24 .oo .00 .17 ·" .oo .00 .17 .22 .oc. .oo • 16 .22 1 
2 .01 .01 ,25 .31 .01 .01 ,21; .30 .01 .01 .23 .30 .01 .01 .23 ,29 .01 .01 .22 .28 .01 .01 .21 .27 2 
3 .02 ,03 ,]0 .37 .02 .Ol ,30 .36 .02 .03 .29 ,].It .02 ,03 .28 .33 .02 ,03 .27 ·" .01 .03 .26 .31 3 • .03 .06 .36 .111 .03 .os .311 ,t;O .03 .05 .33 .38 .03 .os ,]2 ·" .03 .05 .31 ·" .03 .05 .30 ,]6 • s .as .oe ,t;O .tt6 .OS .08 .38 ·" .05 .oa .37 ... .OS ,07 .36 .U .os .07 .36 ,lt1 .oo .07 ,]5 ,39 5 
6 .08 ,11 ,.Itt; .so .07 .11 .42 .lt9 .07 .10 .111 ·" .07 .10 ·"' •• 6 .07 ,09 ,39 .114 .06 .09 ,]8 ,.It] 6 
7 .10 ,1] ,118 .Sit • 10 .12 .117 ,5] .09 .12 • .lt6 .52 • 051 .12 ... .so .09 .11 .It] ,118 .08 .11 ... ·" 7 
8 .13 ,16 ,52 ,59 .12 .15 .51 .56 .12 .15 .so .56 .11 ·" • .ItS .Sit .11 ·" .lt6 .52 .10 .13 .1115 .51 6 
9 .16 ,19 .56 .63 .15 .19 .Sit .60 ·" .18 .sr. .59 ... • 11 .. sz .sa • 1) .17 .so .56 .13 .16 .48 ... 9 

10 .18 ,22 .60 .66 .17 .21 .56 .611 .17 .20 ,57 .62 .16 .19 .56 .62 .16 ,18 .Sit .59 ,15 .18 .52 .57 " 11 .21 .25 ,611 .69 .19 ,21t .62 .66 .UI .23 ... .66 .18 .23 .55 .fA .17 .22 .57 .63 .16 .21 ,55 .61 11 
12 .25 .]0 .68 .74 ·" .28 .66 .70 .22 .27 ,63 .70 ·" .2(i ,6'1. .67 .21 ,25 ,61 .65 .20 .211 .SSI ,6111 12 
13 .26 .32 .70 ,75 .25 .10 .70 .75 .2' .29 ,67 .72 .'1.3 .28 ,65 .71 .22 .27 .&1 .68 .22 .26 ,67 .67 13 ,. ·" .36 ,75 .79 .30 .]Ill .72 .77 ,28 .]3 ,71 .76 .27 .32 .68 .73 .26 .31 .66 .72 .25 .30 .65 .69 " 15 ·" ,ItO .78 ,82 .32 .38 .76 .81 .30 .37 .7] ·" .29 .35 .72 .77 .28 .lit .69 .n .27 .]2 .68 .73 " 
Source: After Blyth and Still. 1983. 
Inner entries give lhe 9S% interval, and ouler entries the 99% inlerval. For example. for n = 13, u = 3. the 9!i% 
interval is (0.07, O.!i2) and the 99% interval is (O.C», 0.59). n = number of observations. u = number of those 
that exceed some specified value x, .. 
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Table B-13. 
Factors for Calculating Normal Distribution One-Sided Tolerance Limits 
 
Factors ),,1( npg α−′ for a Normal One-Sided %100)1( α− Tolerance Bound 
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Factors ),,1( npg α−′ for a Normal One-Sided %100)1( α− Tolerance Bound 
 

 
Source: Hahn and Meeker (1991). 
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Table B-14. 
Factors for Calculating Normal Distribution Two-Sided Tolerance Intervals 
 

Factors ),,1( npg α− for a Normal Two-Sided %100)1( α− Tolerance Intervals to Contain at Least 
p100% of the Population 

 
 p = 0.90 p = 0.95 p = 0.99 

1 - α 0.90 0.95 0.99 0.9 0.95 0.99 0.90 0.95 0.99 
n          

10 2.535 2.838 3.582 3.021 3.3819 4.268 3.970 4.445 5.609 
11 2.463 2.737 3.397 2.935 3.2612 4.047 3.857 4.286 5.319 
12 2.404 2.655 3.249 2.865 3.1633 3.872 3.765 4.157 5.089 
13 2.355 2.587 3.129 2.806 3.0821 3.729 3.688 4.051 4.900 
14 2.313 2.529 3.029 2.757 3.0135 3.610 3.623 3.960 4.744 
15 2.278 2.480 2.944 2.714 2.9548 3.508 3.567 3.883 4.611 
16 2.246 2.437 2.872 2.676 2.9038 3.422 3.517 3.816 4.497 
17 2.219 2.399 2.808 2.644 2.859 3.346 3.474 3.757 4.398 
18 2.194 2.366 2.753 2.614 2.8194 3.280 3.436 3.705 4.311 
19 2.172 2.337 2.703 2.588 2.7841 3.221 3.402 3.659 4.233 
20 2.152 2.310 2.659 2.565 2.7523 3.169 3.371 3.617 4.164 
25 2.077 2.208 2.494 2.475 2.6313 2.972 3.252 3.458 3.906 
30 2.025 2.140 2.385 2.413 2.5496 2.842 3.171 3.351 3.735 
35 1.988 2.090 2.306 2.368 2.4902 2.748 3.112 3.273 3.612 
40 1.959 2.052 2.247 2.334 2.4446 2.677 3.067 3.213 3.518 
50 1.916 1.996 2.162 2.284 2.3788 2.576 3.001 3.126 3.385 
60 1.887 1.958 2.103 2.249 2.3329 2.506 2.955 3.066 3.293 
70 1.865 1.929 2.060 2.222 2.2987 2.454 2.921 3.021 3.225 
80 1.848 1.907 2.026 2.202 2.2721 2.414 2.894 2.986 3.173 
90 1.834 1.889 1.999 2.185 2.2506 2.382 2.872 2.958 3.130 

100 1.823 1.874 1.977 2.172 2.2328 2.356 2.854 2.934 3.096 
∞ 1.645 1.645 1.645 1.960 1.960 1.960 2.576 2.576 2.576 
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Table B-15. 
Standard Normal Distribution 

 Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
-3.4 0.0003369 0.0003248 0.0003131 0.0003018 0.0002909 0.0002803 0.0002701 0.0002602 0.0002507 0.0002415 
-3.3 0.0004834 0.0004665 0.0004501 0.0004342 0.0004189 0.0004041 0.0003897 0.0003758 0.0003624 0.0003495 
-3.2 0.0006871 0.0006637 0.0006410 0.0006190 0.0005976 0.0005770 0.0005571 0.0005377 0.0005190 0.0005009 
-3.1 0.0009676 0.0009354 0.0009043 0.0008740 0.0008447 0.0008164 0.0007888 0.0007622 0.0007364 0.0007114 
-3.0 0.001350 0.001306 0.001264 0.001223 0.001183 0.001144 0.001107 0.001070 0.001035 0.001001 

-2.9 0.001866 0.001807 0.001750 0.001695 0.001641 0.001589 0.001538 0.001489 0.001441 0.001395 
-2.8 0.002555 0.002477 0.002401 0.002327 0.002256 0.002186 0.002118 0.002052 0.001988 0.001926 
-2.7 0.003467 0.003364 0.003264 0.003167 0.003072 0.002980 0.002890 0.002803 0.002718 0.002635 
-2.6 0.004661 0.004527 0.004396 0.004269 0.004145 0.004025 0.003907 0.003793 0.003681 0.003573 
-2.5 0.006210 0.006037 0.005868 0.005703 0.005543 0.005386 0.005234 0.005085 0.004940 0.004799 

-2.4 0.008198 0.007976 0.007760 0.007549 0.007344 0.007143 0.006947 0.006756 0.006569 0.006387 
-2.3 0.01072 0.01044 0.01017 0.009903 0.009642 0.009387 0.009137 0.008894 0.008656 0.008424 
-2.2 0.01390 0.01355 0.01321 0.01287 0.01255 0.01222 0.01191 0.01160 0.01130 0.01101 
-2.1 0.01786 0.01743 0.01700 0.01659 0.01618 0.01578 0.01539 0.01500 0.01463 0.01426 
-2.0 0.02275 0.02222 0.02169 0.02118 0.02068 0.02018 0.01970 0.01923 0.01876 0.01831 

-1.9 0.02872 0.02807 0.02743 0.02680 0.02619 0.02559 0.02500 0.02442 0.02385 0.02330 
-1.8 0.03593 0.03515 0.03438 0.03362 0.03288 0.03216 0.03144 0.03074 0.03005 0.02938 
-1.7 0.04457 0.04363 0.04272 0.04182 0.04093 0.04006 0.03920 0.03836 0.03754 0.03673 
-1.6 0.05480 0.05370 0.05262 0.05155 0.05050 0.04947 0.04846 0.04746 0.04648 0.04551 
-1.5 0.06681 0.06552 0.06426 0.06301 0.06178 0.06057 0.05938 0.05821 0.05705 0.05592 

-1.4 0.08076 0.07927 0.07780 0.07636 0.07493 0.07353 0.07215 0.07078 0.06944 0.06811 
-1.3 0.09680 0.09510 0.09342 0.09176 0.09012 0.08851 0.08691 0.08534 0.08379 0.08226 
-1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.09853 
-1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170 
-1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379 

-0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611 
-0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867 
-0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148 
-0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451 
-0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776 

-0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121 
-0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483 
-0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859 
-0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247 
-0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641 

NOTE: Table generated using SAS, a statistical software package. The table entries are values of p , 
where p  = P (Z ≤ Zp ).  For example, P (Z ≤ 1.65) = 0.9505
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Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 

3.5 0.9998                   
4.0 1.000                   
4.5 1.000                   
5.0 1.000                   

NOTE: Table generated using SAS, a statistical software package. The table entries are values of p , 
where p  = P(Z ≤ Zp ).  For example, P (Z ≤ 1.65) = 0.9505
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Table B-16. 
Poisson Probabilities 
 
 x 0.005 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0 0.9950 0.9900 0.9802 0.9704 0.9608 0.9512 0.9418 0.9324 0.9231 0.9139 
1 0.004975 0.009900 0.01960 0.02911 0.03843 0.04756 0.05651 0.06527 0.07385 0.08225 
2 0.00001244 0.00004950 0.0001960 0.0004367 0.0007686 0.001189 0.001695 0.002284 0.002954 0.003701 
3 0.00000002073 0.0000001650 0.000001307 0.000004367 0.00001025 0.00001982 0.00003390 0.00005330 0.00007877 0.0001110 

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0 0.9048 0.8187 0.7408 0.6703 0.6065 0.5488 0.4966 0.4493 0.4066 0.3679
1 0.09048 0.1637 0.2222 0.2681 0.3033 0.3293 0.3476 0.3595 0.3659 0.3679
2 0.004524 0.01637 0.03334 0.05363 0.07582 0.09879 0.1217 0.1438 0.1647 0.1839
3 0.0001508 0.001092 0.003334 0.007150 0.01264 0.01976 0.02839 0.03834 0.04940 0.06131
4 0.000003770 0.00005458 0.0002500 0.0007150 0.001580 0.002964 0.004968 0.007669 0.01111 0.01533
5 0.00000007540 0.000002183 0.00001500 0.00005720 0.0001580 0.0003556 0.0006955 0.001227 0.002001 0.003066
6 0.000000001257 0.00000007278 0.0000007501 0.000003813 0.00001316 0.00003556 0.00008114 0.0001636 0.0003001 0.0005109
7 0.00000000001795 0.000000002079 0.00000003215 0.0000002179 0.0000009402 0.000003048 0.000008114 0.00001870 0.00003858 0.00007299

x 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
0 0.3329 0.3012 0.2725 0.2466 0.2231 0.2019 0.1827 0.1653 0.1496 0.1353 
1 0.3662 0.3614 0.3543 0.3452 0.3347 0.3230 0.3106 0.2975 0.2842 0.2707 
2 0.2014 0.2169 0.2303 0.2417 0.2510 0.2584 0.2640 0.2678 0.2700 0.2707 
3 0.07384 0.08674 0.09979 0.1128 0.1255 0.1378 0.1496 0.1607 0.1710 0.1804 
4 0.02031 0.02602 0.03243 0.03947 0.04707 0.05513 0.06357 0.07230 0.08122 0.09022 
5 0.004467 0.006246 0.008432 0.01105 0.01412 0.01764 0.02162 0.02603 0.03086 0.03609 
6 0.0008190 0.001249 0.001827 0.002579 0.003530 0.004705 0.006124 0.007809 0.009773 0.01203 
7 0.0001287 0.0002141 0.0003393 0.0005158 0.0007564 0.001075 0.001487 0.002008 0.002653 0.003437 
8 0.00001770 0.00003212 0.00005514 0.00009026 0.0001418 0.0002151 0.0003161 0.0004518 0.0006300 0.0008593 
9 0.000002163 0.000004283 0.000007964 0.00001404 0.00002364 0.00003823 0.00005970 0.00009036 0.0001330 0.0001909 

x 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
0 0.1225 0.1108 0.1003 0.09072 0.08208 0.07427 0.06721 0.06081 0.05502 0.04979 
1 0.2572 0.2438 0.2306 0.2177 0.2052 0.1931 0.1815 0.1703 0.1596 0.1494 
2 0.2700 0.2681 0.2652 0.2613 0.2565 0.2510 0.2450 0.2384 0.2314 0.2240 
3 0.1890 0.1966 0.2033 0.2090 0.2138 0.2176 0.2205 0.2225 0.2237 0.2240 
4 0.09923 0.1082 0.1169 0.1254 0.1336 0.1414 0.1488 0.1557 0.1622 0.1680 
5 0.04168 0.04759 0.05378 0.06020 0.06680 0.07354 0.08036 0.08721 0.09405 0.1008 
6 0.01459 0.01745 0.02061 0.02408 0.02783 0.03187 0.03616 0.04070 0.04546 0.05041 
7 0.004376 0.005484 0.006773 0.008255 0.009941 0.01184 0.01395 0.01628 0.01883 0.02160 
8 0.001149 0.001508 0.001947 0.002477 0.003106 0.003847 0.004708 0.005698 0.006827 0.008102 
9 0.0002680 0.0003686 0.0004976 0.0006604 0.0008629 0.001111 0.001412 0.001773 0.002200 0.002701 

10 0.00005629 0.00008110 0.0001145 0.0001585 0.0002157 0.0002889 0.0003813 0.0004964 0.0006379 0.0008102 
11 0.00001075 0.00001622 0.00002393 0.00003458 0.00004903 0.00006829 0.00009359 0.0001263 0.0001682 0.0002210 
12 0.000001881 0.000002974 0.000004587 0.000006917 0.00001021 0.00001480 0.00002106 0.00002948 0.00004064 0.00005524 

x 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0
0 0.04505 0.04076 0.03688 0.03337 0.03020 0.02732 0.02472 0.02237 0.02024 0.01832 
1 0.1397 0.1304 0.1217 0.1135 0.1057 0.09837 0.09148 0.08501 0.07894 0.07326 
2 0.2165 0.2087 0.2008 0.1929 0.1850 0.1771 0.1692 0.1615 0.1539 0.1465 
3 0.2237 0.2226 0.2209 0.2186 0.2158 0.2125 0.2087 0.2046 0.2001 0.1954 
4 0.1733 0.1781 0.1823 0.1858 0.1888 0.1912 0.1931 0.1944 0.1951 0.1954 
5 0.1075 0.1140 0.1203 0.1264 0.1322 0.1377 0.1429 0.1477 0.1522 0.1563 
6 0.05553 0.06079 0.06616 0.07160 0.07710 0.08261 0.08810 0.09355 0.09893 0.1042 
7 0.02459 0.02779 0.03119 0.03478 0.03855 0.04248 0.04657 0.05079 0.05512 0.05954 
8 0.009529 0.01112 0.01287 0.01478 0.01687 0.01912 0.02154 0.02412 0.02687 0.02977 
9 0.003282 0.003952 0.004717 0.005584 0.006559 0.007647 0.008854 0.01019 0.01164 0.01323 

10 0.001018 0.001265 0.001557 0.001899 0.002296 0.002753 0.003276 0.003870 0.004541 0.005292 
11 0.0002868 0.0003679 0.0004670 0.0005868 0.0007304 0.0009010 0.001102 0.001337 0.001610 0.001925 
12 0.00007408 0.00009811 0.0001284 0.0001663 0.0002130 0.0002703 0.0003398 0.0004234 0.0005232 0.0006415 
13 0.00001766 0.00002415 0.00003260 0.00004349 0.00005736 0.00007485 0.00009671 0.0001238 0.0001570 0.0001974 
14 0.000003911 0.000005520 0.000007684 0.00001056 0.00001434 0.00001925 0.00002556 0.00003359 0.00004373 0.00005640 
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x 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0
0 0.01657 0.01500 0.01357 0.01228 0.01111 0.01005 0.009095 0.008230 0.007447 0.006738 
1 0.06795 0.06298 0.05834 0.05402 0.04999 0.04624 0.04275 0.03950 0.03649 0.03369 
2 0.1393 0.1323 0.1254 0.1188 0.1125 0.1063 0.1005 0.09481 0.08940 0.08422 
3 0.1904 0.1852 0.1798 0.1743 0.1687 0.1631 0.1574 0.1517 0.1460 0.1404 
4 0.1951 0.1944 0.1933 0.1917 0.1898 0.1875 0.1849 0.1820 0.1789 0.1755 
5 0.1600 0.1633 0.1662 0.1687 0.1708 0.1725 0.1738 0.1747 0.1753 0.1755 
6 0.1093 0.1143 0.1191 0.1237 0.1281 0.1323 0.1362 0.1398 0.1432 0.1462 
7 0.06404 0.06859 0.07318 0.07778 0.08236 0.08692 0.09143 0.09586 0.1002 0.1044 
8 0.03282 0.03601 0.03933 0.04278 0.04633 0.04998 0.05371 0.05752 0.06138 0.06528 
9 0.01495 0.01681 0.01879 0.02091 0.02316 0.02554 0.02805 0.03068 0.03342 0.03627 

10 0.006130 0.007058 0.008081 0.009202 0.01042 0.01175 0.01318 0.01472 0.01637 0.01813 
11 0.002285 0.002695 0.003159 0.003681 0.004264 0.004914 0.005633 0.006425 0.007294 0.008242 
12 0.0007807 0.0009432 0.001132 0.001350 0.001599 0.001884 0.002206 0.002570 0.002978 0.003434 
13 0.0002462 0.0003047 0.0003744 0.0004568 0.0005536 0.0006665 0.0007976 0.0009489 0.001123 0.001321 
14 0.00007210 0.00009142 0.0001150 0.0001436 0.0001779 0.0002190 0.0002678 0.0003254 0.0003929 0.0004717 
15 0.00001971 0.00002560 0.00003297 0.00004211 0.00005338 0.00006716 0.00008390 0.0001041 0.0001284 0.0001572 

x 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0
0 0.006097 0.005517 0.004992 0.004517 0.004087 0.003698 0.003346 0.003028 0.002739 0.002479 
1 0.03109 0.02869 0.02646 0.02439 0.02248 0.02071 0.01907 0.01756 0.01616 0.01487 
2 0.07929 0.07458 0.07011 0.06585 0.06181 0.05798 0.05436 0.05092 0.04768 0.04462 
3 0.1348 0.1293 0.1239 0.1185 0.1133 0.1082 0.1033 0.09845 0.09377 0.08924 
4 0.1719 0.1681 0.1641 0.1600 0.1558 0.1515 0.1472 0.1428 0.1383 0.1339 
5 0.1753 0.1748 0.1740 0.1728 0.1714 0.1697 0.1678 0.1656 0.1632 0.1606 
6 0.1490 0.1515 0.1537 0.1555 0.1571 0.1584 0.1594 0.1601 0.1605 0.1606 
7 0.1086 0.1125 0.1163 0.1200 0.1234 0.1267 0.1298 0.1326 0.1353 0.1377 
8 0.06921 0.07314 0.07708 0.08099 0.08487 0.08870 0.09247 0.09616 0.09976 0.1033 
9 0.03922 0.04226 0.04539 0.04859 0.05187 0.05519 0.05856 0.06197 0.06540 0.06884 

10 0.02000 0.02198 0.02406 0.02624 0.02853 0.03091 0.03338 0.03594 0.03859 0.04130 
11 0.009273 0.01039 0.01159 0.01288 0.01426 0.01573 0.01730 0.01895 0.02070 0.02253 
12 0.003941 0.004502 0.005119 0.005797 0.006537 0.007343 0.008216 0.009160 0.01018 0.01126 
13 0.001546 0.001801 0.002087 0.002408 0.002766 0.003163 0.003603 0.004087 0.004618 0.005199 
14 0.0005632 0.0006688 0.0007901 0.0009288 0.001087 0.001265 0.001467 0.001693 0.001946 0.002228 
15 0.0001915 0.0002319 0.0002792 0.0003344 0.0003984 0.0004724 0.0005574 0.0006547 0.0007655 0.0008913 
16 0.00006104 0.00007535 0.00009248 0.0001128 0.0001370 0.0001653 0.0001986 0.0002373 0.0002823 0.0003342 
17 0.00001831 0.00002305 0.00002883 0.00003585 0.00004431 0.00005446 0.00006658 0.00008097 0.00009797 0.0001180 

x 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0
0 0.002243 0.002029 0.001836 0.001662 0.001503 0.001360 0.001231 0.001114 0.001008 0.0009119 
1 0.01368 0.01258 0.01157 0.01063 0.009772 0.008978 0.008247 0.007574 0.006954 0.006383 
2 0.04173 0.03901 0.03644 0.03403 0.03176 0.02963 0.02763 0.02575 0.02399 0.02234 
3 0.08485 0.08061 0.07653 0.07259 0.06881 0.06518 0.06170 0.05837 0.05518 0.05213 
4 0.1294 0.1249 0.1205 0.1162 0.1118 0.1076 0.1034 0.09923 0.09518 0.09123 
5 0.1579 0.1549 0.1519 0.1487 0.1454 0.1420 0.1385 0.1349 0.1314 0.1277 
6 0.1605 0.1601 0.1595 0.1586 0.1575 0.1562 0.1546 0.1529 0.1511 0.1490 
7 0.1399 0.1418 0.1435 0.1450 0.1462 0.1472 0.1480 0.1486 0.1489 0.1490 
8 0.1066 0.1099 0.1130 0.1160 0.1188 0.1215 0.1240 0.1263 0.1284 0.1304 
9 0.07228 0.07571 0.07911 0.08248 0.08581 0.08908 0.09229 0.09541 0.09846 0.1014 

10 0.04409 0.04694 0.04984 0.05279 0.05578 0.05879 0.06183 0.06488 0.06794 0.07098 
11 0.02445 0.02646 0.02855 0.03071 0.03296 0.03528 0.03766 0.04011 0.04261 0.04517 
12 0.01243 0.01367 0.01499 0.01638 0.01785 0.01940 0.02103 0.02273 0.02450 0.02635 
13 0.005832 0.006519 0.007263 0.008064 0.008926 0.009850 0.01084 0.01189 0.01301 0.01419 
14 0.002541 0.002887 0.003268 0.003687 0.004144 0.004644 0.005186 0.005774 0.006410 0.007094 
15 0.001033 0.001193 0.001373 0.001573 0.001796 0.002043 0.002317 0.002618 0.002949 0.003311 
16 0.0003940 0.0004624 0.0005405 0.0006292 0.0007296 0.0008428 0.0009701 0.001113 0.001272 0.001448 
17 0.0001414 0.0001686 0.0002003 0.0002369 0.0002790 0.0003272 0.0003823 0.0004450 0.0005161 0.0005964 
18 0.00004791 0.00005809 0.00007010 0.00008422 0.0001007 0.0001200 0.0001423 0.0001681 0.0001978 0.0002319 
19 0.00001538 0.00001895 0.00002324 0.00002837 0.00003446 0.00004168 0.00005018 0.00006017 0.00007185 0.00008545 
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 x 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0

0 0.0008251 0.0007466 0.0006755 0.0006113 0.0005531 0.0005005 0.0004528 0.0004097 0.0003707 0.0003355 
1 0.005858 0.005375 0.004931 0.004523 0.004148 0.003803 0.003487 0.003196 0.002929 0.002684 
2 0.02080 0.01935 0.01800 0.01674 0.01556 0.01445 0.01342 0.01246 0.01157 0.01073 
3 0.04922 0.04644 0.04380 0.04128 0.03889 0.03661 0.03446 0.03241 0.03047 0.02863 
4 0.08736 0.08360 0.07993 0.07637 0.07292 0.06957 0.06633 0.06319 0.06017 0.05725 
5 0.1241 0.1204 0.1167 0.1130 0.1094 0.1057 0.1021 0.09858 0.09507 0.09160 
6 0.1468 0.1445 0.1420 0.1394 0.1367 0.1339 0.1311 0.1282 0.1252 0.1221 
7 0.1489 0.1486 0.1481 0.1474 0.1465 0.1454 0.1442 0.1428 0.1413 0.1396 
8 0.1321 0.1337 0.1351 0.1363 0.1373 0.1381 0.1388 0.1392 0.1395 0.1396 
9 0.1042 0.1070 0.1096 0.1121 0.1144 0.1167 0.1187 0.1207 0.1224 0.1241 

10 0.07402 0.07703 0.08000 0.08294 0.08583 0.08866 0.09143 0.09412 0.09673 0.09926 
11 0.04777 0.05042 0.05309 0.05580 0.05852 0.06126 0.06400 0.06674 0.06947 0.07219 
12 0.02827 0.03025 0.03230 0.03441 0.03658 0.03880 0.04107 0.04338 0.04574 0.04813 
13 0.01544 0.01675 0.01814 0.01959 0.02110 0.02268 0.02432 0.02603 0.02779 0.02962 
14 0.007829 0.008616 0.009457 0.01035 0.01130 0.01231 0.01338 0.01450 0.01568 0.01692 
15 0.003706 0.004136 0.004602 0.005107 0.005652 0.006238 0.006867 0.007541 0.008260 0.009026 
16 0.001644 0.001861 0.002100 0.002362 0.002649 0.002963 0.003305 0.003676 0.004078 0.004513 
17 0.0006868 0.0007882 0.0009017 0.001028 0.001169 0.001325 0.001497 0.001687 0.001895 0.002124 
18 0.0002709 0.0003153 0.0003657 0.0004227 0.0004870 0.0005593 0.0006404 0.0007309 0.0008318 0.0009439 
19 0.0001012 0.0001195 0.0001405 0.0001646 0.0001922 0.0002237 0.0002595 0.0003001 0.0003459 0.0003974 
20 0.00003594 0.00004301 0.00005128 0.00006092 0.00007209 0.00008502 0.00009991 0.0001170 0.0001366 0.0001590 
21 0.00001215 0.00001475 0.00001783 0.00002147 0.00002575 0.00003077 0.00003663 0.00004347 0.00005139 0.00006056 

x 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0
0 0.0003035 0.0002747 0.0002485 0.0002249 0.0002035 0.0001841 0.0001666 0.0001507 0.0001364 0.0001234 
1 0.002459 0.002252 0.002063 0.001889 0.001729 0.001583 0.001449 0.001326 0.001214 0.001111 
2 0.009958 0.009234 0.008560 0.007933 0.007350 0.006808 0.006304 0.005836 0.005402 0.004998 
3 0.02689 0.02524 0.02368 0.02221 0.02083 0.01952 0.01828 0.01712 0.01602 0.01499 
4 0.05444 0.05174 0.04914 0.04665 0.04425 0.04196 0.03977 0.03766 0.03566 0.03374 
5 0.08820 0.08485 0.08158 0.07837 0.07523 0.07217 0.06919 0.06629 0.06347 0.06073 
6 0.1191 0.1160 0.1128 0.1097 0.1066 0.1034 0.1003 0.09722 0.09414 0.09109 
7 0.1378 0.1358 0.1338 0.1317 0.1294 0.1271 0.1247 0.1222 0.1197 0.1171 
8 0.1395 0.1392 0.1388 0.1382 0.1375 0.1366 0.1356 0.1344 0.1332 0.1318 
9 0.1256 0.1269 0.1280 0.1290 0.1299 0.1306 0.1311 0.1315 0.1317 0.1318 

10 0.1017 0.1040 0.1063 0.1084 0.1104 0.1123 0.1140 0.1157 0.1172 0.1186 
11 0.07488 0.07755 0.08018 0.08276 0.08530 0.08778 0.09020 0.09255 0.09482 0.09702 
12 0.05055 0.05299 0.05546 0.05793 0.06042 0.06291 0.06539 0.06787 0.07033 0.07277 
13 0.03149 0.03343 0.03541 0.03743 0.03951 0.04162 0.04376 0.04594 0.04815 0.05038 
14 0.01822 0.01958 0.02099 0.02246 0.02399 0.02556 0.02720 0.02888 0.03061 0.03238 
15 0.009840 0.01070 0.01162 0.01258 0.01359 0.01466 0.01577 0.01694 0.01816 0.01943 
16 0.004981 0.005485 0.006025 0.006604 0.007221 0.007878 0.008577 0.009318 0.01010 0.01093 
17 0.002374 0.002646 0.002942 0.003263 0.003610 0.003985 0.004389 0.004823 0.005289 0.005786 
18 0.001068 0.001205 0.001357 0.001523 0.001705 0.001904 0.002122 0.002358 0.002615 0.002893 
19 0.0004553 0.0005202 0.0005926 0.0006732 0.0007627 0.0008619 0.0009714 0.001092 0.001225 0.001370 
20 0.0001844 0.0002133 0.0002459 0.0002827 0.0003242 0.0003706 0.0004226 0.0004805 0.0005451 0.0006167 
21 0.00007113 0.00008328 0.00009720 0.0001131 0.0001312 0.0001518 0.0001751 0.0002014 0.0002310 0.0002643 
22 0.00002619 0.00003104 0.00003667 0.00004318 0.00005069 0.00005933 0.00006923 0.00008055 0.00009345 0.0001081 
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x 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0
0 0.0001117 0.0001010 0.00009142 0.00008272 0.00007485 0.00006773 0.00006128 0.00005545 0.00005017 0.00004540 
1 0.001016 0.0009296 0.0008502 0.0007776 0.0007111 0.0006502 0.0005944 0.0005434 0.0004967 0.0004540 
2 0.004624 0.004276 0.003954 0.003655 0.003378 0.003121 0.002883 0.002663 0.002459 0.002270 
3 0.01402 0.01311 0.01226 0.01145 0.01070 0.009987 0.009322 0.008698 0.008114 0.007567 
4 0.03191 0.03016 0.02850 0.02691 0.02540 0.02397 0.02261 0.02131 0.02008 0.01892 
5 0.05807 0.05549 0.05300 0.05059 0.04827 0.04602 0.04386 0.04177 0.03976 0.03783 
6 0.08807 0.08509 0.08215 0.07926 0.07642 0.07363 0.07090 0.06822 0.06561 0.06306 
7 0.1145 0.1118 0.1091 0.1064 0.1037 0.1010 0.09825 0.09551 0.09279 0.09008 
8 0.1302 0.1286 0.1269 0.1251 0.1232 0.1212 0.1191 0.1170 0.1148 0.1126 
9 0.1317 0.1315 0.1311 0.1306 0.1300 0.1293 0.1284 0.1274 0.1263 0.1251 

10 0.1198 0.1210 0.1219 0.1228 0.1235 0.1241 0.1245 0.1249 0.1250 0.1251 
11 0.09913 0.1012 0.1031 0.1049 0.1067 0.1083 0.1098 0.1112 0.1125 0.1137 
12 0.07518 0.07755 0.07990 0.08219 0.08444 0.08663 0.08877 0.09084 0.09285 0.09478 
13 0.05262 0.05488 0.05716 0.05943 0.06171 0.06398 0.06624 0.06848 0.07071 0.07291 
14 0.03421 0.03607 0.03797 0.03990 0.04187 0.04387 0.04589 0.04794 0.05000 0.05208 
15 0.02075 0.02212 0.02354 0.02501 0.02652 0.02808 0.02968 0.03132 0.03300 0.03472 
16 0.01180 0.01272 0.01368 0.01469 0.01575 0.01685 0.01799 0.01918 0.02042 0.02170 
17 0.006318 0.006884 0.007485 0.008123 0.008799 0.009513 0.01027 0.01106 0.01189 0.01276 
18 0.003194 0.003518 0.003867 0.004242 0.004644 0.005074 0.005532 0.006021 0.006540 0.007091 
19 0.001530 0.001704 0.001893 0.002099 0.002322 0.002563 0.002824 0.003105 0.003408 0.003732 
20 0.0006960 0.0007837 0.0008802 0.0009864 0.001103 0.001230 0.001370 0.001522 0.001687 0.001866 
21 0.0003016 0.0003433 0.0003898 0.0004415 0.0004989 0.0005625 0.0006327 0.0007101 0.0007952 0.0008886 
22 0.0001248 0.0001436 0.0001648 0.0001887 0.0002155 0.0002455 0.0002790 0.0003163 0.0003578 0.0004039 
23 0.00004936 0.00005743 0.00006663 0.00007710 0.00008899 0.0001025 0.0001177 0.0001348 0.0001540 0.0001756 
24 0.00001872 0.00002201 0.00002582 0.00003020 0.00003523 0.00004098 0.00004755 0.00005503 0.00006354 0.00007317 

                      
            
Source (:  Kvanli et al. (1996). 
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Table B-17. 
Critical Values for the Rank-Sum Test 
 
 

 
 

 
Source: EPA/600/R-96/084. 
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Table B-18. 
Approximate Critical Values )( rλ  for Rosner’s Test 
 

 
 

a a a 

n r 0.05 O.ot n r o.os 0.01 n r 0.05 0.01 

25 I 2.82 3.14 32 I 2.94 3.27 39 I 3.03 3.37 
2 2.80 3.11 2 2.92 3.25 2 3.01 3.36 
3 2.78 3.09 3 2.91 3.24 3 3.00 3.34 
4 2.76 3.06 4 2.89 3.22 4 2.99 3.33 
5 2.73 3.03 5 2.88 3.20 5 2.98 3.32 
10 2.59 2.85 10 2.78 3.09 10 2.91 3.24 

26 I 2.84 3.16 33 I 2.95 3.29 40 I 3.04 3.38 
2 2.82 3.14 2 2.94 3.27 2 3.03 3.37 
3 2.80 3.11 3 2.92 3.25 3 3.01 3.36 
4 2.78 3.09 4 2.91 3.24 4 3.00 3.34 
5 2.76 3.06 5 2.89 3.22 5 2.99 3.33 
10 2.62 2.89 10 2.80 3.11 10 2.92 3.25 

27 I 2.86 3.18 34 I 2.97 3.30 41 I 3.05 3.39 
2 2.84 3.16 2 2.95 3.29 2 3.04 3.38 
3 2.82 3.14 3 2.94 3.27 3 3.03 3.37 
4 2.80 3.11 4 2.92 3.25 4 3.01 3.36 
5 2.78 3.09 5 2.91 3.24 5 3.00 3.34 
10 2.65 2.93 10 2.82 3.14 10 2.94 3.27 

28 I 2.88 3.20 35 I 2.98 3.32 42 I 3.06 3.40 
2 2.86 3.18 2 2.97 3.30 2 3.05 3.39 
3 2.84 3.16 3 2.95 3.29 3 3.04 3.38 
4 2.82 3.14 4 2.94 3.27 4 3.03 3.37 
5 2.80 3.11 5 2.92 3.25 5 3.01 3.36 
10 2.68 2.97 10 2.84 3.16 10 2.95 3.29 

29 I 2.89 3.22 36 I 2.99 3.33 43 I 3.07 3.41 
2 2.88 3.20 2 2.98 3.32 2 3.06 3.40 
3 2.86 3.18 3 2.97 3.30 3 3.05 3.39 
4 2.84 3.16 4 2.95 3.29 4 3.04 3.38 
5 2.82 3.14 5 2.94 3.27 5 3.03 3.37 
10 2.71 3.00 10 2.86 3.18 10 2.97 3.30 

30 I 2.91 3.24 37 I 3.00 3.34 44 I 3.08 3.43 
2 2.89 3.22 2 2.99 3.33 2 3.07 3.41 
3 2.88 3.20 3 2.98 3.32 3 3.06 3.40 
4 2.86 3.18 4 2.97 3.30 4 3.05 3.39 
5 2.84 3.16 5 2.95 3.29 5 3.04 3.38 
10 2.73 3.03 10 2.88 3.20 10 2.98 3.32 

31 I 2.92 3.25 38 I 3.01 3.36 45 I 3.09 3.44 
2 2.91 3.24 2 3.00 3.34 2 3.08 3.43 
3 2.89 3.22 3 2.99 3.33 3 3.07 3.41 
4 2.88 3.20 4 2.98 3.32 4 3.06 3.40 
5 2.86 3.18 5 2.91 3.30 5 3.05 3.39 
10 2.76 3.06 10 2.91 3.22 10 2.99 3.33 
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Source: EPA/600/R-96/084. 
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Table B-19. 
Coefficients for the Shapiro-Wilk W Test for Normality 
 
 

 
 

~n 2 3 4 5 6 7 B 9 10 

1 0.7071 0,7071 0 .6872 0,6646 0.~31 0,62)3 0.6052 0.5888 0.5739 
2 o.oooo o. 1677 0.21t13 0.2806 0.3031 0.3164 O.U\It 0.3291 
3 o.oooo 0.0875 0. 1401 0,1743 0.1976 0.2141 
4 0.0000 0.0561 0.0947 0.1224 
5 o.oooo 0.0399 

~ 11 12 n 14 15 16 17 18 19 20 

1 0,5601 0.51t75 0.5359 0.5251 0.5150 0.5056 0.4968 0.4896 0 .4808 O,U34 
2 o.uu 0.3325 0,3325 o.n18 0.3306 0.3290 0,3273 0.1253 0.3232 0.3211 
3 0.2260 0.2347 0.21t12 0.2 .. 60 0.2495 0,2521 0.25110 0.2553 0.2561 0.2565 
4 0.1429 0.1586 0.1707 0,1802 0.1878 0.1939 0.1988 0.2027 0.2059 0,2065 
5 0.0695 0.0922 0.1099 o.u.-o 0.1353 0.1"7 0.1524 0.1587 0.1641 0 ,1666 
6 0 .0000 0.0303 0,0539 0,0727 o.oeeo 0 .1005 0,1109 0,1197 0 .1271 0.1334 
7 o.oooo 0 .0240 0.0433 0 .0593 0.0725 0.0837 0.0932 0.101) 
8 o.oooo 0 .0196 0.0359 0,0496 0.0612 0 .0711 
9 0.0000 0,0163 0 .0303 0.0422 

10 0.0000 0.01110 

"' 
21 22 23 24 25 26 27 28 29 30 

1 0.4~3 0 , 4590 0 . 4542 0,4493 o."so 0.4407 0.4366 0,4328 0.4291 0,4251t 
2 0.3185 0.3156 0.3126 0.3098 0.3069 0.3043 0,3018 0,2992 0.2968 0.29114 
3 0.2578 0.2571 0 . 2563 0.2554 0,2S4) 0.2533 0.2522 0.2510 0.2499 0.21187 
4 0.2119 0.2131 0.2139 0.2145 o.21•e 0.2151 0.2152 0 . 2151 0.2150 0 . 2148 
5 0,1736 0.1764 0 ,1787 0.1807 0 . 1822 0,1836 0.10.8 0.1857 0.186'1 0.1870 
6 0 , 1399 0.1443 0 , 1480 0.1512 0,1559 0 ,1563 0.15811 0.1601 0,1616 0.1630 
7 0 ,1092 0,11$0 0 .1201 0.1245 0, 1283 o . t316 O.Uit6 0 ,1372 0.1395 0.1415 
e 0 .0804 0.0878 0.0941 0.0997 0,1().\6 0,1089 0.1128 0.1162 0.1192 0.1219 
9 0.0530 0.0618 0,0696 0.07~ 0.0823 0 .0876 0,0923 0,0965 0.1002 0,1036 

10 0.0263 0,0368 0.0459 0,0539 0.0610 0,0672 0,0728 0.0778 0.0812 0.0862 
11 o.oooo 0.0122 0.0228 0.0321 0.0403 0.0476 0,0540 0.0598 0,0650 0,0697 
12 0,0000 0.0107 0 .0200 0.02811 0.0358 0.042'1 0.0483 0.0537 
13 0.0000 0,0094 0.0178 0 .0253 0.0310 0 . 0381 
1 .. 0.0000 0 ,00&\ 0.0159 0,0227 
15 0.0000 0,0076 

Source: From Shapiro and Wilk, 1965. Used by pennission. 
This table is used in Section 12 .3. 1. 
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Source: Gilbert (1987). 
 
Note:  The coefficients listed in the table are denoted as a(n-i+1) in Appendix F. For the value 
of n listed on the top of each column, the rows list the values of a(n-i+1), where i = 1, …, k and 
k is the largest integer less than or equal to n/2. 
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Table B-20. 
Quantiles Wα of the Shapiro-Wilk W Test for Normality 
 
 

 
Source: Gilbert (1987). 

 
Note: The assumption of normality is rejected at the (1 – α )100% level of confidence 
when the calculated value of W < Wα, where P(W ≤ Wα) = α. 
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Table B-21. 
Critical Values for the Studentized Range Test  

a b a b  a b
3 1.737 2.000 1.758 1.999 1.782 1.997
4 1.87 2.445 1.98 2.429 2.04 2.409
5 2.02 2.803 2.15 2.753 2.22 2.712

6 2.15 3.095 2.28 3.012 2.37 2.949
7 2.26 3.338 2.40 3.222 2.49 3.143
8 2.35 3.543 2.50 3.399 2.59 3.308
9 2.44 3.720 2.59 3.552 2.68 3.449

10 2.51 3.875 2.67 3.685 2.76 3.57

11 2.58 4.012 2.74 3.80 2.84 3.68
12 2.64 4.134 2.80 3.91 2.90 3.78
13 2.70 4.244 2.86 4.00 2.96 3.87
14 2.75 4.34 2.92 4.09 3.02 3.95
15 2.80 4.44 2.97 4.17 3.07 4.02

16 2.84 4.52 3.01 4.24 3.12 4.09
17 2.88 4.60 3.06 4.31 3.17 4.15
18 2.92 4.67 3.10 4.37 3.21 4.21
19 2.96 4.74 3.14 4.43 3.25 4.27
20 2.99 4.80 3.18 4.49 3.29 4.32

25 3.15 5.06 3.34 4.71 3.45 4.53
30 3.27 5.26 3.47 4.89 3.59 4.70
35 3.38 5.42 3.58 5.04 3.70 4.84
40 3.47 5.56 3.67 5.16 3.79 4.96
45 3.55 5.67 3.75 5.26 3.88 5.06

50 3.62 5.77 3.83 5.35 3.95 5.14
55 3.69 5.86 3.90 5.43 4.02 5.22
60 3.75 5.94 3.96 5.51 4.08 5.29
65 3.80 6.01 4.01 5.57 4.14 5.35
70 3.85 6.07 4.06 5.63 4.19 5.41

75 3.90 6.13 4.11 5.68 4.24 5.46
80 3.94 6.18 4.16 5.73 4.28 5.51
85 3.99 6.23 4.20 5.78 4.33 5.56
90 4.02 6.27 4.24 5.82 4.36 5.60
95 4.06 6.32 4.27 5.86 4.40 5.64

100 4.10 6.36 4.31 5.90 4.44 5.68
150 4.38 6.64 4.59 6.18 4.72 5.96
200 4.59 6.84 4.78 6.39 4.90 6.15
500 5.13 7.42 5.47 6.94 5.49 6.72

1000 5.57 7.80 5.79 7.33 5.92 7.11

            
   

n

Level of Significance, α
0.01 0.05 0.1
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Source: EPA/600/R-96/084. 
 
Table B-22. 
Percentage Points of the Studentized Range 
 

05.0=α  
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01.0=α  

 

 
 

 

 
 
Source: Mason et al. (1989). 
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Table B-23. 
Critical Values of Student’s t-Distribution 
 

p         
df 0.8 0.9 0.95 0.975 0.99 0.995 0.999 0.9995 
1  1.376  3.078  6.314  12.71  31.82  63.66  318.3  636.6  
2  1.061  1.886  2.920  4.303  6.965  9.925  22.33  31.60  
3  0.9785  1.638  2.353  3.182  4.541  5.841  10.21  12.92  
4  0.9410  1.533  2.132  2.776  3.747  4.604  7.173  8.610  
5  0.9195  1.476  2.015  2.571  3.365  4.032  5.893  6.869  
6  0.9057  1.440  1.943  2.447  3.143  3.707  5.208  5.959  
7  0.8960  1.415  1.895  2.365  2.998  3.499  4.785  5.408  
8  0.8889  1.397  1.860  2.306  2.896  3.355  4.501  5.041  
9  0.8834  1.383  1.833  2.262  2.821  3.250  4.297  4.781  

10  0.8791  1.372  1.812  2.228  2.764  3.169  4.144  4.587  
11  0.8755  1.363  1.796  2.201  2.718  3.106  4.025  4.437  
12  0.8726  1.356  1.782  2.179  2.681  3.055  3.930  4.318  
13  0.8702  1.350  1.771  2.160  2.650  3.012  3.852  4.221  
14  0.8681  1.345  1.761  2.145  2.624  2.977  3.787  4.140  
15  0.8662  1.341  1.753  2.131  2.602  2.947  3.733  4.073  
16  0.8647  1.337  1.746  2.120  2.583  2.921  3.686  4.015  
17  0.8633  1.333  1.740  2.110  2.567  2.898  3.646  3.965  
18  0.8620  1.330  1.734  2.101  2.552  2.878  3.610  3.922  
19  0.8610  1.328  1.729  2.093  2.539  2.861  3.579  3.883  
20  0.8600  1.325  1.725  2.086  2.528  2.845  3.552  3.850  
21  0.8591  1.323  1.721  2.080  2.518  2.831  3.527  3.819  
22  0.8583  1.321  1.717  2.074  2.508  2.819  3.505  3.792  
23  0.8575  1.319  1.714  2.069  2.500  2.807  3.485  3.768  
24  0.8569  1.318  1.711  2.064  2.492  2.797  3.467  3.745  
25  0.8562  1.316  1.708  2.060  2.485  2.787  3.450  3.725  
26  0.8557  1.315  1.706  2.056  2.479  2.779  3.435  3.707  
27  0.8551  1.314  1.703  2.052  2.473  2.771  3.421  3.690  
28  0.8546  1.313  1.701  2.048  2.467  2.763  3.408  3.674  
29  0.8542  1.311  1.699  2.045  2.462  2.756  3.396  3.659  
30  0.8538  1.310  1.697  2.042  2.457  2.750  3.385  3.646  
40  0.8507  1.303  1.684  2.021  2.423  2.704  3.307  3.551  
60  0.8477  1.296  1.671  2.000  2.390  2.660  3.232  3.460  

120  0.8446  1.289  1.658  1.980  2.358  2.617  3.160  3.373  
 0.8417  1.282  1.645  1.960  2.327  2.576  3.091  3.291  

NOTE: Table generated using SAS, a statistical software package.  The percentiles tp,ν are 
listed for various values of degrees of freedom (df), ν: p = P( tν ≤ tp,ν ). 
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Table B-24. 
Quantiles of the Wilcoxon Signed Rank Test 
 

n w0.01 w0.05 w0.10 w0.20 

4 0 0 1 3 
5 0 1 3 4 
6 0 3 4 6 
7 1 4 6 9 
8 2 6 9 12 
9 4 9 11 15 
10 6 11 15 19 
11 8 14 18 23 
12 10 18 22 28 
13 13 22 27 33 
14 16 26 32 39 
15 20 31 37 45 
16 24 36 43 51 
17 28 42 49 58 
18 33 48 56 66 
19 38 54 63 74 
20 44 61 70 82 

 
Source: EPA/600/R-96/084. 
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Table B-25. 
Modified Quantile Test Critical Numbers Level of Significance (α ) 
 

For Approximately 10.0=α  
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For Approximately 10.0=α  
 

 

 
 

n = number of measurements population I 

25 30 35 40 45 so 55 60 65 70 15 80 85 90 95 100 

25 3- 4 4 5 5 5 6 6 7 7 8 8 8 9 9 10 

30 3 3 4 4 s 5 5 6 6 6 7 7 7 8 8 8 

35 3 3 3 4 4 4 s 5 5 6 6 6 6 7 7 7 

40 3 3 3 4 4 4 4 
N 

5 5 5 5 6 6 6 6 7 

§ 
"il 

45 3 3 3 3 4 4 4 4 4 5 5 5 5 6 6 6 

a 50 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 
0 
0. 55 2 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 
i 

3 

I 
60 2 2 3 3 3 3 4 4 4 4 4 4 5 5 5 

65 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 

e 70 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 
I.., 
0 15 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 
~ 

1 80 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 

II 85 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 
a 

90 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 

95 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 

100 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 
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For Approximately 05.0=α  

 
 

 
 

n ~ number of measurements population I 

s 6 7 8 90 10 11 12 13 14 IS 16 17 18 19 20 

s 4 4 s s 6 6 6 7 7 8 8 8 9 9 10 10 

6 4 4 4 s s s s 6 6 7 7 8 8 9 9 9 

7 3 4 4 4 s s s s 6 6 7 7 7 8 8 8 

8 3 3 4 4 4 s s 
N 

s s 6 6 6 6 7 7 7 

= 9 3 3 3 4 4 4 s s s s 6 6 6 6 6 6 0 

j 
10 3 3 3 3 4 4 4 4 5 s 5 5 6 6 6 6 = 8' 

0. 11 3 3 3 3 3 4 4 4 4 s s s s 6 6 6 
"' i:l 

I 
12 3 3 3 3 3 3 4 4 4 4 5 s 5 5 6 6 

13 3 3 3 3 3 3 3 4 4 4 4 s s s s s 
14 2 3 3 3 3 3 3 3 4 4 4 4 5 s s s 

'Cl IS 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 s .... 

i 16 2 2 2 3 3 3 3 3 3 3 4 4 4 4 s s 
= II 17 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 

el 
18 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 

19 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 

20 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 
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For Approximately 05.0=α  

 
 

 
 

 
Source: EPA/600/R-96/084. 
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Table B-26. 
Dunnett’s Test (One-Tailed) Total Number of Investigate Groups (K - 1) 

 

 
Source: EPA/600/R-96/084. 
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Table B-27. 
Upper Tail Critical Values for the F-Max Test 
 

 
 

Source:  Mason et al. (1989). 
 

Critical Value 

" a k=3 4 5 6 7 8 9 10 11 12 

2 .10 42.48 69.13 98.18 129.1 161.7 195.6 230.7 266.8 303.9 341.9 

.05 87.49 142.5 202.4 266.2 333.2 403.1 475.4 549.8 626.2 704.4 

.01 447.5 729.2 1036 1362 1705 2063 2432 2813 3204 3604 

3 .10 16.77 23.95 30.92 37.73 44.40 50.94 57.38 63.72 69.97 76.14 

.OS 27.76 39.51 50.88 61.98 72.83 83.48 93.94 104.2 114.4 124.4 

.01 84.56 119.8 153.8 187.0 219.3 251.1 282.3 313.0 343.2 373.1 

4 .10 10.38 13.88 17.08 20.06 22.88 25.57 28.14 30.62 33.01 35.33 

.05 15.46 20.56 25.21 29.54 33.63 37.52 41.24 44.81 48.27 51.61 

.01 36.70 48.43 59.09 69.00 78.33 87.20 95.68 103.8 111.7 119.3 

5 .10 7.68 9.86 11.79 13.54 15.15 16.66 18.08 19.43 20.71 21.95 

.OS 10.75 13.72 16.34 18.70 20.88 22.91 24.83 26.65 28.38 30.03 

.01 22.06 27.90 33.00 37.61 41.85 45.81 49.53 53.06 56.42 59.63 

6 .10 6.23 7.78 9.11 10.30 11.38 12.38 13.31 14.18 15.01 15.79 

.05 8.36 10.38 12.11 13.64 15.04 16.32 17.51 18.64 19.70 20.70 

.01 15.60 19.16 22.19 24.89 27.32 29.57 31.65 33.61 35.46 37.22 

7 .10 5.32 6.52 7.52 8.41 9.20 9.93 10.60 11.23 11.82 12.37 

.OS 6.94 8.44 9.70 10.80 11.80 12.70 13.54 14.31 15.05 15.74 

.01 12.09 14.55 16.60 18.39 20.00 21.47 22.82 24.08 25.26 26.37 

8 .10 4.71 5.68 6.48 7.18 7.80 8.36 8.88 9.36 9.81 10.23 

.05 6.00 7.19 8.17 9.02 9.77 10.46 11.08 11.67 12.21 12.72 

.01 9.94 11.77 13.27 14.58 15.73 16.78 17.74 18.63 19.46 20.24 

9 .10 4.26 5.07 5.74 6.31 6.82 7.28 7.70 8.09 8.45 8.78 

.05 5.34 6.31 7.11 7.79 8.40 8.94 9.44 9.90 10.33 10.73 

.01 8.49 9.93 11.10 1211 12.99 13.79 14.52 15.19 15.81 16.39 

10 .10 3.93 4.63 5.19 5.68 6.ll 6.49 6.84 7.16 7.46 7.74 

.OS 4.85 5.61 6.34 6.91 7.41 7.86 8.27 8.64 8.99 9.32 

.01 7.46 8.64 9.59 10.39 11.10 11.74 12.31 12.84 13.33 13.79 

12 .10 3.45 4.00 4.44 4.81 5.13 5.42 5.68 5.92 6.14 6.35 

.OS 4.16 4.79 5.30 5.72 6.09 6.42 6.72 6.99 7.24 7.48 

.01 6.10 6.95 7.63 8.20 8.69 9. 13 9.53 9.89 10.23 10.54 

15 .10 3.00 3.41 3.74 4.02 4.25 4.46 4.65 4.82 4.98 5.13 

.OS 3.53 4.00 4.37 4.67 4.94 5.17 5.38 5.57 5.75 5.91 

.01 4.93 5.52 5.99 6.37 6.71 7.00 7.27 7.51 7.73 7.93 

20 .10 2.57 2.87 3.10 3.29 3.46 3.60 3.73 3.85 3.96 4.06 

.05 2.95 3.28 3.53 3.74 3.92 4.08 4.22 4.35 4.46 4.57 

.01 3.90 4.29 4.60 4.85 5.06 5.25 5.42 5.57 5.70 5.83 

30 .10 2.14 2.34 2.50 2.62 2.73 2.82 2.90 2.97 3.04 3.10 

.05 2.40 2.61 2.77 2.90 3.01 3.11 3.19 3.27 3.34 3.40 

.01 2.99 3.23 3.41 3.56 3.68 3.79 3.88 3.97 4.04 4.12 

60 .10 I. 71 1.82 1.90 1.96 2.02 2.07 2.11 2.14 2.18 2.21 

.05 1.84 1.96 2.04 2.11 2.1 6 221 2.25 2.29 2.32 2.35 

.01 2.15 2.26 2.35 2.42 2.47 2.52 2.57 2.61 2.64 2.67 

Source: Nelson, L. (1987). ~upper 10"/., 5%, and 1% Points or the Maximum F-Rauo," J oumal of Quality 
Technoloqy, 19. 165-67. Copyright Amencan Socrcly fo r Q ualn y Control, Inc., Milwaukee. WI. Reprinted by 

permission. 
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Table B-28. 
 

 
 

 
 

Power of ANOVA forK = 3 groups and Significance Level, 0.05 

Effect Size 
n 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 
2 0.052 0.058 0.068 0.082 0.1 25 0.185 0.260 0.349 
3 0.054 0.068 0.091 0.1 26 0.232 0.380 0.551 0.712 
4 0.056 0.078 0.1 16 0.1 73 0.343 0.559 0.761 0.898 
5 0.059 0.088 0.1 41 0.221 0.449 0.701 0.883 0.968 
6 0.061 0.099 0.1 67 0.269 0.545 0.805 0.946 0.991 
7 0.064 0.1 10 0.194 0.318 0.631 0.8 77 0.976 0.997 
8 0.066 0.1 21 0.221 0.365 0.704 0.9 24 0.990 0.999 
9 0.069 0.1 32 0.248 0.41 2 0.766 0.954 0.996 0.999 
10 0.071 0.1 43 0.275 0.457 0.817 0.973 0.998 0.999 
12 0.076 0.1 66 0.329 0.542 0.891 0.991 0.999 0.999 
14 0.081 0.189 0.382 0.619 0.937 0.997 0.999 0.999 
16 0.086 0.213 0.434 0.686 0.965 0.999 0.999 0.999 
18 0.092 0.237 0.484 0.744 0.980 0.999 0.999 1.000 
20 0.097 0.261 0.531 0.793 0.989 0.999 0.999 1.000 
25 0.1 10 0.321 0.638 0.882 0.998 0.999 0.999 1.000 
30 0.1 24 0.380 0.726 0.936 0.999 0.999 1.000 1.000 
35 0.1 38 0.437 0.796 0.966 0.999 0.999 1.000 1.000 
40 0.1 52 0.492 0.851 0.982 0.999 1.000 1.000 1.000 
50 0.181 0.593 0.923 0.995 0.999 1.000 1.000 1.000 

Power of ANOVA for K = 3 groups and Significance Level, 0 .1 

Effect Size 
n 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 
2 0 .103 0.114 0.132 0.158 0.229 0.323 0.432 0.547 
3 0.107 0.130 0.1 68 0.221 0.369 0.547 0.719 0.852 
4 0.111 0.145 0.203 0.283 0.492 0.71 1 0 .873 0.958 
5 0.115 0.160 0.237 0.341 0.598 0.822 0.946 0.989 
6 0 .118 0.175 0.270 0.398 0.686 0.894 0 .978 0.997 
7 0.122 0.190 0.303 0.452 0.758 0.938 0.991 0.999 
8 0.126 0.205 0.336 0.502 0.815 0.964 0.996 0.999 
9 0.129 0.220 0.368 0.550 0.861 0.980 0.998 0.999 
10 0 .133 0.235 0.399 0.594 0.896 0.989 0 .999 0.999 
12 0 .140 0.264 0.459 0.673 0.943 0.996 0 .999 0.999 
14 0.148 0.294 0.515 0.739 0.969 0.999 0.999 0.999 
16 0.155 0.323 0.567 0.794 0.984 0.999 0.999 0.999 
18 0.162 0.351 0.615 0.839 0.992 0.999 0.999 1.000 
20 0 .170 0.379 0.659 0.875 0.996 0.999 0 .999 1.000 
25 0.188 0.446 0.752 0.935 0.999 0.999 1.000 1.000 
30 0.207 0.509 0.823 0.967 0.999 0.999 1.000 1.000 
35 0.225 0.567 0.875 0.984 0.999 0.999 1.000 1.000 
40 0 .244 0.620 0.914 0.992 0.999 1.000 1.000 1.000 
50 0.281 0.71 1 0.960 0.998 0.999 1.000 1.000 1.000 
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Source:  fpower.sas macro retrieved from http://www.math.yorku.ca/SCS/Online/power/ 
on 1 March 1 2005. 

http://www.math.yorku.ca/SCS/Online/power/�
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APPENDIX C 
Sampling Strategies 

 
C-1. Introduction.  As addressed in USACE’s Technical Project Planning—Phase I, project 
technical staff must consider which sampling strategy is appropriate for the current project 
phase (EM 200-1-2).  It is not necessary to apply the same strategy throughout all phases of a 
project’s life cycle.  Frequently, early screening sampling may employ a simple strategy, and 
subsequent phases may require more complicated strategies, using data results from previous 
phases.  Whenever possible, it is best to use available site knowledge in developing a sam- 
pling strategy. 

 
C-1.1.  Although there are many sampling approaches, this Appendix presents a discus- 

sion of the most commonly employed strategies, which are: 
 

a. No sampling. 
b. Judgmental sampling. 
c. Random sampling. 

(1)  Simple random sampling. 

(2)  Stratified random sampling.  

(3)  Systematic and grid sampling. 

d. Ranked set sampling. 

e. Composite sampling. 

f. Adaptive sampling. 
 

C-1.2.  The first two strategies are qualitative; the remaining strategies are probabilistic.  
In the latter, statistics may be used to estimate sample characteristics such as mean, standard 
deviation, and uncertainties.  Whether performing on-site, field, or off-site laboratory analy- 
sis, the sampling design requires equal consideration.  For further insights into environmental 
sampling, see Gilbert (1987) and EPA/600/R-96/084. 
 
C-2.  No Sampling.  It may be possible to establish the absence of human health or environ- 
mental risk without any sampling.  There are three criteria necessary to create a quantifiable 
risk: i) a chemical release to the environment; ii) a pathway of exposure; and iii) an exposed 
population.  If any of these conditions are not satisfied, a risk does not exist and sampling is 
not required. 

 
C-2.1.  Historical quantitative and qualitative information available during the early 

stages of a project’s life cycle may be adequate for site closure without sampling.  Qualitative 
data are typically not as expensive to collect as quantitative data and may be more informative 
than quantitative data for answering questions about hazardous, toxic, and radioactive waste 
sites. 
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C-2.2.  Historical qualitative and quantitative data hold an array of site information use- 
ful in reaching a conclusion.  The reliability and applicability of historical data and qualita- 
tive information (such as interviews with site personnel and photographs) should be evaluated.  
For example, have historical chemical data been gathered using comparable methods?  Is the 
set of material safety data sheets complete and current?  Does toxicity data derived from 
studies demonstrate adequate quality control?  Are engineering drawings pre- construction or 
“as-builts”?  Statistical techniques are often critical to assessing the usability of quantitative 
historical data, particularly when incorporating historical data into more re- cent data sets.  
Simple descriptive statistics (such as the mean, standard deviation, and range) and statistical 
plots (such as box-and-whisker plots) are useful for qualitative comparisons of different data 
sets (Appendices D and J).  Quantitative statistical comparisons are also frequently 
appropriate.  For example, it may be desirable to compare the mean or variance of a prior data 
set to a recent data set (Appendix M).  When quantitative statistical comparisons are made, the 
data should also be evaluated to verify that they satisfy the underlying assumptions of the 
statistical tests (for example, random sampling and adequate numbers of samples). 
 
C-3.  Judgmental Sampling.  Perhaps the most common sampling strategy is judgmental 
sampling (also known as targeted or biased sampling).  As the name implies, this sampling 
strategy relies upon the investigator’s knowledge and experience.  Judgmental sampling is the 
selection of samples without a statistical design, that is, without any randomization.  It can be 
useful when good documentary data are available and when it is done by an experienced 
professional with technical expertise.  Judgmental sampling is frequently used to target high-
contaminant concentrations or worst-case site conditions, such as the collection of samples in 
visibly stained soils.  The underlying rationale for this approach is that, if contamination were 
not detected (or detected at acceptable levels) in the areas of the site that would have been most 
impacted by site-related waste handling activities, then acceptable levels of contamination 
could be assumed in the remaining portions of the study site.  However, if unacceptable levels 
of contamination were detected, the results would be inappropriate for evaluating site-wide 
average concentrations.  An example of judgmental sampling is presented below to illustrate a 
common improper use of the sampling technique. 
 
C-4.  Case Study 1—Judgmental Sampling, Ordnance Demolition Area. 
 

C-4.1.  The project team used judgmental sampling to obtain a worst-case estimate of 
explosive residues in surface soils associated with an ordnance demolition area.  They did 
this by sampling where activities historically occurred, specifically targeting stained soils, 
pits, and debris-laden areas.  The team collected background samples and compared group 
means and variances.  They found a statistically significant increase in on-site concentrations 
relative to the background samples for several explosive residues, concluded that the entire 
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site was contaminated with explosives, and scheduled the area for further investigation and 
remediation. 

 
C-4.2.  In this case, it was incorrect for the project team to compare judgmental non- 

randomized data sets in a statistically quantitative manner.  This problem is common in using 
historical data.  One of the primary assumptions in conducting any statistical analysis is that 
data were obtained in a random fashion.  The fact that the on-site samples were biased 
toward areas of known or suspected high concentration increased the probability that the on- 
site average concentration would exceed background, potentially leading to biased conclu- 
sions.  Either the initial round of sampling should have been performed randomly or new 
samples should be randomly collected and submitted for analysis prior to concluding the 
presence of site-wide contamination.  Alternatively, it might be possible to stratify the site in 
such a manner that the judgmental samples are representative of only select portions of the 
entire study area.  See Section II of Chapter 3 for further discussion of comparing on-site to 
background concentrations. 

 
C-5.  Random Sampling.  The term random sampling encompasses a set of unbiased tech- 
niques to choose locations from which to sample at a site.  Random sampling has the ad- 
vantage that its lack of bias allows for robust statistical calculations.  However, random 
sampling is not the same as arbitrary sampling; it does not mean “sample in any manner.”  
The sampling design must be such that every portion of the population possesses an equal 
opportunity of being selected in the sample.  Therefore, when implementing a random sam- 
pling design, planners must define and consider the entire population.  Both the spatial and 
temporal boundaries of the environmental population must be well-defined, as instructed in 
EPA/600/R-96/055, QA/G-4.  Samples may need to be collected randomly, not just horizon- 
tally across a study area, but vertically as well.  Likewise, a continuing waste stream would 
be sampled randomly in time.  Three forms of random sampling are discussed in this 
paragraph: simple random sampling, stratified random sampling, and systematic random 
sampling.  EPA Quality Assurance QA/G5-S, Guidance for Choosing a Sampling Design 
for Environmental Data Collection, describes the three random sampling methods in detail. 

 
C-5.1.  Simple Random Sampling.  In simple random sampling, sample locations are 

selected using random numbers.  Every possible set of locations has an equal chance of being 
selected.  For example, a simple random sample from a group of liquid waste drums may be 
taken by numbering all the drums and randomly selecting numbers from that list.  Simple 
random sampling does not presuppose any information regarding the spatial distribution of 
the likely contamination at the site, other than assuming that no spatial correlation exists.  
Samples are collected at random from the study area without consideration for factors such as 
suspected disposal activities, debris locations, spills, or other spatial control on 
contamination. 
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C-5.1.1.  The major advantages of simple random sampling are that i) it provides statis- 
tically unbiased estimates of the mean, proportions, and variability; ii) it is easy to under- 
stand and use; and iii) sample size calculations and data analysis are simple to do. 

 
C-5.1.2.  The disadvantages of simple random sampling are as follows. 

 
C-5.1.2.1.  The environmental population must be relatively homogeneous for simple 

random sampling to be effective.  In particular, major spatial or temporal trends should not 
exist.  Simple random sampling would be inappropriate if localized areas of high contamina- 
tion or hot-spots exist.  Because every portion of the site has an equal opportunity of being 
selected, if hot-spots constitute a small portion of the total study area, it is likely that random 
sampling will fail to detect them.  Under these circumstances, random sampling will give un- 
due weight to the less contaminated portions of the site. 

 
C-5.1.2.2.  It is possible that, by random chance alone, the sample points will be clus- 

tered within a small portion of the study area and will not reliably characterize (e.g., owing to 
heterogeneity) the entire study area. 

 
C-5.1.2.3.  Random sampling is often less efficient and, as a result, more expensive 

than other sampling designs because it requires more samples to obtain the same result.  It is 
most viable when the target population or study area is small.  The analytical costs may be 
offset by the streamlined sampling design, which requires less research than judgmental 
sampling. 

 
C-5.2.  Stratified Random Sampling. 

 
C-5.2.1.  In stratified sampling, the target population is separated into non-overlapping 

sub-populations, or strata, that are expected to be relatively homogeneous.  Strata may be 
chosen on the basis of spatial or temporal proximity of the units or on the basis of existing 
information or professional judgment about the site or process.  For instance, if an exposed 
population is likely to contact only surface soil rather than all soil, then the site could be di- 
vided into a surface soil stratum and subsurface soil stratum.  Once the strata are defined, 
each stratum is randomly sampled.  This approach allows the project team to focus on areas 
of greatest concern while retaining the benefits of a random sampling plan.  Some examples 
of stratification at a hazardous waste site include different soil types, depth within an aquifer 
or surface water body, or separate waste ponds used at different times in site history. 

 
C-5.2.2.  Stratified random sampling can be a very effective approach to site characteri- 

zation.  If there is less variation within each subpopulation than in the target population as 
a whole, stratified random sampling can be more efficient than simple random sampling.  
Other advantages of this design are that it has potential for achieving greater precision in 
estimates of the mean and variance, and that it allows computation of reliable estimates for 
population subgroups of special interest.  In fact, a well-constructed stratified sampling plan 
is the best alternative in most instances where judgmental sampling plans are now employed. 
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C-5.3.  Systematic Random Sampling.  In systematic sampling, samples are taken at 
regular intervals in time or space, i.e., along some sort of grid.  An initial location or time is 
selected at random, and subsequent samples are collected at regular spatial or temporal inter- 
vals.  The sampling scheme retains its random characteristic as long as the initial sampling 
location or time is randomly, not arbitrarily, selected. 

 
C-5.3.1. Systematic sampling methods are used to search for hot-spots and to infer 

means, percentiles, or other parameters.  They are also useful for estimating spatial patterns 
or trends over time.  These designs provide practical and easy methods for designating 
sample locations and ensure uniform coverage of a site, unit, or process.  One significant 
benefit of a systematic design is that it generally ensures that some samples from each 
possible sub- group within a population will be selected. 

 
C-5.3.2.  There are two approaches to grid sampling. One may select a particular grid 

pattern and sample at every node within the grid.  Although it is common for sampling plans 
to specify a square grid pattern, there are a variety of patterns that can be used, often to some 
advantage in terms of cost or efficacy.  Grid blocks may be squares, rectangles, triangles, 
parallelograms, pentagons, hexagons, or other polygons, depending upon the application.  
Alternatively, one may randomly pick a starting point in a grid and then collect samples in 
some logical pattern (for example, move south two blocks and east three blocks).  When the 
edge of the grid is encountered, the pattern starts again on the opposite side of the grid. 

 
C-5.3.4.  One can immediately see that such an approach could be very expensive.  

This type of sampling is often reserved for situations where the analytical cost is low, or 
where the area to be covered is quite large, as in the estimation of lead analysis over a firing 
range using a portable x-ray fluorescence (XRF) spectrometer.  An important consideration 
is the size of the individual blocks within the grid or the distance between grid lines. 

 
C-5.4.  Hot-Spot Sampling.  Searching for a hot-spot is a special case where grid spac- 

ing may be estimated using information about the suspected hot-spot size and shape.  Hot- 
spots may be located on two-dimensional surfaces or in three-dimensional volumes.  For 
volumes, a three-dimensional grid is generated via the extension of a pair of two-dimensional 
grids. 

 
C-5.4.1.  This method relates the likelihood of successfully locating hot-spots based on 

their assumed size, shape, and orientation.  The acceptable probability of not finding a hot- 
spot (β) must be specified at the outset.  This value must be decided upon by the project team 
depending on the degree of risk associated with not identifying the hot-spot.  Gilbert (1987) 
provides graphs (called nomographs) that correlate the shape of the hot-spot with the 
acceptable probability of not finding the spot and the length of the hot-spot divided by the 
required grid spacing.  Table C-1 provides a summary of the nomographs for square and tri- 
angular grids.  Users will need to interpolate, reference the original citation, or use a 
conservative set of values in applying this table to individual studies.  
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C-5.4.2.  As mentioned above, to determine the grid spacing (G) for a hot-spot, assump- 
tions must be made about its size and shape (Figure C-1).  The shape is represented by the 
factor (S), defined as the width (W) of the elliptical target spot divided by the expected length 
(L).  If the expected shape is a circle, S is equal to 1.  If S is an ellipse, S is less than 1, but 
greater than 0.  If S is unknown, planners may choose to assume that the hot-spot is a narrow 
elliptical shape, i.e., S is 0.5 or less.  This assumption is conservative.  Accommodating a 
narrower target shape results in denser grid spacing. 
 

 
Table C-1. 
Hot-Spot Grid Spacing 
For Square Sampling Grids—Values Listed Are L/G 

 S 
β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.0      1.00 0.80 0.77 0.74 0.70 
0.1    1.00 0.83 0.74 0.68 0.62 0.58 0.55 
0.2    0.87 0.77 0.68 0.62 0.58 0.53 0.51 
0.3   0.93 0.78 0.69 0.62 0.57 0.53 0.49 0.47 
0.4   0.85 0.72 0.64 0.58 0.53 0.49 0.47 0.44 
0.5  0.94 0.77 0.65 0.57 0.51 0.48 0.44 0.42 0.40 
0.6  0.83 0.68 0.58 0.51 0.47 0.43 0.41 0.39 0.37 
0.7 1.00 0.71 0.58 0.50 0.44 0.41 0.38 0.35 0.33 0.31 
0.8 0.78 0.56 0.44 0.49 0.35 0.32 0.30 0.28 0.27 0.26 
0.9 0.57 0.39 0.32 0.29 0.27 0.25 0.23 0.21 0.20 0.19 
1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

For Triangular Sampling Grids—Values Listed Are L/G 
 S 
β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.0     0.94 0.81 0.74 0.66 0.60 0.57 
0.1    0.90 0.78 0.69 0.62 0.57 0.52 0.50 
0.2   0.95 0.80 0.70 0.62 0.57 0.52 0.49 0.47 
0.3   0.87 0.73 0.63 0.57 0.52 0.48 0.46 0.43 
0.4  1.00 0.79 0.67 0.58 0.53 0.48 0.45 0.42 0.40 
0.5  0.86 0.69 0.59 0.52 0.48 0.43 0.41 0.39 0.37 
0.6  0.75 0.61 0.52 0.47 0.42 0.39 0.37 0.35 0.32 
0.7 0.94 0.84 0.52 0.44 0.40 0.37 0.33 0.31 0.30 0.28 
0.8 0.75 0.52 0.41 0.37 0.32 0.30 0.28 0.27 0.24 0.22 
0.9 0.51 0.36 0.30 0.25 0.22 0.20 1.90 1.80 1.70 1.70 
1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

β = probability of missing the hot-spot S =W/L (ratio of width to length 
of hot-spot) 

W = width of elliptical hot-spot S = 1 is a circle 
L = length of the semi-major axis (radius of a circle) S = 0.1 is a narrow ellipse 
G = grid spacing L/G = a dimensionless value 
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C-5.4.3.  Based on an estimate of the length of the target hot-spot, we may define the 
value (L), which is one-half of the long axis of the ellipse.  In the case of a circular hot-
spot (S = 1), this is equivalent to the radius of the circle.  Finally, the nomographs 
presented as Table C-1 may be used to determine the appropriate grid spacing (expressed 
in terms of L/G), based on the values of S and β. 

 
C-5.4.4.  The effectiveness of the hot-spot sampling method depends on the accuracy 

of existing site-specific information.  Without prior knowledge, it is difficult for planners to 
es- timate the shape and dimensions of the anticipated hot-spot.  In practice, this information 
is rarely known with confidence, and hot-spot spatial dimensions are often determined on the 
basis of economic considerations rather on the basis of pre-existing information on site con- 
dictions.  The required number of samples depends greatly upon the assumed dimensions of 
the hot-spot.  Planners should do a number of calculations, varying the shape and estimated 
size of the hot-spot.  If the resulting grids are similar and differences in sample design rela- 
tively minor, then planners may feel more confident about the methodology applied to the 
site. 

 
 
 
 
 
 
 
 

W 
 
 
 

Figure C-1.  Elliptical Hotspot. 
 

C-5.4.5.  The hot-spot mathematical procedure may also be applied in reverse; if grid 
spacing and presumed hot-spot size and shape are known, the probability of having missed a 
hot-spot (of some specified size) may be determined.  Thus, site investigation managers may 
be able to convey to regulators the level of certainty that no problems were missed, within 
reasonable expectations.  By applying the nomographs and solving for different variables, a 
researcher can answer such questions as the size of a hot-spot likely to be found by a given 
grid spacing, and the probability of not finding a hot-spot based on a given grid spacing.  The 
following case study compares sampling strategies for a site with a hot-spot. 

 
C-6.  Case Study 2—Comparing Random Sampling Strategies  at  a Site  with  a  Hot-Spot.  
Table C-2 illustrates examples of the three random sampling approaches at a generic site and 
the differences in descriptive statistics that might influence a manager’s decisions related to 
the site.  The three different sampling plans are applied to the same data set: Plan A is simple 
random sampling, Plan B is stratified random sampling, and Plan C is systematic and grid 
sampling.  The site is represented by a 9-by-9 grid with the 3 right-most grid columns  
divided by a heavy solid line indicating a hot-spot, and the lower left 12 cells a secondary 
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hot-spot (applicable to Plans B and C only).  For Plans B and C the largest group of cells is 
Group 1; the lower left corner is Group 2; and the right three columns make up Group 3.  The 
number in each cell represents a generic analytical result, had a sample been collected from 
every cell.  A collected sample is represented by a shaded cell.  The systematic sampling 
(Plan C) was determined by using a set pattern beginning at a randomly selected first 
location.  (This is not obvious from the pattern of shaded cells.) 

 
C-6.1.  For this example, assume that decisions will be based on a 2-stage 

comparison criterion: values less than 5 units require no action; values greater than 5 units 
but less than 50 units require further remedial investigation but no immediate action; and 
values greater than 50 units indicate an immediately dangerous condition requiring an 
emergency removal action. 

 
C-6.2.  The three sampling plans are judged against a hypothetical sampling of 

every cell across the site.  In this case, the following are determined: 
 

C-6.2.1.  Total number of samples, N = 81. 
 

C-6.2.2.  Summation of all results, S = 708.1.  

C-6.2.3.  Total population average, µ = 21.09. 

C-6.3.  For Plans B and C, the following are determined for the entire populations of 
each group: 

 
Group 1: n1 = 42 S1 = 23.4 µ1 = 0.56 
Group 2: n2 = 12 S2 = 47.7 µ2 = 3.98 
Group 3: n3 = 27 S3 = 1,637 µ3 = 60.63 

 
C-6.4.  Note that population mean may be viewed as a weighted mean calculated 

from each group population mean: 
 
 i

i
ii

i
i wNn µµµ ∑∑ == )/(  

 
µ =∑ wi µ i 

i 
 
 

w1 = 42/81, w2 = 12/81, w3 = 27/81 
 

C-6.5.  For Plans B and C, a total of nine samples are randomly selected.  (For 
example, for the nine samples collected for Plan B, two are from Group 1, four are from 
Group 2, and three are from Group 3.)  The mean of the population mean (i.e., entire set of 
81 samples) is estimated by calculating the sample mean of each group and weighting them: 
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x = ∑ (ni  / N ) xi= ∑ wi xi 
i 

 
C-6.6.  To assess each sampling plan, the mean concentrations determined from the 

limited sampling to those for the entire site data set are compared.  Simple random sampling 
(Plan A) provides the best estimate of the overall population average.  However, it is fairly 
limited in identifying the best course of action for the underlying strata in that it suggests that 
the entire population is subject to additional investigation or action.  Another shortcoming is 
that none of the random sampling designs identified the “secondary hot-spots” in Group 2; that 
is, none of the samples selected in Group 2 (the shaded cells) exceed 5.  Stratified sam- pling 
(Plan B) resulted in better data for decision-making because data were obtained for all three 
groups, although some of the group mean estimates are rather poor.  In the systematic plan 
(Plan C), each stratum is represented in the statistics at a frequency roughly equal to its portion 
of the whole.  (The ratio of the total number of cells for Groups 1, 2, and 3 is approx- imately 
5:1:3, the ratio of the number of samples collected for each group.)  Had the presence of 
underlying strata been unknown, the systematic plan would have given the best indication of 
potential problems at the site. 
 
C-7.  Systematic Sampling Over Time.  Systematic sampling can also be applied when the 
parameter of interest is expected to vary over time.  This one-dimensional scheme is some- 
times called periodic sampling and is quite simple.  Divide the span of time under examina- 
tion into an arbitrary number of “blocks” (e.g., 20 intervals) and, having calculated an 
appropriate number of samples for the application, simply divide the number of samples re- 
quired into the number of blocks available.  This gives the time between samples.  The start- 
ing time is chosen randomly.  (Note that the same strategy may be used to establish the 
distance between grid lines, where the intervals would be measured in units of distance rather 
than time.)  In general, the greater the variability in the parameter being measured is, the 
greater the number of samples required for the required degree of confidence. 
 
C-8.  Ranked Set Sampling.  As stated in EPA QA/G5-S: “Ranked set sampling is an innova-
tive design that can be highly useful and cost-efficient in obtaining better estimates of mean 
concentration levels in environmental media.”  The technique typically entails the use of two 
analytical methods, a “definitive” method (e.g., a fixed laboratory method) and a “screening” 
method (e.g., a field method).  Usually, the cost of the screening method is significantly less 
than that of the definitive method, while the analytical quality of the definitive method 
exceeds that of the screening method.  Ranked set sampling is a two-phase sampling design.  
It first identifies sets of field locations and uses inexpensive measurements to rank locations 
within each set; next, it selects one location from each set for analysis by the definitive 
method.  Only a brief overview of this sampling technique is presented in this Appendix. The 
reader is referred to the EPA QA/G5-S guidance document for a more detailed discus- sion 
and illustration of rank set sampling. 
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C-8.1.  For a “balanced design,” m sets of m samples (at total of m2 samples) are initial- 
ly analyzed using professional judgment or some screening method.  The field samples in 
each set are then independently ranked (e.g., from highest to lowest).  The first ranking sam- 
ple (the highest sample) is selected from the first set, the second highest ranking sample is 
selected from the second set, and so forth, until m samples are selected for analyses using the 
definitive (i.e., more accurate and expensive) analytical method.  The process is repeated r 
times, giving a total of m2 r field analyses and mr definitive analyses. 

 
C-8.2.  One of the best reasons for applying ranked set sampling is its ability to provide 

samples from across the distribution of values at the site.  This, in turn, creates a better esti- 
mate of the population mean and improves the performance of various other statistical tests, 
especially those that entail distributional assumptions.  A wide variety of field screening 
tools can be used to supplement the professional judgment of the samplers and, in certain cir- 
cumstances, can even be used later as definitive data, assuming good correlation with fixed 
laboratory results is achieved.  Paragraph C-9 illustrates a practical application of ranked set 
sampling. 

 
C-8.3.  Relative to simple random sampling, this design results in a more representative 

sample, and therefore leads to more precise estimates of the population parameters.  A large 
number of screening analyses increases site coverage, and the ranking information from the 
screening analyses reduces the required number of definitive analyses relative to the number 
that would be required from a random sampling design.  Therefore, the ranked set sampling 
approach has the added benefit of typically being less expensive than a simple random sam- 
pling approach.  Because preliminary data are used to ensure representative samples are col- 
lected, the variability among the samples is better controlled and the number of samples 
required to make a probabilistic decision with the same degree of confidence is reduced. 

 
C-8.4.  However, there are several limitations to ranked set sampling.  The screening 

and definitive methods must be strongly correlated with one another.  In addition, the cost of 
the definitive analyses compared to the cost of the ranking procedure used for the field meth- 
ods must be relatively large for the approach to be cost-effective.  One should consider 
whether two phases of sampling is cost-effective relative to a more standard sampling 
method and whether it is technically feasible given project resource constraints.  Finally, the 
statistical computations to be performed on the resulting data set are more complex relative to 
those used for a simple random sampling design. 



 

 

Plan B Si xi x = ∑ wi  xi 
 
All nine samples 

 
210.22 

 

 
23.36 

 
N/A 

    
Group 1 2.06 0.51  
Group 2 3.12 1.56  

 
 
Group 3 

 

205.04 
 

 
 
68.35 

 

   23.28 
    
    
 

Plan C Si xi x = ∑ wi  xi 
 
All nine samples 

 
244.75 

 
27.19 

 
N/A 

    
Group 1 2.26 0.45  
Group 2 3.73 3.73  
Group 3 238.76 

 
79.59  

   27.31 
    
    
    
 

 
Grouping Population 

Mean# 

 
Simple x 

 
Stratified x Systematic xC 

 
# 

Group 1 0.56 — 0.52 0.45 
Group 2 3.98 — 1.56 3.73 
Group 3 60.63 — 68.35 79.59 

Entire Grid 21.09 21.54 23.28 27.31 
 

Plan A Si xi x = ∑ wi  xi 

All nine samples 193.84 21.54 N/A 
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Table C-2. Comparison of Random Sampling Method Results 
Plan A: Simple Random Sampling 

 

0.26 0.24 0.74 0.95 0.25 0.34 94.18 20.16 61.90  
 

0.97 
 

0.54 
 

0.13 
 
0.18 

 
0.17 

 
0.48 

 
5.40 

 
13.39 

  
19.79   

 0.97 0.30 0.72 0.09 0.48 0.79 55.28 55.10 94.98  
0.82 0.03 0.95 0.72 0.22 0.81 29.31 1.26 72.37  
0.52 0.66 0.48 0.83 0.92 0.43 78.73 84.02 77.05   
2.82 1.45 1.24 0.52 0.69 0.47 89.00 98.76 83.54  
3.14 8.24 8.48 0.55 0.11 0.85 76.71 96.91 84.19  
7.18 1.68 0.96 0.74 0.47 0.86 42.95 16.94 72.67  
5.84 3.73 2.98 0.65 0.99 0.51 96.66 52.85 62.86  
Plan B: Stratified Random Sampling 
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0.97 0.30 0.72 0.09 0.48 0.79 55.28 55.10 94.98  
0.82 0.03 0.95 0.72 0.22 0.81 29.31 1.26 72.37 
0.52 0.66 0.48 0.83 0.92 0.43 78.73 84.02 77.05 

  
 
0.52 

 
 
0.69 

 
 
0.47 

 
 
89.00 

 
 
98.76 

 
 
83.54 

 
2.82 

 
1.45 

 
1.24 

3.14 8.24 8.48 0.55 0.11 0.85 76.71 96.91 84.19 
7.18 1.68 0.96 0.74 0.47 0.86 42.95 16.94 72.67 
5.84 3.73 2.98 0.65 0.99 0.51  96.66 52.85 62.86 
Plan C: Systematic and Grid Sampling 
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 3.14 8.24 8.48 0.55 0.11 0.85 76.71 96.91 84.19 
7.18 1.68 0.96 0.74 0.47 0.86 42.95 16.94 72.67 
5.84 3.73 2.98 0.65 0.99 0.51 96.66 52.85 62.86 

SUMMARY 
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Notes: 
Shading indicates a sampled grid location 
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1. Objectives that rely on 
composite sampling 

a. Estimating a population (or stratum) mean for a continu- 
ous variable (e.g., analyte concentration)* 

b.   Estimating proportion of population exhibiting some trait 
2. Objectives that rely on 
composite sampling and 
retesting protocols 

a. Classifying sampling units as having or not having some 
trait such as being in a hot-spot or from a contaminated 
cell 

b.   Identifying the sampling unit with highest value of some 
continuous measure (e.g., concentration), or identifying 
sampling units in the upper percentiles 

* In general, information on variability and spatial or temporal patterns is lost when com- 
positing is used for this objective; however, in some cases, some information on patterns 
can be acquired. 

 

 
C-9.  Case Study 3—Ranked Set Sampling.  The project team used field screening test kits 
on a grid established over a wide area to characterize an ordnance demolition area.  Using the 
information from the field screening, the team was able to stratify the site into three areas: i) a 
region requiring no remediation; ii) an area clearly requiring remediation and for which 
samples at depth were required to provide volume estimates; and iii) an area requiring 
additional study with definitive methods to establish the need for remediation or no further 
action.  Definitive samples were then collected to distinguish the various explosives and their 
daughter products that the test kit could not resolve.  These results were then used to better 
estimate the average concentration of individual explosives within the various strata, and to 
serve as confirmation samples for the test kits.  The definitive samples helped correlate low-, 
mid-, and high-range concentrations in each area.  Thus, the screening data were used to 
select locations for definitive samples to ensure more representative mean concentrations 
within each area. 

 
C-10.  Composite Sampling.  Composite sampling is the physical averaging of environmental 
samples in a manner that yields an accurate and representative estimate of environmental 
conditions, usually at a reduced cost.  It involves physically combining and homogenizing 
two or more environmental samples (referred to as “grab” samples, and called “subsamples” 
in this context) to form a new sample referred to as a composite sample.  Compositing is used 
when the mean is primarily of interest (i.e., because the process is a physical averaging) and 
information on the spatial or temporal variability of contamination is not needed (i.e., because 
this information is lost unless the subsamples can be reanalyzed).  Tables C-3 and C-4 suggest 
circumstances under which compositing can be useful.  Various sampling designs may be 
used to select subsamples to be mixed together into composites. 
 
Table C-3. 
Objectives of Composite Sampling—Fundamental Cases 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



C-13 

 
 
 
 

EM 200-1-16 
31 May 13 

 

Table C-4. 
Criteria for Judging Benefits of Composite Sampling 
Criterion or Objective Composite sampling is likely to be beneficial if… 

1. Analytical costs Analytical costs are high relative to sample acquisition/ 
handling costs. 

2. Analytical variability Analytical variability is small relative to variability of the 
target population. 

3. Analytical sensitivity Concentrations of relevance are much larger than detection 
and quantitation limits. 

4. Representativeness Compositing does not affect sample integrity (expect no 
chemical reactions/interferences or analyte losses from vola- 
tility) or result in safety hazards.  Individual samples can be 
adequately homogenized. 

5. Objective is to estimate 
population mean (See 1a in 
Table 2-3) 

Information on individual samples is not important.  Infor- 
mation on associations is not important.  Criteria 1, 2, and 4 
are met. 

6. Objective is to estimate 
proportion of population with 
a trait (See 1b in Table 2-3) 

Composite has trait if individual sample does.  Likelihood of 
misclassification is small.  Trait is rare.  Criteria 1, 2, 3, and 4 
are met. 

7. Objective is to classify 
samples as having/not having 
a trait (See 2a in Table 2-3) 

Composite has trait if individual samples do.  Likelihood of 
misclassification is small.  Retesting of aliquots (grab sam- 
ples) for each composite sample is possible.  Trait is rare. 
Criteria 1, 2, 3, and 4 are met. 

8. Objective is to identify the 
sample(s) with the highest 
value (See 2b in Table 2-3) 

Measurement error is negligible.  Retesting of aliquots from 
individual samples is possible.  Criteria 1, 2, 3, and 4 are met. 

 
C-11.  Compositing Fluids.  A typical application of compositing fluids is in creating a repre 
sentative sample when one or another condition, tied to contaminant mass or concentration, 
varies over space or time.  National Pollutant Discharge Elimination System (NPDES) 
monitoring provides a classic case in point. 
 

C-11.1.  The fundamental objective for this type of compositing is to develop a single 
sample that accurately represents the whole area or time under consideration.  The alternative 
entails greatly increased sampling and analysis costs and agreement on an acceptable 
mathematical approach to combining the individual sample results.  Table C-5 examines a 
variety of compositing approaches linked to particular circumstances.  Paragraph C-12 
illustrates an example of flow-proportioned compositing. 
 

C-11.2.  Another classic use of compositing fluids is in sampling stack emissions.  
When a fluid (or gas in the case of stack emissions) flows through a pipe, the fluid does not 
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move at a uniform speed across the diameter of the pipe.  Friction with the interior surface of 
the pipe causes fluids near the casing to move more slowly than at the center.  Thus, when 
measuring mass per unit volume per unit of time, isokinetic sampling is applied.  In this case, 
subsamples are collected across the diameter of the pipe for identical time intervals, along with 
a measure of the flow rate at the individual locations.  Using this information, the engineer can 
balance concentration against the flow rate to yield an accurate estimate of the average mass 
discharged from the stack (or pipe) over time. 

 
Table C-5. 
Compositing Methods 
  
Method 
No. 

 
Sampling 
Mode 

 
Compositing 
Principle 

 
Comments 

 
Disadvantages 

 

  
1. Continuous Constant sample 

pumping rate 
Practicable but not 
widely used 

Yields large sample vol- 
ume; may lack represent- 
ativeness for highly 
variable flows 

2. Continuous Sample pumping rate 
proportional to stream 
flow 

Not widely used Yields large sample vol- 
ume but requires accurate 
flow measurement 
equipment 

3. Periodic Constant sample volume, 
constant time interval 
between samples 

Widely used in au- 
tomatic samplers 
and widely used 
as manual method 

Not most representative 
method for highly varia- 
ble flow or concentration 
conditions 

4. Periodic Constant sample vol- 
ume, time interval be- 
tween samples propor-
tional to stream flow 

Widely used in au 
tomatic sampling 
but rarely used in 
manual sampling 

Manual compositing from 
flow chart 

5. Periodic Constant time interval 
between samples; 
sample volume pro- 
portional to total 
stream flow since last 
sample 

Not widely used in 
automatic sam- 
plers but may 
be done 
manually 

Manual compositing from 
flow chart 

6. Periodic Constant time interval 
between samples; sample 
volume pro- portional to 
stream flow at time of 
sampling 

Used in automatic 
samplers and 
widely used 
as manual 
method 

Manual compositing from 
flow chart 

After: EPA 600/4-82-029 
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C-12.  Case Study 4—Flow-Proportioned Compositing.  At a manufacturing facility in Ohio, 
an existing NPDES permit called for the facility to collect a single, three-part, equal-weight 
composite sample monthly.  The facility operated three shifts.  Production on all three shifts 
was essentially the same, although the bulk of maintenance activities took place on the second 
shift.  Three grab samples, one from each shift, were composited at the laboratory prior to 
analysis. 
 

C-12.1.  A change in business climate led to a reduction in demand such that the mid- 
night to 8 a.m. shift was canceled and the 4 p.m. to midnight shift was reduced by roughly 
two-thirds.  The facility manager asked that the overall effect the change in shifts would have 
on discharge rates be assessed in preparation for permit renewal negotiations.  For this case 
study, only the nitrate data are considered.  The following analysis was performed: 
 

Original flow–shift 1 200,000 gal/day* New flow 200,000 gal/day 
Original flow–shift 2 200,000 gal/day New flow 70,000 gal/day 
Original flow–shift 3 200,000 gal/day New flow 5,000 gal/day 

 
C-12.2.  Historical composite results for the previous year were as follows: 

 
 

Jan 
 

0.48 Average 0.38 mg/L†  

Feb 0.12 Variance 0.20 mg/L 
Mar 0.26  
Apr 0.34 Current Permit Limit 2.5 lb/day‡ 
May 0.48 EPA Proposed New Limit 1.0 lb/day 
Jun 0.31   
Jul 0.47   
Aug 0.46   
Sep 0.13 Assuming average concentration does not change 
Oct 0.40  
Nov 0.16 Under Equal Volume sampling, lb/day = 1.9 
Dec 0.20 Under Flow Proportioned sampling, lb/day = 0.87 

 

C-12.3.  Thus, the new permit limit will be acceptable if the permit also incorporates a 
change in the compositing method. 
 
 

* gal/day = gallons per day 
† mg/L = milligrams per liter 
‡ lb/day = pounds per day 
 

C-13.  Compositing Solids.  Generally speaking, solids and, in particular, soils are composited 
to estimate the concentration of a contaminant over large areas, or when the granular or globular 
nature of the contaminant of concern (e.g., explosives, PCB oils) can provide false estimates of 
concentration from individual measurements because of excessive heterogeneity in the 
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individual samples.  Other applications are also possible.  Compositing can also be used to 
assess the proportion of samples that meet a specific condition and, with retesting of a small 
subset of original locations, can also be used to locate rare events (like hot-spots) where too 
many individual samples would be required.  For example, at a site with very few historical 
data, 12 composite samples of 4 subsamples each may be analyzed for a long list of possible 
contaminants.  If only one sample contains only a few contaminants of concern, then further 
investigation is limited to those contaminants and in only four small areas.  Exhaustive testing 
of the 48 original discrete samples was not necessary, and further study of most of the site is 
precluded.  As extensive mixing of the subsamples is required to form a representative 
composite, composite sampling is not generally applied to samples when volatile organic 
compounds (VOCs) are of particular interest. 
 

C-14.  Adaptive Sampling.  Adaptive sampling designs are typically used to characterize the 
extent of contamination using multiple sampling events; they rely upon cost-effective field 
methodologies with rapid turn-around time.  The results of an initial sampling event are used 
to modify the selection of future sampling locations for the study area.  Adaptive cluster 
sampling is useful when the characteristic of interest is sparely distributed through the site.  
Adaptive cluster sampling could be used for a study area that contains mostly low-level or 
negligible contamination but also isolated pockets of high-level contamination (i.e., hot- 
spots).  This is illustrated in Figure C-2.  As stated previously, under these circumstances, a 
random sampling design would not be the optimum approach (as the hot-spots could remain 
undetected). 
 

C-14.1.  Three major elements characterize adaptive cluster sampling.  First, a set of 
sampling locations is initially determined.  Though there may be insufficient data to support 
firm conclusions overall, information may exist that suggests particular areas of the site are 
clean or contaminated.  The result is an initial conceptual model for the site.  For example, a 
grid is placed over the geographical area of interest, where each cell of the grid represents a 
potential sampling unit (location).  A subset of all the potential sampling units is selected for 
sampling.  Figure C-2 illustrates the use of random sampling for the selection of the initial 
sampling event.  Second, a decision rule for each sampling unit must be established.  If the 
contaminant of interest exceeds the decision limit, additional sampling is required “near” the 
sampling unit (i.e., adjacent sampling units are sampled).  Third, the “neighborhood” of each 
sampling point (i.e., the area required for additional sampling) must be defined.  Several ad- 
ditional stages of sampling are designated on Figure C-2.  The symbol “X” denotes the 
neighboring sampling units that were sampled.  (Note: In the example illustrated in Figure  
C-2, one area of contamination was missed.)  The decision rule and additional sampling are 
repeatedly applied until contamination is not detected above the decision limit for each sam- 
pling unit.  This results in a “mapping” of contaminants as illustrated in the final stage in 
Figure C-2, where the extent of “hot-spots” is delineated using a large number of sample units.  
The shaded areas in Figure C-2 represent “hot-spots” (i.e., area in which contamination 
exceeds the decision limit). 

 
C-14.2.  Adaptive sampling and analysis plans (SAPs) provide a cost-effective 

alternative to traditional sampling designs.  Adaptive SAPs are based on field analytical 
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methods allowing for rapid sample turnaround and field-based decision support to guide the 
sampling program.  One objective of adaptive SAPs is to support removal actions. 
 

C-14.3.  Traditional approaches to designing and executing a removal action have relied 
on “digging to the design line” and then taking confirmation samples.  The static work plans 
that have accompanied these efforts have specified the number and location of samples.  Often, 
however, the design lines have been at best rough approximations of the real extent of 
contamination, resulting in either extensive under- or over-removal of soils.  In both cases, 
the economic impacts have been significant.  An important factor in establishing the design 

line is the site cleanup levels.  Cleanups should be implemented so that concentrations left at 
the site meet the cleanup goal to a predetermined level of certainty, with the level of certainty 
agreed upon by the design team and regulators. 
 

C-14.4.  Adaptive SAPs rely on field analytical methods to generate sample results 
quickly enough to have impact on the course of the sampling program.  They are based on 
dynamic work plans that specify the logic of how sampling numbers, locations, and analyses 
will be determined as the program proceeds.  They also rely on rapid, field-level decision- 
making.  Adaptive SAPs require: i) field analytical methods that are appropriate for the types 
of contaminants expected at a site; and ii) a means for supporting decision-making in the field 
that is appropriate for the goals of the program. 
 

C-14.5.  Rapid field decision-making requires qualitative and quantitative decision 
support.  Qualitative decision support means having technical staff equipped with an accurate 
understanding of the sampling progress.  Large adaptive SAPs can produce hundreds of 
samples per day.  Managing, integrating, and displaying the sample information pose a serious 
logistical challenge that can interfere with program process if not adequately addressed.  A 
typical adaptive SAP includes some type of field- or web-based database system along with a 
Geographic Information System for data display to help with logistics and visualization. 
 

C-14.6.  Quantitative decision support for adaptive SAPs that delineate removal areas 
requires the ability to estimate contaminant extent based on sampling results, determine the 
uncertainty associated with those results, predict expected values from previous sampling, 
and identify new removal locations based on that information. 
 

C-14.7.  The adaptive sampling scheme presented in Figure C-2 may be applied to 
contamination removal actions as well.  In such an application, each sample is used to 
determine whether soil removal (i.e., excavation) is necessary, and the areal (and volumetric) 
extent of soil needing removal can be established via such sampling techniques. 
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Figure C-2. Population Grid with Initial and Follow-up Samples and Areas of 

Interest. (From EPA QA/G-5S.) 
 

C-14.8.  The adaptive SAP design and implementation process for guiding removal 
actions follows these steps. 
 



C-19 

 
 
 
 

EM 200-1-16 
31 May 13 

 

C-14.8.1.  Sampling location decision points forming a regular grid are laid across the 
site.  Each sample decision point is so named because at each sampling location, the follow- 
ing decision must be made: will this point be removed or left in place?  For instance, if the 
petroleum hydrocarbon concentration at this location exceeds an action level, it will be exca- 
vated from the site.  An action level serves as the criterion for differentiating among decision 
points that can be considered clean and points that must be treated as contaminated.  Because 
the acceptable level of uncertainty is very important to the design of the adaptive SAP, it 
must be determined prior to sampling or before the program begins (i.e., during the data 
quality objective development process), with mutual agreement from all the stakeholders in- 
volved with the site. 
 

C-14.8.2.  Based on professional judgment and historical information available for the 
site, a probability is initially assigned to each decision point; namely, the likelihood contami- 
nation at that location is greater than some action level. 
 

C-14.8.3.  As sample results become available, the probabilities for each of the decision 
points are updated with actual data.  The site is then divided into three regions: i) the portion 
of the site (decision points) where the probability that contamination exceeds the action level 
is low (this region is accepted as clean with perhaps only minimal confirmatory sampling); 
ii) the portion of the site where the probability of contamination is so high that confirmatory 
sampling is unnecessary; and iii) the portion of the site where there is neither a high nor low 
probability of contamination above the action level, i.e., the gray area where there is signifi- 
cant uncertainty whether the presence or absence of contamination is greater than the pre- 
determined action level.  Indicator kriging (Appendix R) may be a powerful tool for such an 
application. 
 

C-14.8.4.  Predetermined decision rules are applied.  There may be several alternative 
decision rules that can be used to drive the sampling process.  Additional sampling may need 
to be done for the gray areas, especially if the removal action is desired to lower overall site 
risk.  The decision rules should tend to produce a sampling program that works its way 
around suspected areas of contamination.  The decision rules should also tend to produce a 
sampling pattern that starts from areas of suspected contamination and works its way out- 
ward to the boundary where removal can cease. 
 

C-14.9.  Regardless of the decision rule used, the process is the same.  Sampling loca- 
tions are selected that have the greatest opportunity to provide the most benefit in the context 
of the selected decision rule.  After results are obtained, the extent of contamination is re- 
estimated along with the number of uncertain decision points remaining, and a decision is 
made where additional removal is justified until no such locations remain. 
 

C-14.10.  Figure C-3 shows the adaptive sampling plan process, and Paragraph C-15 
illustrates a practical application of an adaptive SAP. 
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C-15.  Case Study 5—Argonne’s Adaptive Sampling and Analysis Program.  The U.S. 
Department of Energy’s (DOE’s) Argonne National Laboratory developed the following 
case study. 
 

C-15.1.  Oil and gas producers may save millions of dollars in cleaning up soils con- 
taminated with naturally occurring radioactive materials by applying an on-site soil sampling 
and analysis method developed by the U.S. DOE’s Argonne National Laboratory. 

 
C-15.2.  Naturally occurring radioactive material accumulates when the production of 

oil and natural gas from underground reservoirs transports small quantities of radium to the 
surface.  Over time, the radium—usually radium-226 and, to a lesser extent, radium-228— 
can concentrate in pipe scale and sludge deposits, which in turn can contaminate soil and 
equipment. 

 
C-15.3.  The traditional approach to cleaning up such sites involves complicated soil 

sampling techniques and shipping these samples to off-site laboratories for analysis—a time- 
consuming and costly process.  But a recent demonstration has shown that Argonne’s adap- 
tive SAP can dramatically reduce the time and money needed to characterize and remediate 
sites contaminated with naturally occurring radioactive materials.  Adaptive SAP combines 
real time data collection techniques with in-field decision-making for faster and more precise 
characterization of a site.  It was first used successfully for faster and cheaper cleanup of ra- 
dioactive contamination at DOE sites. 

 
C-15.4.  The demonstration was conducted on a 3.5-acre site at Lease Management, 

Inc., in Mt. Pleasant, Michigan.  Pipe salvaged from nearby oil and gas production sites was 
stacked there prior to being cleaned and reconditioned.  Contaminated scale on the outside of 
the pipes had fallen off during handling and from exposure to the elements.  As a result, soils 
across the pipe yard had varying levels of radium-226 concentrations. 

 
C-15.5.  First, scientists walked over the site with a portable global positioning system 

and a hand-held gamma ray detection device to map surface gross activity levels.  The scien- 
tists then used a commercial technology called the RadInSoilTM meter to develop a relation- 
ship between gross activity values and radium-226 activity concentrations.  State guidelines 
are based on these activity concentrations.  With the field data, researchers then used unique 
Argonne-developed techniques to determine where soil concentrations of contaminants ex- 
ceeded regulatory standards and would need to be excavated for disposal.  To confirm the 
presence of radium-226, scientists used a tripod-mounted, camera-like device called a High 
Purity Germanium gamma spectroscopy system that directly measures radium-226 concen- 
trations in surface soils.  With use of the results from adaptive SAP, decisions on excavating 
contaminated soil for disposal can be made immediately.  It took 4 days to characterize and 
remediate the Michigan site. 
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Figure C-3. Adaptive Sampling Plan Flow Chart. 

C-15.6.  The average cost for soil disposal ranges from about $100 to $200 per cubic 
yard, so keeping soil volumes to an absolute minimum is very important.  The goal is to be 
asprecise as possible in digging up dirt for disposal so one doesn’t take anything clean away or 
leave anything above cleanup standards behind. 
 

C-15.7.  For sites contaminated with naturally occurring radioactive materials, it is es- 
timated that using adaptive SAP for site characterization costs only 10% of a more traditional 
approach.  In the Michigan demonstration, the use of adaptive SAP is expected to save the 
site owner at least $36,000 in disposal costs. 
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APPENDIX D 
Descriptive Statistics 

 
D-1.  Introduction.  For most environmental sampling, the collected data for some measure-
ment variable of interest constitute a small subset of its set of possible values.  The  
data subset frequently consists of contaminant concentrations from the analysis of environ-
mental (e.g., soil and groundwater) samples collected from the study area.  In a statistical 
context, this subset is referred to as a sample.  If it were possible to collect environmental ob-
servations from every portion of the study area (i.e., to exhaustively sample an entire site), 
the set of resulting values would constitute the population.  As this is typically not possible, 
statistics calculated from the sample are used to describe or make inferences about the under-
lying population.  For the environmental applications discussed herein, the statistical meth-
ods presented are implicitly for a sample, not the entire population.  For more information on 
populations, the reader is referred to introductory statistical texts readily available in libraries 
and online. 
 
 D-1.1.  Commonly used descriptive statistics for environmental data include measures 
of central tendency, such as mean, median, or mode; measures of relative standing, such as 
percentiles; measures of dispersion, such as range, variance, standard deviation, coefficient 
of variation, or interquartile range; measures of distribution symmetry or shape; and 
measures of association between two or more variables, such as correlation.  These measures 
can also be used to test hypotheses regarding the populations from which the data were 
drawn. 
 
 D-1.2.  In general, the sampling design influences how descriptive statistical quantities 
are calculated.  The formulas presented in this monograph are for simple random sampling, 
simple random sampling with composite samples, and randomized systematic sampling.  If 
more complex designs are used, such as a stratified design, then the formulas need to be ad-
justed.  All of these designs are addressed in Appendix C. 
 
 D-1.3.  In addition, the distribution of a data set may also influence how descriptive sta-
tistical quantities are calculated.  Most of the discussion in this Appendix will be centered on 
normal populations.  However, as detailed in Appendix F, it is not uncommon for environ-
mental data to follow other distributions.  The most commonly encountered alternative is the 
lognormal distribution.  This Appendix will also present how to calculate the mean and 
quantiles of the population for a lognormally distributed data set.  To estimate other parame-
ters, the reader is urged to refer to any of the excellent texts available, including those refer-
enced here. 
 
 D-1.4.  The terminology used in presenting general formulas and calculations for this 
exercise are standard.  Out of a total population N, let x1, x2, ... , xn represent the n data points, 
a sample set of n measurements.  Additional information on calculating descriptive statistics 
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for environmental applications can be found in the EPA/240/B-026/003, QA/G-9S and Gil-
bert (1987). 
 
D-2.  Measures of Central Tendency.  Measures of central tendency characterize the center of 
a set of measured data values.  The three most common estimates are the mean, median, and 
mode.  These are described below, and examples of calculating each of them are presented in 
Paragraph D-2.2 
 
 D-2.1.  Mean.  The mean is the most commonly used measure of central tendency.  The 
formula used to calculate the sample mean is a function of the sampling design.  The sample 
mean x  (arithmetic average) is the sum of the data points, nxxx ,,, 21  , divided by the total 
number of data points (n): 
 

n

x
x

n

i
i∑

== 1  (D-1) 

 
where ix  denotes the value of the ith point.  
 
 D-2.1.1.  If distribution testing suggests that data are lognormally distributed, then the 
descriptive statistics are best calculated using the transformed data (for each value

( )ii xLny = ).  Calculating the sample mean, x , is possible, even for lognormally distributed 
data.  Gilbert (1987) reports that x  may be used when the population coefficient of variation 
is small (i.e., less than 1.2).  Unfortunately, the sample mean is statistically biased for known 
lognormal conditions.  It is highly sensitive to a few large data values, as is typical of 
lognormal data.  There are alternatives for estimating the population mean that are not statis-
tically biased, and these are preferred. 
 
 D-2.1.2.  The preferred method for estimating the population mean of a lognormal pop-
ulation is calculated by:  
 
 ( )te n

yΨ=1µ̂  (D-2) 
 
where  
 
 y  = sample mean of the log-transformed data  

  n = number of data points 
  sy = sample standard deviation of the log-transformed data  

 Ψn(t) (with t = sy
2/2) = the following infinite series 
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 D-2.1.3.  This is the minimum variance unbiased estimate of the population mean.  
Likewise, the unbiased estimator of the variance of the mean is: 
 
 ( )[ ]{ [ ]}ttys nn ′Ψ−Ψ= 2

1
2 )2exp()ˆ(µ  (D-3) 

 
where 
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 D-2.1.4.  The infinite series may be evaluated on a computer or estimated from tables 
referenced in Gilbert (1987).  This method produces the minimum unbiased variance estima-
tor (statistically unbiased and smallest sampling error variance) of the mean for a lognormal 
population. 
 
 D-2.1.5.  Performing this calculation obviously can be laborious.  There is a simpler 
method for estimating the mean and variance of a lognormal population that arises in Gilbert 
and in EPA guidance documentation.  This method uses the formulas: 
 


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( )[ ]1expˆˆ 222 −= ysµσ  (D-4) 

 
 D-2.1.6.  However, the approach can produce poor (biased high) estimates of mean and 
variance for small data sets and is not recommended unless n is large (e.g., n > 50).  Para-
graph D-2.2 presents an example calculation for the mean of a lognormal population using 
the three methods. 
 
 D-2.1.7.  For complex sampling designs, such as stratification, the sample mean is a 
weighted arithmetic average of the sample means of the L strata.  Because a stratified sam-
pling plan weights the number of samples unequally among areas, the weights for each area 
are incorporated into the calculation of the average.  A weighted average is very similar to 
the arithmetic average, where an arithmetic average weights each sample result equally (with 
a weight of 1/n).  A weighted arithmetic average is calculated by: 
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where: 

 iw  = weight for the ith stratum  
 ix  = sample mean of the ith stratum 
  L = number of strata  
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1

=∑
=

L

i
iw  

 
 D-2.1.8.  For example, consider a stratified sampling plan that collects a total of n = 20 
samples from a site with L = 2 sub-groups, where 8 samples, x1i i = 1,…8, are collected in 
subgroup 1, and 12 samples, x2i i = 1,…12, are collected in subgroup 2.  If the average for the 
site is required and the two strata are assumed to be of equal area or volume, then the weights 
for the weighted average are ½ for the sample mean from subgroup 1 and ½ for the sample 
mean from subgroup 2 so that  
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and the overall mean is  
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 D-2.1.9.  Careful examination will show that each observation in subgroup 1 is 
weighted by 1/16 in the overall mean and each observation in subgroup 2 is weighted by 1/24 
in the overall mean. 
 
 D-2.1.10.  The mean is the “center of gravity.”  The mean is very sensitive to extreme 
values because each measurement, xi, is used to calculate the mean.  Note that the sample 
mean, x , is distinguished from the corresponding population parameter, the population 
mean, µ.  The population mean could hypothetically be calculated using Equation D-1 if it 
were possible to exhaustively sample the entire population.  The number of all possible data 
points from the population, N, would appear in the denominator of Equation D-1.  Typically, 
the number of data points in the sample data set, Nn <<  and the sample mean, x , is a “best” 
estimate of µ.  As previously stated, this section of the document focuses on sample statistics 
that are ultimately used to estimate the corresponding parameters. 
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 D-2.2.  Example of Lognormal Mean Calculations.  A group of arsenic measurements 
in soil were found to be lognormally distributed.  The sample analytical results (in mg/kg) 
are: 
 
SB1 SB2 SB3 SB4 SB5 SB6 SB7 SB8 SB9 SB10 
12.461 13.451 13.056 11.502 10.835 30.06 17.72 17.11 12.02 13.73 
 
 D-2.2.1.  Method 1.  Using the simple (albeit biased) population average method, the 
sample mean of these data is: 
 

n

x
x

n

i
i∑

== 1 = 15.19 mg/kg arsenic in soil.  

 
The sample variance s2 = 32.3.  Shapiro-Wilk testing (Appendix F) suggests that the lognor-
mal distribution cannot be rejected.  Also, the sample variance is high.  These data would be 
better treated as lognormal. 
 
 D-2.2.2.  Method 2.  To calculate the minimum unbiased variance estimator of the 
mean, we first take the natural logarithm of the data set and calculate the following: 
 

674.2=y ,   09060.02 =ys ,   0453.0
2

2

== ys
t . 

 
Using the minimum unbiased variance estimator, we see that the mean is 15.17 mg/kg.  
Method 1 above, which does not account for the lognormality, is biased high slightly. 
 
 D-2.2.3.  Method 3.  Others may choose to use the simpler Gilbert/EPA estimating 
method described above.  This alternative also yields a sample mean of about 15.17 mg/kg.  
This result is low relative to the simple averaging method, but in this case is nearly identical 
to the minimum unbiased variance estimator.  This is largely attributable to the low value of t 
in this example.  
 
 D-2.2.4.  Summary.  Ideally, with a computer, the method for minimum unbiased vari-
ance estimator of the mean for a lognormal population could be used.  In cases of large n, it 
is suitable to use the third, and relatively simpler, method. 
 
 D-2.3.  Median.  The sample median ( x~ ) is the second most common measure of cen-
tral tendency.  When measurements are ranked from lowest to highest, the median is the 
middle of the data set.  Half of the data are less than the sample median, and half of the data 
are greater than the sample median.  
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 D-2.3.1.  To compute the sample median, list the data from smallest to largest and label 
these points: 
 

)()2()1( ,,, nxxx   

So that )1(x  is the smallest, )2(x  is the second smallest, and so on, where )(nx  is the largest. 
 

 D-2.3.2.  The determination of the sample median depends upon whether the sample 
size n is odd or even: 
 

 
( )[ ]

( )[ ]







=
+

=

=
+

+

...6,4,2,
2

....5,3,1,
~

12/)2/(

2/1

n
xx

nx
x

nn

n

 

 
 D-2.3.3.  The median is also referred to as the 50th percentile, the value greater than or 
equal to 50 percent of the measurements.  Unlike the mean, the median is not influenced by 
extreme values.  The median is also more robust than the mean for censored data (when non-
detected results occur).  When data are symmetrical, the mean and median of the data are 
very similar.  If data are slightly skewed to higher values, the mean tends to be larger then 
the median because the mean is more influenced by these higher values than the median.  
Likewise, when data are skewed to lower values, the mean tends to be lower than the medi-
an. 
 
 D-2.4.  Mode.  The third method of measuring the center of the data is the mode.  The 
mode is the value of the sample that occurs with the greatest frequency.  To find the mode, 
count the number of times each value occurs.  As this value may not always exist, or if it 
does, it may not be unique, mode is the least commonly used measure of central tendency; 
however, it is useful for qualitative data. 
 
 D-2.5.  Examples for Calculating the Measures of Central Tendency.  Consider estimat-
ing the measures of central tendency for the subsurface soil background chromium results (in 
mg/kg) as follows: 4.60, 5.29, 4.26, 5.28, 4.53, 5.74, 5.86, and 3.84. 
 
 D-2.5.1.  Sample Mean.  The sample mean (in mg/kg) is:  
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(Note that the mean is reported as three significant figures to reflect the minimum number of 
significant figures in the original data set.) 
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 D-2.5.2.  Sample Median.  The data, from smallest to largest, are: 
 

5.86 5.74, 5.29, 5.28, 4.60, , 4.53 4.26, , 3.84 ,,, )()2()1( =nxxx  .  
 
As there are eight points (n is even), the median (in mg/kg) is: 
 

( )[ ] 4.94 
2

28.560.4
22

~ )5()4(12)2/( =
+

=
+

=
+

= + xxxx
x nn . 

 
 D-2.5.3.  Sample Mode.  In this example, mode does not exist since no value is repeat-
ed multiple times. 
 
D-3.  Measures of Relative Standing.  Sometimes the analyst is interested in knowing the rel-
ative position of one of several observations in relation to all of the observations.  Percentiles 
or quantiles are one such measure of relative standing that may also be useful for summariz-
ing data.  
 

a. The percentile is the data value that is greater than or equal to a given percentage 
of the data values.  

 
b. The quantile is an alternative name for percentile when speaking in fractions (pro-

portions) rather than in percents. 
 
 D-3.1.  Just as the mean is a measure of location at the center of data, percentiles and 
quantiles are measures of location at various positions of the data.  For a continuous variable 
X, the p100th percentile or p quantile, xp, is the data point that is greater than or equal to 
100p% of the data points and is less than or equal to (1 – p)100% of the data points.  For ex-
ample, if x is the 95% percentile (0.95 quantile), then it has the property that 95% (a propor-
tion 0.95 ) of the observations lie at or below xp and 5% (a proportion 0.05) of the data points 
lie at or above xp. 
 
 D-3.2.  The percentile and quantile for a discrete variable (i.e., a variable that may as-
sume only a finite number of values) is defined somewhat differently than for a continuous 
variable.  For a discrete variable X, Xp is the p quantile of X if  
 

P(X < Xp) ≤ p  
 
and  
 

P(X > Xp ) ≤ 1 – p 
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or equivalently,  
 
 P(X ≤ Xp) ≥ p. 
 
 D-3.3.  To calculate percentiles or quantiles for a set of n sample points (x1, x2, ..., xn), 
first list the data points from smallest to largest (x1, x2, ..., xn).  Multiply the sample size, n, by 
p. Divide the result into the integer part and the fractional part, i.e., let np = j + g where j is 
the integer part and g is the fraction part.  The thp100  percentile, xp, is calculated by:  
 

 







≠

=
+

=

+

+

0,

0,
2

)1(

)1()(

gx

g
xx

x
j

jj

p   

 
 D-3.4.  One example of a percentile is the median.  The median is the 50th percentile 
because half the results fall below this value and half of the results fall above this value.  A 
sample percentile may fall between a pair of observations.  For example, the 75th percentile 
of a data set of 10 observations is not uniquely defined.  
 
 D-3.5.  Important percentiles usually reviewed are the quartiles of the data.  The most 
common quartiles are 25th, 50th, and 75th percentiles.  The 25th and 75th percentiles can be 
used to estimate the dispersion of a data set (see Paragraph D-4).  Quartiles are discussed fur-
ther in Paragraph D-4 to explain the dispersion of the data. 
 
 D-3.6.  Also important for environmental data are the 90th, 95th, and 99th percentiles, 
where a decision-maker would like to be sure that 90, 95, or 99% of the contamination levels 
are below a fixed risk level.  Directions and examples for calculating the measures of relative 
standing are presented below in Paragraph D-4. 
 
 D-3.7.  Estimating quantiles in lognormal populations arises frequently in environmen-
tal applications.  Of course, a probability plot may be used to estimate the quantiles, after the 
data are transformed and plotted.  Alternatively, a mathematical method is recommended in 
Gilbert (1987).  Simply, 
 

( )ypp sZyx += expˆ  (D-6) 
 
where pZ  is the value of the cumulative normal distribution for the pth quantile.  For the data 
in the preceding example (Paragraph D-2.2), the 99th quantile of the data is 
 

( ) 1.29301.0326.267.2expˆ 95.0 =×+=x  mg/kg. 
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D-4.  Calculating the Measures of Relative Standing (Percentiles).  The 95th, 75th, and 25th 
percentiles will be computed for the eight subsurface soil background chromium results (in 
mg/kg), ordered from lowest to highest, as follows: 3.84, 4.26, 4.53, 4.60, 5.28, 5.29, 5.74, 
and 5.86. 
 
 D-4.1.  For the 95th percentile, 95.0=p  and 
 6.7)95.0)(8( ==np  
 
Therefore: 
 
 gjnp +=  
 
 6.076.7 +=  
 
So: j = 7 and g = 0.6. 
 
 D-4.2.  Since g ≠ 0, x(p) = x(j+1).  The 95th percentile of this data set is: 
 
 86.5)8()17(95.0 === + xxx  mg/kg 
 
Note that 100% of the data points (8 out of 8 values) rather than 95% of the measurements 
are less than or equal to the 95th percentile.  The 95th percentile is being calculated for the set 
of eight measured chromium values and not for the set of all possible values of chromium.  
The set of measured chromium concentrations is a discrete variable (there are only eight pos-
sible values for chromium).  If a larger number of measurements were made, nearly (or pre-
cisely) 95% of the measurements would be less than or equal to the 95th percentile.  
 
 D-4.3.  For the 75th percentile, 75.0=p  and  
 
 6)75.0)(8( ==np . 
 
Therefore: 
 
 gjnp +=  
 
 0.066 +=  
 
So: j = 6 and g = 0. 
 
 D-4.4.   The 75th percentile of these data is: 
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52.5
2

74.529.5
2

)7()6(
75.0 =

+
=

+
=

xx
x mg/kg.  

 
Note that 6 out of the 8 measured values (0.75 of the total number of observations) are less 
than or equal to the 75th percentile 5.52 mg/kg. 

 D-4.5.  For the 25th percentile, 25.0=p  and 
 

2)25.0)(8( ==np   
 
Therefore: 
 

gjnp +=  
 

0.022 +=  
 
So: j = 2 and g = 0.  
 
 D-4.6.  The 25th percentile of these data is: 
 

40.4
2

53.426.4
2

)3()2(
25.0 =

+
=

+
=

xx
x mg/kg. 

 
D-5.  Measures of Dispersion. 
 
 D-5.1.  Introduction.  Measures of central tendency are more meaningful if accompa-
nied by information on how the data spread out from the center.  Measures of dispersion or 
variability in a data set include the sample range, variance, standard deviation, coefficient of 
variation, and the interquartile range.  Directions for calculating these measures of dispersion 
follow, and examples are presented in Paragraph D-6. 
 
 D-5.1.1.  Range.  This is the difference between the largest and smallest result from the 
data set. 
 
 D-5.1.2.  Variance.  This is a measurement of the dispersion or deviation of results from 
the mean of a data set. 
 
 D-5.1.3.  Standard Deviation.  This is the square root of the sample variance, it has the 
same unit of measure as the original data. 
 
 D-5.1.4.  Coefficient of Variation (CV).  This is sometimes called the relative standard 
deviation (RSD), a unitless measure equal to the standard deviation divided by the mean. 
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 D-5.1.5.  Interquartile Range.  This is the difference between the 75th and 25th percen-
tiles, it measures the central 50% of the results in the data set. 
 
 D-5.2.  Sample Range.  The simplest measure of dispersion to compute is the sample 
range.  The sample range (R) is the difference between the largest value and the smallest val-
ue of the sample: 
 

)1()( xxR n −=  (D-7) 
 
where:  
 

)(nx  = largest ordered value  

)1(x  = smallest ordered value 
 
For small samples, the range is easy to interpret and may adequately represent the dispersion 
of the data.  For large samples, the range is not very informative because it only considers 
(and is greatly influenced by) extreme values. 

 D-5.3.  Sample Variance.  The sample variance measures the dispersion or deviation of 
results from the mean of a data set. 

 D-5.3.1.  To find the sample variance ( 2s ), compute: 

 
1

)(
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2
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−
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n

xx
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n

i
i

  (D-8) 

 D-5.3.2.  If the variance is being manually calculated, a simpler version of this calcula-
tion is the following: 
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n
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  (D-9) 

 D-5.3.3.  However, this version should not be used when calculating the variance with a 
computer because too much rounding error is introduced into this calculation. 
 
 D-5.3.4.  A large sample variance implies that there is a large spread among the data, 
that the data are not clustered tightly around the mean.  A small sample variance implies that 
there is little spread among the data, and that most of the data are near the mean.  Like the 
mean, the sample variance is affected by extreme values and by a large number of non-
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detected results.  Note that the sample variance s2 is distinguished from the corresponding 
population parameter, the population variance, σ2. 

 D-5.4.  Sample Standard Deviation.  The sample standard deviation has the same unit 
of measure as the original data.  The sample standard deviation (s) is the square root of the 
sample variance: 
 

2ss =  (D-10) 

Frequently, the sample standard deviation will not be an appropriate measure of dispersion 
unless the data are normally distributed.  
 
 D-5.5.  Sample Coefficient of Variation.  The CV or RSD is a unitless measure that  

allows the comparison of dispersion across several sets of data because it is scaled to the 
mean.  The sample CV is the sample standard deviation divided by the sample mean: 

x
s

=CV   (D-11) 

 
The CV is often expressed as a percentage:  
 

%100%RSD
x
s

= .  

 
The CV is often used in environmental applications because variability (expressed as a 
standard deviation) is often proportional to the mean. 
 
 D-5.6.  Sample Interquartile Range (IQR).  When extreme values are present, the inter-
quartile range may be more representative of dispersion in the data than the standard devia-
tion.  This range is not heavily influenced by extreme values because it measures the spread 
within the center portion of a data set, rather than include the most extreme values as does 
the range.  As a result, it is useful when the data include a large number of non-detects.  Use 
the directions in Paragraph D-6 to compute the 25th and 75th percentiles of the data (x0.25 and 
x0.75 respectively).  Then, 
 
 25.075.0IQR xx −=  (D-12) 
 
D-6.  Examples for Calculating the Measures of Dispersion.  Consider estimating the 
measures of dispersion for subsurface soil chromium results (in mg/kg) as follows: 4.60, 
5.29, 4.26, 5.28, 4.53, 5.74, 5.86, and 3.84.  The data are ordered as follows:  
 
 5.86 5.74, 5.29, 5.28, 4.60, , 4.53 4.26, , 3.84 ,,, )()2()1( =nxxx  . 
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 D-6.1.  Sample Range (R).  The sample range is simply: 
 
 )1()( xxR n −= 84.386.5 −= 02.2=  
 
 D-6.2.  Sample Variance (s2).  Before the variance can be computed, the mean must be 
computed.  The mean was computed in Paragraph D-2.2 and is 4.93 mg/kg.  Both methods of 
calculating the variance are illustrated below:  
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 5255.0=  
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( ) ( )2 2 2 2 2 2 2 2 24.60 5.29  4.26  5.28  4.53 5.74  5.86 3.84 8 4.925

8 1 8 1
+ + + + + + + ×

= −
− −

 

 
 5255.0=  

 D-6.3.  Sample Standard Deviation (s). 
 

 5255.02 == ss 7249.0=  
 
 D-6.4.  Sample Coefficient of Variation (CV). 
 

 
x
s

=CV
925.4

7249.0
= = 0.1472 

 
 D-6.5.  Sample Interquartile Range (IQR).  The 25th and 75th percentiles of the data, 25.0x
and 75.0x  respectively, were computed in Paragraph D-4.  So: 
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 25.075.0IQR xx −= 395.4515.5 −= 12.1=  
 
Note that the single data set presented above results in a number of different numerical val-
ues that all summarize dispersion: 
 

Range  IQR  s s2 CV 
2.0 mg/kg 1.1 mg/kg 0.72 mg/kg 0.52 mg2/kg2 0.15 
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APPENDIX E 
Statistical Distributions 

 
Section I 
Introduction 

E-1.  One of the essential decisions that precedes many statistical calculations is determining 
the statistical distribution.  Whether the data can be classified as normally distributed, 
lognormally distributed, meeting some other distribution, or meeting no distributional as-
sumption, dictates how subsequent calculations and statistical tests are chosen and conduced.  
Distributional assumptions are common in statistical analyses, especially assumptions of 
normality.  Data from environmental studies tend to be skewed rather than following a clas-
sical bell-shaped curve, or normal distribution.  Thus, verifying distributional assumptions is 
critical to a successful statistical analysis. 
 
E-2.  To provide an objective basis for making this decision, statistical tests are available and 
discussed in this Appendix.  Tests can be applied to the untransformed data when testing for 
normality or to the log-transformed data when testing for lognormality.  Normal probability 
plots should also be constructed and examined as described in Appendix J. 
 
Section II 
Probability Distributions 

E-3.  Introduction.  Many statistical tests and models are appropriate only for data that follow 
a particular distribution.  For a continuous variable X (e.g., the concentration of a contami-
nant), the distribution is modeled by a mathematical function of the form: P = P(X), where 
P(X) is referred to as the probability density function or probability distribution.  A plot of  
P versus X generates a curve.  The area (integral) under the curve between any two points,  
Xa and Xb, gives the probability that the random variable X lies between the two points,  
P(Xa ≤ X ≤ Xb), which will be a number between 0 and 1.  The total area under the entire 
curve is always 1.  Figure E-1 plots P(X) and shows how P(5 < X < 6) would be found. 
 
 E-3.1.  A common use of probability density functions is to calculate population per-
centiles for the distribution.  For example, if X0.95 is the value such that P(X ≤ X0.95) = 0.95, 
then X0.95 is referred to as the 95th (population) percentile or 0.95 quantile of X.  In general, 
Xp denotes the p100th percentile or p quantile of X. Appendix D covers techniques to estimate 
the population percentile from sample data. 
 
 E-3.2.  Two of the most important distributions for tests involving environmental data 
are the normal and the lognormal probability distributions.  When a parametric statistical test 
is performed on some set of measured values of X ( nxxx ,,, 21  ), some specific probability 
density function, P(X), is either known or assumed.  This section will provide guidance for 
determining if the distributional assumption of a given statistical test is satisfied; in  
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particular, the assumption of normality, as this assumption is fundamental to virtually all 
parametric statistical tests.  
 

2 3 4 5 6 7 8

X

0.0

0.1

0.2

0.3
P(5<X<6)

 
Figure E-1.  Probability Density Function. 

 
 E-3.3.  Normal Distribution.  If the variable X possesses a normal or Gaussian distribu-
tion (i.e., is said to be normally distributed), then the probability density function for X is  
 

 

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

 −
−= 2
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2
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σ
µ

πσ
XXP  . (E-1) 

 
 E-3.3.1.  A plot of X versus P(X) generates a bell-shaped curve.  Two such curves are 
shown in Figure E-2.  The function P(X) depends on two parameters (constants), the popula-
tion mean, µ , and the population standard deviation, σ , where 0>σ .  It is often useful to 
work with the square of the standard deviation, 2σ , which is referred to as the population 
variance.  Note that the normal distribution is symmetrically centered about the mean, µ , and 
tapers off rapidly at the tails.   

Because exactly 50% of the distribution falls below the mean, the median (50th percentile) of 
the normal distribution is equal to the mean.  The value of the parameter σ  affects the shape 
of the distribution.  In particular, as shown in Figure E-2, as the value of the standard devia-
tion is increased from 1σ  to some value 12 σσ > , the “spread” of the distribution about the 
mean increases.  Because a normal distribution depends upon the parameters, µ  and σ , it is 
often denoted by ( )σµ,N . 

 E-3.3.2.  The normal distribution is critical because measurement data (e.g., a set of 
concentration measurements) can often be modeled by it.  When it is known or it can be as-
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sumed that a set of measurements, nxxx ,,, 21  , follow a normal distribution, then the sample 
mean, x , is a good estimate of the population mean, µ .  Also the sample standard deviation, 
s , is a good estimate for the population standard deviation, σ .  (Refer to Appendix D for the 
definitions of the sample mean and standard deviation.)   

            
 Figure E-2.  Normal Distribution.   Figure E-3.  Standard Normal (Z) Curve. 
 
 E-3.3.3.  It can be shown, if the random variable X possesses a normal distribution, then 
the random variable has a standard normal distribution, ( )1,0N . 
 

 ( )
σ

µ−
=

XZ  (E-2) 

 
The probability density function of the standard normal distribution is illustrated in Figure E-
3.  Using the notation from above, we can denote the p100th percentile (p quantile) of Z  as 
Zp.  The standard normal distribution is important since the percentiles Zp are commonly 
listed in statistical tables like Table B-15.  
 
 E-3.3.4.  For example, if random variable X is ( )2,3N , we can use Table B-15 to find 

95.0X  as follows.  Find the closest value to 0.95 in the interior of Table B-15.  In this case 
0.9495 and 0.9505 are equally distant.  Find 95.0Z  by the value to the far left of the row found 
in the last step and the top of the column.  Here, it is necessary to interpolate between 1.64 
and 1.65 to get 645.195.0 =Z .  Figure E-4 demonstrates that 95% of the area under the stand-
ard normal density curve (the shaded area) lies to the left of 1.645.  Returning to the stated 
problem, solve Equation E-2 for X to get: 
 
 σµ pp ZX +=  (E-3) 
 
so in this example, 
 
 29.6)2(645.1395.0 =+=X . 

X
µ

σ1

σ2

σ1 < σ2

-4 -2 0 2 4

Z
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σ = 1
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-3 -2 -1 0 1 2 3 4
Z

Z0.95 = 1.645

 
Figure E-4.  95th Percentile of the Standard Normal Distribution. 

 
 E-3.3.5.  Because the standard normal distribution is symmetrical about a mean of zero, 
Z1–α = –Zα.  Thus, the area of the standard normal curve that falls between Z1–α and Zα is 
equal to 1 – 2α (e.g., for α = 0.05, 90% of the distribution falls between Z0.05 = –1.645 to 
Z0.95 = 1.645).  It follows from Equation E-1 that, in terms of the variable X, the proportion  
1 – 2α (equivalently, 100(1 – 2α)%) of the distribution falls between Xα = µ + Zα σ and  
X1-α = µ + Z1–α σ.  Because Z1–α = –Zα, 100(1 – 2α)% of the distribution falls within  
µ ± Z1–ασ.  Some examples are presented below: 
 

a. 90% of the distribution (α = 0.05) falls within the interval µ ± 1.645σ. 
 
b.95% of the distribution (α = 0.025) falls within the interval µ ± 1.960σ. 

 
c. 99% of the distribution (α = 0.005) falls within the interval µ ± 2.576σ. 

 
d.99.9% of the distribution (α = 0.0005) falls within the interval µ ± 3.291σ. 

 
 E-3.3.6.  Thus, approximately 95% of the distribution falls within two standard devia-
tions of the mean (µ ± 2σ) and over 99% (in fact, about 99.7%) of the distribution falls with-
in three standard deviations of the mean (µ ± 3σ).  It can similarly be shown that about 68% 
of the distribution falls within one standard deviation of the mean. 
 
 E-3.3.7.  Finally, a useful property of the normal distributions is that that any linear 
combination of normally distributed variables will also be normally distributed.  In  
particular, let  
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 ( )
n

XXX
Y n+++

=
21  

 
where each random variable iX  follows the same normal distribution ( )σµ,N .  It can be 
shown that the random variable Y is distributed as  
 

 







n

N σµ, .  

 
This is extremely useful because the definition of Y is very similar to the definition of the 
sample mean, x , presented in Appendix G.  Thus, if the variable X is normally distributed, 
with mean µ and standard deviation σ, a set of n measurements of X are taken, the sample 
mean x  is calculated for the set of n measurements, and this process could be repeated indef-
initely.  The resulting distribution of values of the sample mean will be normally distributed 
with mean and standard deviation: 

 µµ =x ,  nx /σσ =  
 
 E-3.3.8.  It also follows that 
 

 ( )
( )n
xZ
σ

µ−
=  (E-4) 

 
will follow a standard normal distribution.  Although σ  is not typically known, it can be 
shown that for sufficiently large n, is closely approximated by a standard normal 
 

 ( )
( )ns
xZ µ−

=  (E-5) 

distribution.  Furthermore, if X is normally distributed and n is large, then an approximate 
p100% upper bound can be calculated for the population mean from the above equation. 
 
 )/( nsZx p+≤µ  (E-6) 
 
 E-3.3.9.  The right side of inequality is approximately the p100% upper one-sided con-
fidence limit (UCL) of the population mean.  For example, if p = 0.95, then the right side of 
the inequality is the 95% UCL of the population mean.  For p = 0.95, the population mean µ 
will be less than the UCL an average of 95 out of 100 times.  The calculation of a 95% UCL 
is typically used in environmental risk assessments. 
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 E-3.3.10.  Lastly, it should be noted that the UCL is useful because of the central limit 
theorem.  According to the central limit theorem, Equation E-6 is approximately valid for n 
sufficiently large regardless of whether or not the measurement variable X is normally dis-
tributed.  The central limits theorem is discussed below. 
 
E-4.  Central Limit Theorem.  The central limit theorem states: 

“If a variable X possesses ANY probability distribution with mean (µ) and  
finite standard deviation (σ), then the sample mean ( x ) will be approximately 
normally distributed with mean (µ) and standard deviation ( )/ nσ ) if n is suf-
ficiently large.” 

 
 E-4.1.  In other words, if a set of n data points is collected and the sample mean is cal-
culated, and this process is repeated many times and all the resulting values of sample mean 
are plotted (on a histogram), then the resulting distribution will be approximately normal if  
n is large (i.e., n > 50).  As the size of the sample increases, the mean of that sample acts in-
creasingly as if it came from a normal distribution regardless of the true distribution of the 
individual values.  As a consequence, statistical tests that require normality may be per-
formed using the sample mean.  Thus, large sample sizes are desirable within the limits im-
posed by available resources. 
 
 E-4.2.  The central limit theorem is important for environmental applications, because 
the mean of a random sample of observations or measurements is frequently of interest (for 
example, to calculate an exposure point concentration for a risk assessment).  Furthermore, 
no actual environmental data set is completely normal.  The assumption of normality for any 
data set will always be an approximation.  In many cases, the normality based statistical tests 
are not overly affected by a small or even moderate deviation from normality as the tests are 
robust (sturdy) and perform tolerably well, unless gross non-normality is present.  The cen-
tral limit theorem ensures that tests become increasingly tolerant of deviations from normali-
ty as the number of individual samples constituting the sample mean increases.  
 
E-5.  Student’s t Distribution.  The Student’s t distribution is a continuous probability distri-
bution that is similar in shape to the standard normal distribution.  Like the standard normal 
distribution, the t distribution is a bell-shaped curve that is symmetrical about a mean of zero.  
However, the t distribution is somewhat flatter in the center and possesses fatter tails than the 
standard normal distribution.  Furthermore, the shape of the t distribution is dependent upon 
the “degrees of freedom,” ν (the Greek letter nu).  Each value of ν (ν = 1, 2, 3 …) gives rise 
to a different t distribution curve.  The degree of “fatness” in the tails of a t distribution de-
pends upon the value of ν.  As ν increases, the t distribution approaches a normal distribu-
tion.  These properties are illustrated in Figure E-5.  For most practical applications, the t 
distribution may be approximated using a standard normal distribution when ν > 30.  The 
mathematical function that defines the probability distribution is more complex than that for 
the normal distribution and is not presented. 
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 E-5.1.  The standard normal curve is used when the mean (µ) and standard deviation 
(σ) of a normally distributed population of interest are known.  When only an estimate of the 
standard deviation (s) is available from a sample, the t distribution applies.  More precisely, 
if the variable X possesses a normal distribution, then the variable: 
 

 
n

s
xt µ

ν
−

=  (E-7) 

 
possesses a t distribution with 1−= nν  degrees of freedom.  The p100% percentiles (p 
quantiles) of the t distribution are denoted as tp,ν.  This value can be found using Table B-23.  
Find the row matching the degrees of freedom, ν , on the left side of the table.  Find the col-
umn containing the value p along the top of the table.  The value of tp,ν is found at the inter-
section of this row and column.  For example, t0.95,10 = 1.812. 
 
 E-5.2.  Note that the equation that defines tp,ν provides the basis for calculating an upper 
bound for the mean (µ) when µ is unknown but the sample mean is normally distributed.  It 
can be shown that 
 

 )(, n
stx p νµ +≤  (E-8) 

 
where the sample mean ( x ) and the sample standard deviation (s) are calculated for some set 
of n data points and the value tp,ν is obtained from Table B-23.  Roughly speaking, the proba-
bility that the population mean will be less than or equal to the right side of the above ine-
quality is p100%.  The right side of the above inequality is referred to as the upper one-sided 
p100% confidence limit of the population mean or simply as the 95% UCL of the population 
mean. 

 
Figure E-5.  Comparison of Student’s t-Distribution with Standard Normal Distribution. 
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E-6.  Lognormal Distribution.  It is not uncommon for environmental data to follow a 
lognormal distribution.  Data collected from contaminated sites often possess a skewed prob-
ability distribution that is easily modeled by a lognormal distribution (EPA 600/R-97/006).  
This occurs because contaminant concentrations are constrained to be non-zero values, with 
very high values near a source and declining contaminant concentrations away from source 
areas. 
 
 E-6.1.  The lognormal distribution is a continuous, non-symmetrical, positively skewed 
probability distribution that is bounded to the left by zero.  However, like the normal distri-
bution, the lognormal distribution is completely characterized by two parameters that repre-
sent the population mean and standard deviation of the log-transformed distribution.  Several 
lognormal distributions are shown in Figure E-6. 
 
 E-6.2.  There is a simple relationship between the normal and lognormal distributions.  
If X is lognormally distributed, then Y = Ln(X) is normally distributed.  Though the probabil-
ity distribution is a non-symmetrical, positively skewed curve (where the median of the dis-
tribution is less than the mean), the probability distribution for Y = Ln(X) is the symmetrical, 
bell-shaped normal curve.  It is a common practice to transform data using the natural log 
function to achieve approximate normality prior to conducting statistical tests.  Just as the 
notation N(µ, σ) was used to denote a normal distribution, a lognormal distribution will be 
denoted by Λ(µ, σ2), where µ and σ2, denote the population mean and variance, respectively, 
of the normally distributed variable Y = Ln(X) (rather than the lognormally distributed varia-
ble X).  For brevity, the following notation will be used to indicate that X possesses a log 
normal distribution: X ∼ Λ(µ, σ2), or, equivalently, Ln(X) ∼ N(µ, σ). 

 
Figure E-6. Lognormal Distributions. 

 
 E-6.3.  Because any linear combination of normally independent distributed variables 
will be also be normally distributed, owing to the relationship Y = Ln(X), the product a set of 
independent lognormally distributed variables will also be lognormally distributed.  For ex-
ample, if X1 ∼ Λ(µ1, σ1

2), and X2 ∼ Λ(µ2, σ2
2), then  

0 1 2 3 4 5 6 7 8

X µ = 1

σ = 1
σ = 0.5

σ = 2
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 X1 X2 ∼ Λ(µ1+ µ2, σ1

2 + σ2
2)  

 
 X1/X2 ∼ Λ(µ1 – µ2, σ1

2 + σ2
2).  

 
Also, if X ∼ Λ(µ, σ 2), then  
 
 cXb ∼ Λ(aµ + b, b2σ 2) 
 
where c and b are constants, where c = exp(a) > 0 and b ≠ 0. 
 
 E-6.4.  The lognormal distribution Λ(µ, σ 2) is mathematically described by: 
 

 ( )







 −
−= 2

2

2
)(exp1

2
1)(

σ
µ

πσ
XLn

X
XP . (E-9) 

 
The population mean, Xµ , and standard deviation, Xσ , of the lognormally distributed varia-
ble X are calculated as: 
 

 







+=

2
exp

2σµµ X  (E-10) 

 ( ) ( )[ ] ]1)[exp(1exp2exp 22222 −=−+= σµσσµσ XX . (E-11) 
 
It follows that the (population) coefficient of variation of X is 
 

[ ] 2/12 1)exp(/ −== σσµ XXCV . 
 
The p100% population percentile (p quantile), Xp, can be found from the corresponding 
p100% percentile of the standard normal distribution, Zp, as follows: 
 
 ( )σµ pP ZX += exp . (E-12) 
 
E-7.  Binomial Distribution.  The binomial distribution is useful in describing the number of 
successful outcomes, K , from a set number of observations, n .  The distribution is consid-
ered binomial if the following conditions are satisfied (Moore, 1999): 
 

a. The number of observations, n, is fixed. 
 
b. The n observations are all independent; that is, each observation has no effect on 

any other. 
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c. Each observation falls into one of two mutually exclusive categories: Each observa-
tion is either a “success” or a “failure.” 

 
d. The probability each observation is a “success” is p. (The probability each observa-

tion is a “failure” is 1– p). 
 

 E-7.1.  A common example that gives rise to a binomial distribution would be counting 
the number of heads (successes) obtained from flipping a coin a set number of times.  As the 
number of successful outcomes, K , is a discrete rather than continuous random variable, 
then the value of the variable K can equal any integer value from 0 to n .  The binomial 
probability distribution is described mathematically by: 
 

 ( ) ( )
knk pp

knk
nkKP −−
−

== )1(
!!

!  . (E-13) 

 
The population mean, µ , and standard deviation, σ , are given by: 
 
 np=µ  (E-14) 
 
 ( )pnp −= 1σ  . (E-15) 

 E-7.2.  Table B-1 gives probabilities for the binomial in terms of cumulative probability 
distribution.  That is, the table reports: 
 

 ( ) ( )∑
=

−−
−

=≤
k

i

ini pp
ini

nkKP
1

)1(
!!

!  . (E-16) 

 
For example, for n = 4 and p = 0.5, ( ) 6875.02 =≤KP . 
 
 E-7.3.  The binomial distribution under certain conditions can be related to the normal 
distribution (and the Poisson distribution, as seen in Paragraph E-8).  In particular, as n  be-
comes large, the binomial distribution gets close to a normal distribution with mean, np , and 
standard deviation, ( )pnp −1 .  As a rule, this approximation should be used only when both 
np  and ( )pn −1  are larger than 10 (Moore, 1999). 
 
E-8.  Poisson Distribution.  The Poisson distribution is useful in describing the number of 
occurrences of an event over a fixed interval of time.  A distribution is considered a Poisson 
distribution if the following conditions are satisfied: 
 

a.  The event is a rare occurrence. 
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b.  The occurrence of two or more events in a small interval of time is zero. 
 
c.  A large number of independent observations are made. 
 
d.  The average number of occurrences, λ,, over some fixed interval of time is constant 

(Mason et al., 1989). 
 
 E-8.1.  The Poisson distribution is typically used to describe or predict rare events.   
Data from a Poisson distribution must be independent and must be composed of only two re-
sponses, such as detected or not detected.  Poisson distributions are common when counting 
the number of detected or not detected occurrences with environmental data that contain only 
a small percentage of detected concentrations.  The probability for one of the two mutually 
exclusive outcomes must be small.  Therefore, the Poisson distribution can be used for highly 
censored environmental data because the detection of an analyte in a sample would constitute 
a rare event.  This often occurs for background data when organics are being analyzed (most 
of the results are reported as not detected).  
 
 E-8.2.  The Poisson distribution can be used with background data to calculate upper 
limits for the number of detections for each organic analyte.  The limits would subsequently 
be compared to the study area data to determine if detections for a given organic analyte are 
being obtained more frequently for the study area than for the background  
area. 
 
 E-8.3.  The Poisson distribution may be used for highly censored environmental data in 
one of two ways.  In the first approach, X denotes the number of times an analyte is detected.  
If the variable X follows a Poisson distribution, then the probability density function is de-
scribed mathematically by: 
 

 ( )
!

xeP X x
x

µµ −

= =  (E-17) 

 
where µ  denotes the mean of the Poisson distribution (such as the average number of times 
the analyte is detected).  For example, if n  analyses are performed ( n  background wells are 
analyzed for an analyte) and the analyte is detected k  times, then the average number of de-
tections, µ , is approximately: 
 

 .
n
kx =≈µ  

 
Data following a Poisson distribution have an equal mean and variance (i.e., µ = σ2).  
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 E-8.4.  When n is large and p is small, the binomial distribution and the Poisson distri-
bution give similar results.  If follows from Equation E-14 that the probability of detecting 
the given analyte k  out of n  times can be calculated using the binomial distribution using 
the relationship: 
 

 2n
k

n
p ≈=

µ  . 

 
Therefore, 
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 E-8.5  For example, if 6=k and 100=n , then 
 

  06.0
100

6
==≈ xµ   

 
and  
 

 .0006.0
100

6
22 ==≈=

n
k

n
p µ   

 
Using the Poisson distribution, we find that the probability of one detection is  
 

 056506.0
!1

06.0)1(
06.01

===
−eXP  . 

 
Using the binomial distribution, we find that the probability is: 
 

 ( ) ( ) 056539.0)0006.01()0006.0(
!1100!1

!1001 11001 =−
−

== −KP  . 

 
As previously stated, these probabilities are very similar as p is small and n is large. 
 
 E-8.6.  In a second approach, X  may denote the concentration per sample rather than 
the number of detections.  In this context, sometimes referred to as the “molecular ap-
proach,” n samples are analyzed, the analyte is detected in the ith sample at a concentration of

ix , and units for the n  measurements are selected such that 1>ix .  For example, 
2μg / L 2ppb.ix = =  In this example, the ith sample is detected at two units or occurrences per 
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billion units of sample examined.  (The Poisson distribution is appropriate since the ratio of 
analyte to sample is small.)  The mean concentration per sample (mean number of units per 
billion units of sample examined) will be: 
 

 .
1

∑
=

=≈
n

i

i

n
x

xµ   (E-18) 

 
Using this approach, we can readily calculate the probability that the analyte will be detected 
at a concentration X  when X is a whole number.  
 
 E-8.7.  Note the difference between the two approaches.  For the first approach, the 
mean number of detections for a set of n samples is being calculated.  A detection, regardless 
of the magnitude of the reported concentration greater than the detection limit, consists of a 
unit count for the calculation of the mean.  In the second approach, the mean concentration or 
number of counts per sample is being calculated; thus, the magnitude of detected concentra-
tions for an individual sample influences the estimation of the mean. 
 
 E-8.8.  A useful property of the Poisson distribution is that, if the independent variables 
X1, X2…Xn possess Poisson distributions with means µ1, µ2…µn, respectively, then the sum of 
the variables 

 ∑
=

=
n

i
iXY

1

 

 
has a Poisson distribution with mean 
 

 ∑
=

=
n

i
iY

1
µµ  . 

 

Therefore, if all of the means µi = µ, it follows that µµ nY =  and ∑
=

=≈=
n

i

iY

n
x

x
n 1

µ
µ .  

 
 E-8.9.  As the parameter, µ , becomes very large, the Poisson distribution can also be 
approximated by a normal distribution.  In this case the mean and variance of the normal dis-
tribution equal to µ . 
 
E-9.  Nonparametric (Distribution Free).  Nonparametric statistical methods are used when it 
is inappropriate to assume some underlying distribution for a data set (when a data set does 
not conform to some desired theoretical probability distribution).  Sometimes it is difficult to 
verify or satisfy the assumptions that are associated with parametric distributions, such as 
normal and lognormal distributions for environmental data sets.  Using parametric statistical 
tests when the appropriate assumptions have not been met can result in inaccurate 
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conclusions.  In this situation, nonparametric (distribution free) statistical procedures would 
be appropriate and recommended (Gilbert, 1987; Hahn and Meeker, 1991). 
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APPENDIX F 

Testing for Normality 

 

Section I 

Methods for Determining Normality 

 

F-1.  Introduction.  As previously stated, the assumption of normality is important because it 

is required for many statistical tests.  A normal, or Gaussian, distribution is one of the most 

common probability distributions used for the analysis of environmental data.  A normal dis-

tribution is a reasonable model of the behavior of certain random phenomena and can often 

be used to approximate other probability distributions.  In addition, the central limit theorem 

and other limit theorems state that, as the sample size gets large, some of the sample sum-

mary statistics (e.g., the sample mean) behave as if they are a normally distributed variable.  

As a result, a common assumption associated with parametric tests or statistical models is 

that the errors associated with data or models follow a normal distribution.  Therefore, this 

Appendix will focus on statistical tests that are used to determine whether normality can be 

reasonable assumed for a set of measured results. 

 

 F-1.1.  In general, any distribution assumption should be verified using a combination 

of graphical plots and statistical tests.  Environmental data commonly exhibit frequency dis-

tributions that are non-negative and positively skewed (i.e., possess long right tails).  Several 

parametric probability distributions have these properties, including the Weibull, gamma, 

and lognormal distributions.  The methods for testing for normality described in this  

Appendix can be used to test for lognormality if a logarithmic transformation has been  

applied to the data. 

 

 F-1.2.  There are many methods available for verifying the assumption of normality, 

ranging from simple to complex.  They are listed in Table F-1 below.  It should be noted that 

statistical tests for normality do not actually demonstrate normality but the lack of normality.  

They rely on the probability a given data set is normal (e.g., statistical software typically re-

ports a “p value” for the hypothesis that the population distribution is normal).  If the proba-

bility is low (e.g. 01.0p ), one “rejects the assumption of normality,” that is, one 

concludes, based upon weight of evidence, that the data set is not normal.  However, if the 

assumption of normality is not rejected, then, strictly speaking, the statistical test is inconclu-

sive; the data may or may not be normal.  This constitutes an additional reason to visually 

examine the data set for normality and to decide whether to proceed with a statistical test that 

requires normality.  In practice, if the assumption of normality is not rejected and graphical 

plots suggest normality, the statistical tests that rely upon normality are typically used. 

 

 

 

 



 

 

 

 

EM 200-1-16 

31 May 13 

 
F-2 

 

 

Table F-1. 

Methods Available To Verify the Assumption of Normality 

Test Sample Size, n Recommended Use 

Graphical Methods Any 
Highly recommended in conjunction with test 

methods. 

Shapiro-Wilk W Test  50 

Highly recommended 

(D’Agostino’s test may be used when sample size 

is between 50 and 1000). 

Filliben’s Statistic  100 Highly recommended. 

Coefficient of Varia-

tion Test 
Any 

Only use to quickly discard an assumption of  

normality and for screening only.   

Geary’s Test > 50 
Useful when tables for other tests are not availa-

ble. 

Studentized Range 

Test 
 1000 

Use for screening purposes only. 

Chi-square Test Large 
Useful for grouped data and when the comparison 

distribution is known. 

Lilliefors Kolmogo-

rov-Smirnoff Test 
> 50 

Useful when tables for other tests are not availa-

ble. 

 

F-2.  Graphical Methods. 

 

 F-2.1.  Graphical methods present qualitative information about data sets that may not 

be apparent from statistical tests.  Histograms and normal probability plots are some graph-

ical methods that are useful for determining whether data follow a normal curve.  The histo-

gram of a normal distribution is bell-shaped.  The normal probability plot (Appendix J) of a 

normal distribution follows a straight line.  For non-normally distributed data, there will be 

large deviations in the tails or middle of a normal probability plot.  Extreme deviations from 

normality are often readily identified from graphical methods.  However, in many instances 

the decision is not straightforward.  Using a plot to decide whether a data set is normally dis-

tributed involves making a subjective decision; formal test procedures are usually necessary 

to test the assumption of normality. 

 

 F-2.2.  In general, both statistical tests and graphical plots should be used to evaluate 

normality.  The assumption of normality should not be rejected on the basis of a statistical 

test alone.  In particular, when a large number of data are available, statistical tests for nor-

mality can be sensitive to very small (i.e., negligible) deviations in normality.  Therefore, if a 

very large number of data are available, a statistical test may reject the assumption of nor-

mality when the data set, as shown using graphical methods, is essentially normal and the 

deviation from normality too small to be of practical significance. 
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F-3.  Shapiro-Wilk Test for Normality. 
 
 F-3.1.  General.  One of the most powerful and most commonly employed tests for 
normality is the W test by Shapiro and Wilk, also called the Shapiro-Wilk test.  The Shapiro-
Wilk test is an effective method for testing whether a data set has been drawn from an under-
lying normal distribution.  It can also evaluate lognormality if the test is conducted on loga-
rithms of the data.  This test is similar to computing a correlation between the quantiles of the 
standard normal distribution and the ordered values of a data set.  If the normal probability 
plot is approximately linear (the data follow a normal curve), the test statistic will be relative-
ly high.  If the normal probability plot has curvature that is evidence of non-normality in the 
tails of a distribution, the test statistic will be relatively low.  The Shapiro-Wilk test is rec-
ommended in several EPA guidance documents and in many statistical texts.  It is designed 
so that the burden of proof rests on showing evidence that the data are not normally distribut-
ed.  (In terms of hypothesis testing, the Shapiro-Wilk test is based on H0 that the data are 
normally distributed.  Hypothesis testing is addressed in detail in Appendices L, M, and N.) 
 
 F-3.1.1.  The Shapiro-Wilk test is good for evaluating whether a sample set of data has 
been drawn from a normal or lognormal distribution.  However, this test will not have very 
much power to reject the null hypothesis of normality or lognormality if the sample size is 
very small (i.e., the test would fail to detect non-normal behavior when the sample size is 
small).  The method for calculating the W statistic is presented below in Paragraph F-3.2. 
 
 F-3.1.2.  As this test is laborious to compute by hand, statistical software packages such 
as SAS, WQ Stat, and Statistica. An example calculation is presented below in Paragraph F-
3.3. 
 
 F-3.1.3.  D’Agostino’s test is an extension of the Shapiro-Wilk test.  It is based on an 
estimate of the standard deviation obtained using the ranks of the data.  This estimate is 
compared to the usual estimate of the standard deviation, which is appropriate for the normal 
distribution.  The D’Agostino’s test is recommended for sample sizes between 50 and 1000. 
 
 F-3.1.4.  Another test related to the W test is Filliben’s statistic, also called the probabil-
ity plot correlation coefficient.  This statistic measures the linearity of the points on the nor-
mal probability plot.  Similar to the Shapiro-Wilk test, if the normal probability plot is 
approximately linear (the data follow a normal curve), the correlation coefficient will be rela-
tively high.  If the normal probability plot contains significant curves (the data do not follow 
a normal curve), the correlation coefficient will be relatively low.  Filliben’s statistic is rec-
ommended for sample sizes less than or equal to 100.  Although easier to compute than the 
Shapiro-Wilk test, Filliben’s statistic is still difficult to compute by hand.  It is available in 
various software packages. 
 
 F-3.2.  Directions for the Shapiro-Wilk W Test.  Order the data points, x(1), x(2), ..., x(n), 
where x(1) is the smallest value and x(n) is the largest value of the n observations.  
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 F-3.2.1.  Estimate the sample standard deviation, s. Compute the Shapiro-Wilk test sta-
tistic:   
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 F-3.2.2.  The coefficients a  can be found for any sample size between 3 and 50 in Ta-
ble B-19 of Appendix B.  The value k is the greatest integer less than or equal to 2/n .  
 
 F-3.2.2.1.  Reject normality if the calculated statistic W < Wα , where the critical values 
Wα are listed in Table B-20 of Appendix B.  

 
 F-3.2.2.2.  If W ≥ Wα, do not reject the assumption of normality.  Typically, one as-
sumes the data are approximately normal for further statistical analysis. 
 
 F-3.3.  Example of Shapiro-Wilk W Test.  Consider using the Shapiro-Wilk to test the 
subsurface soil background chromium results for normality.  The results (in mg/kg) are as 
follows: 4.60, 5.29, 4.26, 5.28, 4.53, 5.74, 5.86, and 3.84. 
 
 F-3.3.1.  Hypothesis test for Shapiro-Wilk W test: 

 
H0: The data are normally distributed. 
 
HA: The data are not normally distributed. 

 
 F-3.3.2.  Estimate the sample standard deviation, 0.7249. 5255.0 ==s  
 
 F-3.3.3.  Compute Shapiro-Wilk test statistic W, where n = 8, k = 8/2 = 4 and b = 1.859: 
 

 
2
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= 0.9395 . 

Using an α  level of 0.05 and n = 8, we find the critical value, Wα, from Table B-20 to be 
0.818.  As W > 0.818, there is insufficient evidence to reject the assumption of normality. 
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b  

3.84 5.86 2.02 0.6052 1.2200 

4.26 5.74 1.48 0.3164 0.4683 

4.53 5.29 0.76 0.1743 0.1325 

4.60 5.28 0.68 0.0561 0.0381 

5.28 4.60 –0.68   

5.29 4.53 –0.76   

5.74 4.26 –1.48   

5.86 3.84 –2.02   

 

F-4.  Coefficient of Variation.  The coefficient of variation (CV) may be used to quickly de-

termine whether or not data follow a normal curve by comparing the sample CV to 1.  How-

ever, the CV evaluation is not reliable.  The use of the CV is valid only for some 

environmental applications if the data represent a non-negative characteristic, such as con-

taminant concentrations.  If the CV is much greater than 1, the data should not be modeled 

with a normal curve.  However, this method should not be used to conclude the opposite; do 

not conclude that the data can be modeled with a normal curve if the CV is less than 1.  Fur-

thermore, the sample CV )/( xs  can be greater than 1 when the population  

CV )/(   is between 0.5 and 1.  This is because of the sample CV being a random variable 

and estimating the true CV with some degree of error (EPA 68-W0-0025).  This test is to be 

used only in conjunction with other statistical tests or when graphical representations of the 

data indicate extreme departures from normality.  Details for estimating the CV are presented 

in Appendix D. 

 

F-5.  Range Tests. 

 

 F-5.1.  General.  Range tests for normality have been developed based on the 

knowledge that virtually 100% of the area of a normal curve lies within plus and minus 5 

standard deviations from the mean.  Two such tests, which are both simple to apply, are the 

Studentized range test and Geary’s test.  Both of these tests use a ratio of an estimate of the 

sample range to the sample standard deviation.  Very large and very small values of the ratio 

then imply that the data are not well modeled by a normal curve.  These range tests are not as 

reliable as the previously discussed tests, and are recommended only if computer procedures 

or look-up tables for the other tests are not available.  However, both range tests are relative-

ly simple to use, so they are presented here. 

 

 F-5.1.1.  The Studentized range test compares the range of the sample to the sample 

standard deviation.  Tables of critical values for sample sizes up to 1000 (Table B-21 of Ap-

pendix B) are available for determining whether the absolute value of this ratio is significant-

ly large.  
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 F-5.1.2.  Directions to conduct the Studentized range test and an example of this test 

follow in Paragraph F-5.2. 

 

 F-5.1.3.  The Studentized range test does not perform well if the data are asymmetric 

and if the tails of the data are heavier than the normal distribution.  In addition, this test may 

be sensitive to extreme values.  Unfortunately, lognormally distributed data, which are com-

mon in environmental applications, have these characteristics.  If the data appear to be 

lognormally distributed, then this test should not be used.  In most cases, the Studentized 

range test performs as well as the Shapiro-Wilk test and is easier to apply.  

 

 F-5.1.4.  Alternatively, Geary’s test uses the ratio of the mean deviation of the sample 

to the sample standard deviation.  This ratio is then adjusted to approximate a standard nor-

mal distribution.  

 

 F-5.1.5.  Directions for calculating Geary’s test are presented below in Paragraph F-5.3 

 

 F-5.1.6.  This test does not perform as well as the Shapiro-Wilk test or the Studentized 

range test.  However, because Geary’s test statistic is based on the normal distribution, criti-

cal values for all possible sample sizes are available.  An example application of Geary’s test 

follows in Paragraph 5-4.  

 

 F-5.2.  Directions and an Example of Studentized Range Test.   

 

 F-5.2.1.  Directions. 

 

a. Calculate sample range (R) and sample standard deviation (s). 

 

b. Calculate the ratio R/s. 

 

c. Compare to the critical values for R/s given in Table B-21 (labeled a and b). 

 

If the calculated value of R/s falls outside the two critical values, then the data do not fol-

low a normal curve. 

 

 F-5.2.2.  Example.  Consider using the Studentized range test to determine if the sub-

surface soil background chromium results can be modeled using a normal curve.  The re-

sults are (in mg/kg) as follows: 4.60, 5.29, 4.26, 5.28, 4.53, 5.74, 5.86, and 3.84. 

 

 Sample range 02.284.386.5 R  

 

 Sample standard deviation 0.7249. 5255.0 s  
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787.27249.0/02.2/ sR  . 

 

The critical values for R/s in Table B-21 for n = 8 and   = 0.05 are 2.50 and 3.399.  As 

2.787 falls between these values, the assumption of normality is not rejected. 

  

 F-5.3.  Directions for Calculating Geary’s Test.  Calculate the sample mean x , the 

sample sum of squares (SSS), and the sum of absolute deviations (SAD): 
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
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 F-5.3.1.  Calculate Geary’s test statistic  

 

 
)SSS(

SAD

n
a   . 

 

 F-5.3.2  Test a for significance by computing  

 

 
n

a
z

/2123.0

7979.0
  . 

 

Here, 0.7979 and 0.2123 are constants used to achieve normality. 

 

 F-5.3.3.  Use Table B-15 of Appendix B to find the critical value 1Z  such that 100(1 – 

 )% of the normal distribution is below 1Z .  For example, if   = 0.05, then 1Z = 1.645.  

The statistic a  is sufficiently small or large to conclude the data are not normally distributed 

if z  > 1Z . 

 F-5.4.  Example of Geary’s Test.  Consider using Geary’s test to see if the subsurface 

soil background chromium results can be modeled using a normal curve.  The results are (in 

mg/kg) as follows: 4.60, 5.29, 4.26, 5.28, 4.53, 5.74, 5.86, and 3.84. 

 

 F-5.4.1.  Calculate the sample mean x : 
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 925.4)84.386.574.553.428.526.429.560.4(
8
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1

 
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x  . 

 

 F-5.4.2.  Calculate the SSS: 
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So, 68.305.19473.197SSS  . 
 

 F-5.4.3.  Calculate the sum of absolute deviations (SAD): 
 

 925.426.4925.429.5925.460.4SAD
1




xx
n

i

i  

925.474.5925.453.4925.428.5   

94.4925.484.3925.486.5   . 

 

 F-5.4.4.  Calculate Geary's test statistic:  
 

910.0
)68.3(8

94.4

)SSS(

SAD


n
a  . 

 

 F-5.4.5.  Test a  for significance by computing: 

49.1
8/2123.0

7979.0910.0

/2123.0

7979.0








n

a
z  . 

 

Here, 0.7979 and 0.2123 are constants used to achieve normality. 

 F-5.4.6.  Using Table B-15 of Appendix B to find the critical value 1Z , where  

  = 0.05, then 1Z = 1.645.  Since 49.1  645.1 , there is not enough information to  

conclude that the data do not follow a normal distribution.  
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F-6.  Goodness-of-Fit Tests.  Goodness-of-fit tests are not practical to do manually.   

Because these are included in most statistical software packages, detailed instructions  

for doing them are not included.  Following is a brief overview of these tests with  

recommendations for their use. 

 

 F-6.1.  Goodness-of-fit tests are used to determine whether data conform to some theo-
retical probability distribution.  However, unlike the tests previously discussed, these tests 
can be used to see if a data set fits any specified probability distribution, not just the normal 
distribution.  In contrast, the Shapiro-Wilk test can be used only to determine whether a data 
set is normally distributed. 
 

 F-6.2.  There are many different goodness-of-fit tests.  One classic test is the chi-square 
test, which partitions the data into groups, comparing these to the expected groups from a 
known distribution.  There are no fixed methods for selecting these groups, and this test  
requires a large sample size because at least five observations per group are required to im-
plement it.  In addition, the chi-square test does not have the power of the Shapiro-Wilk test 
or some of the other tests mentioned.  For these reasons, the chi-square test is not recom-
mended. 
 

 F-6.3.  Another way of using a goodness-of-fit test is based on the empirical distribu-

tion function.  Empirical distribution functions estimate the true cumulative distribution func-

tions underlying a set of data.  An empirical distribution is generated from the data set and 

compared to the theoretical cumulative distribution.  If the empirical distribution function is 

not close to the given cumulative distribution function, then there is evidence that the data do 

not come from that function.  

 

 F-6.4.  Various methods have been used to measure the discrepancy between the sam-

ple empirical distribution function and the theoretical cumulative distribution function.  The-

se measures are referred to as empirical distribution function statistics.  The best known of 

these is the Kolmogorov-Smirnov (K-S) statistic.  The K-S approach is appropriate if the 

sample size exceeds 50 and if F(x) represents a specific distribution with known parameters 

(e.g., a normal distribution with  = 100 and 2 = 30).  A modification to the test, called the 

Lilliefors K-S test, is appropriate when n > 50 for testing that the data are normally distribut-

ed and when the F(x) is based on an estimated mean and variance. 

 F-6.5.  Unlike the K-S type statistics, most empirical distribution function statistics are 

based on integrated or average values between the empirical and cumulative distribution 

functions.  The two most powerful are the Cramer-von Mises and Anderson-Darling statis-

tics.  Extensive simulations show that the Anderson-Darling empirical distribution function 

statistic is as effective as any, including the Shapiro-Wilk statistic, when testing for  

normality.  However, the Shapiro-Wilk test is applicable only to a normal distribution, while 

the Anderson-Darling method is more general.  Because it is unlikely that the user of this 
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manual will ever need to use these tests, they will not be described further.  When using a 

computer software package, a p value is typically given.  If the p value is low (i.e., typically 

less than 0.01 to 0.1), then the assumption of normality is rejected.  

 

Section II 

Data Transformations 

 

F-7.  Introduction.  Any mathematical function f(x) that is applied to every point in a data set, 

x, is called a transformation (e.g., Ln(x) is calculated for every data value x).  For the trans-

formation  

 

 y = f(x) 

 

the values of x are the original data values and the corresponding values y = f(x) are the 

transformed data values.  An inverse transformation is a function, f –1(x), which, when ap-

plied to all of the transformed data values, results in the original data values: 

 

 f –1(y) = f –1[f(x)] = x  . 

 

 F-7.1.  For example, if y = Ln(x), then f -1(y) = exp(y) because exp[Ln(x)] = x.  

 

 F-7.2.  Data transformations are frequently done to obtain normally distributed data 

sets.  By transforming the data, assumptions that are not satisfied in the original data can be 

satisfied by the transformed data.  For example, a right-skewed distribution can often be 

transformed to be approximately Gaussian (normal) by using a logarithmic transformation or 

square root transformation.  After a data set is transformed, graphical methods and statistical 

tests verify that the transformed data set is normal.  If a transformed data set is normal, then 

statistical tests that rely on normality are performed using the transformed data.  However, 

finding a transformation that results in a normal data set may be difficult.  The selection of a 

suitable transformation will be dependent upon the nature of the data set and is beyond the 

scope of this document.  Some commonly used transformations will be discussed but only 

lognormal transformation will be discussed in any detail. 

 

 F-7.3.  A potential disadvantage of any transformation arises when it is necessary to in-
terpret the results of the statistical evaluation in terms of the untransformed data.  For exam-
ple, in general, if the mean of the transformed data set is calculated, then this quantity will 
not correspond to the mean of the untransformed data set when an inverse transformation is 
performed.  For example, as previously stated, if Y = Ln(X) is normally distributed with a 
population mean (Y) and population variance, Y

2, then the mean (Y) corresponds to the 
population median of X rather than to the population mean of X, X. (Because Xp = 0.5 is the 
mean of X and Z0.5 = 0 in Equation E-12, the median of X is equal to exp().)  
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 F-7.4.  If a transformation is performed, inverse transformations to the original data set 

should be avoided.  Decisions should be based upon the statistical analyses of only the trans-

formed data.  For example, assume that two different data sets are approximately normally 

distributed with similar variance after transformation.  The objective is to determine whether 

the data sets are significantly different from one another (even though both data sets possess 

similar variances).  The mean of the first transformed data set would be statistically com-

pared to the mean of the second transformed data set.  It would be inappropriate to perform 

inverse transformation for the two means (to express them in the original measurement units) 

prior to performing the comparison. 

 

 F-7.5.  While transformations are useful for dealing with data that do not satisfy statisti-

cal assumptions, they can also be used for other purposes.  Transformations are useful for 

consolidating data that may be spread out or that have several extreme values.  In addition, 

transformations can be used to derive a linear relationship between two variables, so that lin-

ear regression analysis can be applied.  Transformations may also make the analysis of data 

easier by changing the scale into one that is more familiar or easier to  

analyze. 

 

F-8.  Logarithmic.  A logarithmic transformation may be useful when the original measure-

ment data follow a lognormal distribution.  Data may be lognormally distributed when the 

variance is proportional to the square of the mean (refer to Equation E-11) or, equivalently, 

when the coefficient of variation (ratio of standard deviation to mean) is constant over all 

possible data values:  

 

 CV = X /X = constant. 

 

 F-8.1.  For example, if the variance of data collected around 50 ppm is approximately 

250, but the variance of data collected around 100 ppm is approximately 1000, then a loga-

rithmic transformation may be useful.  

 

 F-8.2.  The logarithmic base (either natural or base 10) needs to be consistent through-

out the analysis.  However, it does not matter whether a natural (Ln) or base 10 (Log) trans-

formation is used because the two transformations are related by a constant: 

 

 Ln(X) = 2.303 Log(X).  

 

 F-8.3.  The Log(x) or Ln(x) cannot be transformed when x = 0.  This is usually not a 
problem for environmental applications because non-detects are not typically reported as ze-
ro but to some positive reporting (censoring) limit.  If some of the original values are zero, it 
is customary to add a small quantity () to make the data value non-zero, as the logarithm of 
zero does not exist.  However, this introduces some error for the statistical evaluation.  The 
size of  depends on the magnitude of the non-zero data.  It is recommended that the  



 

 

 

 

EM 200-1-16 

31 May 13 

 
F-12 

 

statistical evaluation be performed using several values of  to determine if it is sensitive to 
the choice of .  An initial value of one-tenth of the smallest non-zero value is recommended.  
 

F-9.  Square Root.   

 

 F-9.1.  An overview rather than a detailed discussion of the square root transformation 
is presented here.  The square root transformation may be used when the data values are 
small whole numbers, such as bacteriological counts, or the occurrence of rare events, such 
as violations of a standard over the course of a year.  The underlying assumption is that the 
original data follow a Poisson-like distribution, in which case the mean and variance of the 
data are equal.  According to EPA’s SW-846 methodology, if the mean and variance of a da-
ta set are equal, indicating data from a Poisson distribution, then the data can be transformed 
using a square root transformation so the data can achieve normality. 

 

 F-9.2.  The square root transformation overcorrects when very small values and zeros 

appear in the original data.  In these cases, 1X  is often used as a transformation.  The 

square root transformation may also be useful when developing control charts for intrawell 

comparisons when the assumption of normality is a concern.  For further discussion on con-

trol charts, see Appendix Q. 

 

F-10.  Inverse Sine (Arcsine).  An overview rather than a detailed discussion of the inverse 

sine transformation is presented here.  This transformation may be used for binomial propor-

tions based on count data to achieve stability in variance.  The resulting transformed data are 

expressed in radians (angular degrees).  According to EPA’s SW-846 methodology, if the 

mean is less than the variance of a data set, indicating data from a negative binomial distribu-

tion, then data can be transformed using an arcsine transformation to achieve normality.  

Special tables must be used to transform the proportions into degrees. 

 

F-11.  Box-Cox Transformations.  An overview rather than a detailed discussion of the Box-

Cox transformation is presented here.  The Box-Cox transformation is a complex but useful 

transformation that takes the original data and raises each data observation to the power .  
Box-Cox is typically used in regression modeling (a statistical methodology used to identify 

the best-fitting equation for a set of data) and would be done using statistical software.  Box-

Cox is also performed when a data set is not normal, but it is desirable to produce normally 

distributed transformed data.  A logarithmic transformation is a special case of the Box-Cox 

transformation.  The Box-Cox family of transformations is defined as follows: 
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where   is a parameter that defines the transformation (Hahn and Meeker, 1991).  
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 F-11.1.  Note both the logarithmic transformation and the square root transformation 

are simply Box-Cox transformations with  = 0 and   = 0.5, respectively.  The parameter  is 

generally unknown.  The objective is to find a value of  such that the transformed data are 

normally distributed and the variance is as constant as possible over all possible concentra-

tion values.  In general, transformations with  < 1 are applied to normalize positively 

skewed data, and transformations with   > 1 are used to normalize negatively skewed data.  

The value of   required to normalize the data decreases (from 1) as the degree of positive 

skew increases.  For example, a transformation with   = 0.5 might be applied for a distribu-

tion with a slight positive skew, and a value of   = 0 (a log transform) might be applied for a 

more positively skewed distribution.  From Hahn and Meeker (1991): “One may try different 

values of  (i.e.,  = 1, 0.5, 0.33, 0, and –1, corresponding to no transformation, square root, 

cube root, log, and reciprocal transformations, respectively) to try to find a value (or range of 

values) that gives a probability plot that is nearly linear.  In some cases physical considera-

tions or experience may suggest such a value.”  

 

 F-11.2.  Analytical methods are also available, such as the maximum likelihood tech-

nique, to find the optimal .  A statistical software package would be used to find the value of 

 for the best transformation; that is, the value of   that produces the most normal data set 

once the transformation is applied.  For example, if  is nearly equal to zero (e.g.,   = 0.03), 

then a logarithmic transformation ( = 0) would typically be selected and would produce a 

data set that is the most normally distributed relative to other Box-Cox transformations (such 

as a square root transformation).  Statistical tests that require normality would subsequently 

be performed using the transformed data.  However, as is true of any transformation, one of 

the disadvantages of Box-Cox is the difficulty in interpreting the transformed data in terms of 

the original measurement units.  

 

Section III 

Recommendations 

 

F-12.  General.  Analysts can perform tests for normality with samples as small as three; 

however, the tests lack statistical power owing to the small sample size.  For small sample 

sizes, it is recommended that a normal distribution not be assumed for the data and that a 

nonparametric statistical test, one that does not assume a distributional form of the data, be 

selected instead.  Ideally, an adequate sample size to provide the necessary power for statisti-

cal tests will have been selected prior to data collection. 

 

 F-12.1.  This document recommends using the Shapiro-Wilk W test wherever practical, 

along with a normal quantile plot and box-plot.  The Shapiro-Wilk W test is one of most 

powerful tests for normality, and it is recommended in several EPA guidance documents as 

the preferred test when the sample size is less than 50.  The Anderson-Darling statistic is also 

recommended (e.g., when available via statistical software).  A normal quantile plot is help-

ful, no matter the sample size, to verify results from any test of normality.  In practice, with 
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the use of computers it may be possible to perform more than one fitness test, and determine 

which fit has the highest p value. 

 

 F-12.2.  In general, with large sample sizes, both D’Agostino’s test and the Shapiro-

Wilk test will be overly sensitive to small deviations from lognormality or normality and will 

result in an unknown distribution assignment more often than is appropriate.  In these cases, 

close examination of probability plots and the application of professional judgment in deter-

mining the appropriate distributional assumptions will be particularly important.  

 

 F-12.3.  If the Shapiro-Wilk W test is not feasible, then using either Filliben’s statistic 

or the Studentized range test is reasonable.  Filliben’s statistic performs similarly to the 

Shapiro-Wilk test.  The Studentized range is a simple test to use; however, it is not applicable 

for nonsymmetrical data with large tails.  If the data are not highly skewed and the tails are 

not significantly large (compared to a normal distribution), the Studentized range provides a 

simple and powerful test that can be calculated by hand.  If critical values for these tests (for 

the specific sample size) are not available, then implementing either Geary’s test or the 

Lilliefors Kolmogorov-Smirnoff test is reasonable.  Geary’s test is easy to apply and uses 

standard normal tables similar to Table B-15 of Appendix B, and is widely available in 

standard textbooks.  Lilliefors Kolmogorov-Smirnoff is more statistically powerful but is al-

so more difficult to apply and uses specialized tables not readily available. 

 

 F-12.4.  Statistical professional judgment based on normal probability plots and results 

of the statistical tests should be considered when identifying a data value’s distribution.  If 

the statistician’s professional judgment suggests a different distributional assumption than 

that determined by the statistical test or tests, the alternative distribution may be assumed as 

long as the statistician provides a defensible rationale for this decision.  

 

 F-12.5.  It should be stressed the Shapiro-Wilk W test is a good test to use to evaluate 

whether a set of data has been drawn from a normal or lognormal distribution.  However, this 

test will not have very much power to reject the null hypothesis of normality or lognormality 

if the sample size is small. 

 

 F-12.6.  In conclusion, results from tests regarding the assumption of normality should 

always be reviewed graphically. 

 

F-13.  Data Fitting Multiple Distributions.  When data are found to fit more than one distri-

bution, there are a few things to consider in making a decision about which distribution 

would be most appropriate.  One thing to consider is the p value.  After running a test of dis-

tributional assumptions (Shapiro-Wilk, chi-square, Kolmogorov-Smirnoff, etc.), it would be 

appropriate to use the distribution that had the higher p value.  Consideration should be given 

to the sample size of the data; data containing just a few samples may not provide enough in-

formation about the true distribution.  
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 F-13.1.  Another thing to question is the purpose of identifying the data’s distribution.  

If it is to verify a distributional assumption for a statistical test and the data fit multiple dis-

tributions, it may be appropriate to perform the test using several statistical methods and 

evaluate results from each to see what can be learned.  If a distributional assumption is need-

ed to estimate a confidence interval or upper confidence limit, then it may be appropriate to 

identify which distribution would provide the more conservative estimate.  

 

 F-13.2.  It is often difficult to interpret the results of statistical tests conducted on trans-

formed data in terms of the original units to make these types of comparisons.  If transfor-

mation produces only a slightly larger p value, it seems advisable not to perform the 

transformation.  For example, if data follow a normal and lognormal distribution, a lognor-

mal UCL can be quite larger than the normal UCL estimate owing to the inherent nature of a 

lognormal distribution.  If the UCL should be used to evaluate risk at a site, a lognormal 

UCL would provide the more conservative estimate of risk. 
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APPENDIX G 
Detection Limits and Quantitation Limits 

 

G-1.  Introduction. 
 
 G-1.1.  Environmental statistical analysis is complicated by a practical constraint on  
laboratory analysis—the technical impossibility of identifying zero concentrations.  This 
means that it is physically impossible for a laboratory analysis to confirm the complete  
absence of the chemical or compound of interest.  A chemical may be present at some un-
known concentration below the low end of the concentration range that the analysis is able to 
report detect.  Therefore, for most statistical applications that evaluate site data, there is a 
need to substitute some number (a “censored” value) that represents the lowest concentration 
reasonably detected.  This threshold or censoring limit is often termed a “detection,” “quanti-
tation,” or “reporting” limit.  However, this Appendix provides separate definitions for the 
terms “ 
detection” and “quantitation limit” and does not use these terms interchangeably. 
 
 G-1.2.  To determine which censoring limit should be used for statistical evaluations, it 
is necessary to understand how environmental laboratories define detection and quantitation 
limits, as these quantities are used to establish censoring limits.  Unfortunately, the subject of 
detection and quantitation limits is often confused by the highly diverse, and often overlap-
ping, definitions applied to these quantities.  Furthermore, no standard approach to establish-
ing censoring limits for environmental data exists.  This Appendix describes some of the 
methods for establishing detection limits and subsequent requirements for substituting values 
for non-detects in the data set. 
 
G-2.  Detection Limits.  No instrumental method of chemical analysis is capable of “seeing” 
a value of zero.  All measurement systems are subject to bias and variability.  A fundamental 
contributor to this is the presence of “noise” in the measurement process.  Noise can have 
any number of sources.  For example, if one examines the pictorial output from a gas chro-
matographic analysis (a chromatogram) of a control sample at the normal scale at which it is 
displayed in a commercial data package, one would observe a Gaussian peak that represents 
the analyte of interest and what appears to be a straight, smooth line beyond the peak referred 
to as the “baseline.”  Figure G-1 depicts a cartoon example.  However, that same graph ex-
amined at a higher level of magnification would reveal a very different picture of fluctuations 
across the same line (Figure G-1).  Those fluctuations constitute noise and can result from 
such factors as vibration in the environment around the instrument, fluctuations in electrical 
current or voltage, the incidental presence of contaminants in the system, or even stray ioniz-
ing radiation from universal background. 
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Figure G-1.  Noise in GC Baseline. 

 
 G-2.1.  If a very small amount of a target analyte were placed in the measurement sys-
tem, assuming that the instrument was functioning properly, the analyte would cause a re-
sponse in the detector that would be translated into a small Gaussian type peak on the 
chromatogram.  However, as the concentration is decreased, the size of the peak decreases 
until it is “lost” in the noise of the measurement system.  Because the amount of noise in the 
system at any given moment is essentially random, the amount of analyte that can be hidden 
by the noise is variable but, on average, is always greater than zero. 
 
 G-2.2.  As the term is typically used in the environmental testing industry, a ”detection 
limit” (DL) is the concentration that gives rise to an analyte peak or signal that is statistically 
greater than the surrounding baseline noise at a high level of confidence (typically the 99% 
level of confidence).  The analyte cannot be confidently reported as present when the analyte 
concentration is less than the DL.  Concentrations greater than the DL are reported as “de-
tected.” 
 
 G-2.3.  However, theoretically, there are two types of “detection limits”: The “Type I 
DL” that minimizes false positives (Type I error) and the “Type II DL” that minimizes false 
negatives (Type II error).  A false positive occurs when an analyte is absent, or the true  
concentration is less than the baseline noise but is erroneously reported as present.  A false 
negative occurs when an analyte is erroneously reported as less than or equal to some con-
centration when it is actually present at a greater concentration.  The two types of detection 
limits are illustrated in Figure G-2. 
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Figure G-2.  “Type I DL” (LC) and “Type II DL” (LD). 

 
 G-2.4.  The International Union of Pure and Applied Chemistry (IUPAC), an interna-
tional, non-governmental organization that supports the advancement of chemical science, 
refers to the “Type I DL” as the “critical value” and the “Type II DL” simply as the “detec-
tion limit.”  Therefore, for simplicity and to conform with international nomenclature, the 
IUPAC terminology is predominately used in this document.  The critical value is the thresh-
old of analyte or instrument signal attributable to the presence of analyte that is statistically 
different from zero or baseline noise at a high level of confidence.  The 99% level of confi-
dence is used for chemical analyses.  When an analyte is reported at a concentration greater 
than the critical value the conclusion is as follows: The analyte is present at some concentra-
tion greater than zero at the 99% level of confidence.  The “detection” of the analyte is re-
ported.  However, if the analyte concentration reported from a measurement is less than the 
critical value, the analyte may or may not be present (the true analyte concentration may or 
may not be greater than zero).  Under these circumstances, no conclusion regarding the pres-
ence or absence of the analyte is possible.  The IUPAC detection limit is established to ad-
dresses “non-detections” of the analyte. 
 
 G-2.5.  When a measurement is taken and the analyte is less than the critical value, the 
conclusion is that the analyte, if present, is present at some concentration less than the detec-
tion limit; the non-detection is reported as “less than the detection limit.” 
 
 G-2.6.  Currie’s (1968) approach readily illustrates the nature of the critical value and 
detection limit on a conceptual level.  Currie defines the critical level, LC, as the concentra-
tion at which the binary decision of detection can be made with a specified level of confi-
dence.  The shaded area to the right of LC in Figure G-2 represents the Type I error (i.e., the 
probability of concluding the analyte is present when the true concentration is zero).  Currie 
defines the limit of detection, LD, to provide an acceptable Type II error rate.  The shaded 
area to the left of LC represents the Type II error (e.g., the probability of failing to detect the 
analyte when the true concentration is LD).  In order to calculate quantities LC and LD, the fol-
lowing simplifying assumptions are made: The concentrations are normality distributed, the 
standard deviation is known (or there is negligible uncertainty for the standard deviation), 
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and the standard deviation is not a function of concentration and the “true” (population 
mean) concentration is zero.  For the 99% level of confidence: 
 
 LC = 2.33σ 
 
 LD = LC + 2.33σ = 2 LC 
 
 G-2.7.  Unfortunately, it is common practice for environmental chemists to refer to the 
critical value as the “detection limit.”  For example, the method detection limit (MDL), de-
fined by 40 Code of Federal Regulations (CFR) Part 136 (Appendix B), is essentially a criti-
cal value (as defined by the IUPAC).  There is no standard terminology for the IUPAC 
detection limit for environmental testing.  There is a host of terminologies applied to detec-
tion and reporting limits depending on the source and the details of the definition.  (QSM).  
Version 5 of the QSM measures analytical sensitivity in terms of the “Detection Limit” 
(“DL”), “Limit of Detection” (“LOD”) and “Limit of Quantitation” (“LOQ”).  Conceptually, 
the “DL” is a “Type I DL” and the “LOD” is a “Type II DL.”  The “LOD” is established and 
verified at least quarterly (for each environmental analyte and matrix) by processing labora-
tory control samples spiked at that concentration.  The “LOQ” is discussed in G-4.    
 
G-3.  EPA Method Detection Limit and Other Detection Limits.  There are two major DL es-
timators: those based on a “single concentration design” and “calibration designs.”  The ma-
jor disadvantage of single concentration designs is they assume that variability at a given 
concentration is constant (i.e., the variability near the DL is similar to that at higher concen-
trations).  Typically, for a single concentration design, a set of replicate samples containing 
the analyte of interest at a fixed, known concentration are processed to calculate the critical 
value.  Therefore, the critical value is determined at the single concentration for the replicate 
study and it is assumed that a higher or lower concentration would produce substantively the 
same value.  The MDL is based upon a single concentration design.  In calibration designs, 
the critical value is calculated using multiple concentrations over the range of the critical 
value.  The multiple concentration levels provide a means to model the variance (e.g., or 
standard deviation) as a function of concentration.  In this way, the resulting critical value es-
timate is not simply a function of sample spike concentration.  However, single concentration 
designs are advantageous relative to multi-concentration designs because they are much sim-
pler and less costly to perform.  The critical value can be defined in many different ways; 
however, only the most commonly accepted method, the EPA MDL procedure, is discussed 
in detail. 
 
 G-3.1.  EPA Method (Single Concentration Design).  Historically, EPA has used single 
concentration designs, even though single concentration designs and their associated DL  
estimators are rarely completely justified.  The MDL (defined by 40 CFR) is a single concen-
tration design for the critical value that most environmental testing laboratories use. 
 
 G-3.1.1.  The EPA defines an “instrument detection limit” (IDL) as an experimentally 
derived quantity arrived at by repeatedly injecting a small but visible amount of a pure ana-
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lytical standard into the instrument, measuring the variability in the quantitative results, and 
calculating the IDL assuming 99% confidence that the observed response is not a false posi-
tive.  The IDL is generally only performed for inorganic metals analyses.  The IDL is typical-
ly calculated in the same manner as the MDL, using a Student’s t-statistic.  The two 
quantities differ predominately in the way the samples are processed.  The IDL is determined 
via the direct instrumental analysis of standards containing the analyte of interest.  However, 
when environmental samples are analyzed, they generally are not directly injected into in-
struments but are subject to a variety of prior preparatory processes (such as extractions, 
derivatizaton, solvent exchanges, cleanup, and dilutions).  Each step in the processing adds 
additional noise or uncertainty to the measurement system, which the IDL calculation does 
not take into account.  Therefore, IDLs tend to be smaller in concentration than the corre-
sponding MDLs when samples are subjected to an extensive preparatory process prior to 
analysis.  The minimum quantity of practical importance in environmental analysis is that 
amount that can be reliably distinguished from the sum of all the various sources of noise in-
volved in the analytical method, the method detection limit (MDL).  Thus, environmental la-
boratories typically use the MDL to characterize detection capability. 
 
 G-3.1.2.  Although the MDL (as defined in 40 CFR) strictly applies to water matrices, it 
is applied to a broad range of analytical methods, including those for solid samples.  This 
single concentration design requires a complete, specific, and well-defined analytical meth-
od.  It is essential for all sample-processing steps of the analytical method to be included in 
the determination of the method detection limit.  MDLs depend upon the sample preparatory 
procedures and the specific laboratory instrument used.  
 
 G-3.1.3.  The EPA procedure used to estimate the detection limit is summarized below. 
 
 G-3.1.3.1.  Prepare a homogeneous matrix that is free of analyte (e.g., reagent water or 
clean sand). 
 
 G-3.1.3.2.  Prepare each sample mixture at a concentration of at least equal to or in the 
same concentration range as the estimated MDL in the matrix of interest. 
 
 G-3.1.3.3.  Prepare a minimum of seven aliquots of the sample to be used to calculate 
the MDL and process each replicate through the entire extraction/digestion and analytical 
method. 
 
 G-3.1.3.4.  Calculate the variance (s2) and standard deviation (s) of the replicate meas-
urements. 
 
 G-3.1.3.5.  Calculate the MDL, using the formula: MDL = t0.99.ν s, where t1-α.ν is the 
Student’s t value appropriate for the 99% confidence level with ν = n –1 “degrees of free-
dom”; and the number of measurements, n ≥ 7.  (The appropriate value of Student’s t is typi-
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cally found in a statistical table, and is equal to about 3.14 for n = 7 for the 99% level of con-
fidence).  
 
 G-3.1.3.6.  Review results to verify the reasonableness of the calculated DL. 

 
 G-3.1.4.  The use of the MDL for decision-making (e.g., determining environmental 
impacts) has recently triggered intense scrutiny of the viability of the MDL for measuring de-
tection capability.  The following is a partial list of potentially flawed assumptions or prob-
lems associated with the MDL as defined in 40 CFR. 
 
 G-3.1.4.1.  The MDL addresses false positives (i.e., Type I error), but does not address 
false negatives (Type II error); for example, a non-detection cannot be confidently reported 
as “< MDL.”  (However, it should be noted that there is controversy regarding the interpreta-
tion of the MDL in terms of the IUPAC definitions of the critical value and detection limit; 
some individuals have argued that the MDL is actually an IUPAC detection limit.)  
 
 G-3.1.4.2.  The MDL underestimates method variability as it is typically calculated us-
ing a small number of replicates within a short period of time and has been interpreted to be a 
prediction limit for the next single future observation, minimizing false positives at the 99% 
level of confidence for only one future environmental sample (and not a set of multiple sam-
ples) when the analyte is absent (though it should be noted that the interpretation of the MDL 
as a prediction limit is also controversial). 
 
 G-3.1.4.3.  The standard deviation is assumed to be constant (i.e., not a function of con-
centration).  
 
 G-3.1.4.4.  Normality is assumed. 
 
 G-3.1.4.5.  No analytical bias is implicitly assumed (e.g., no analyte loss, average 
analyte “recoveries” of 100%).  (The MDL accounts for analytical method variation in the 
form of random “precision error.”) 
 
 G-3.1.4.6.  The matrix used to perform the MDL study (e.g., reagent water) is assumed 
to be equivalent (with respect to all physical or chemical properties that would affect detec-
tion capability) to the actual environmental matrices that will be tested (e.g., waste water and 
groundwater).  
 
 G-3.1.5.  In general, one or more of the assumptions discussed above are routinely 
violated to some extent for environmental testing. MDLs are statistically derived quantities 
and are only estimates of the actual detection limit (critical value).  For example, based on 
purely statistical considerations, MDLs are uncertain by a factor of approximately two.  Fur-
thermore, because MDLs are typically generated by processing clean material (such as puri-
fied water or sand) rather than actual environmental samples, they represent “best case” 
detection capability.  In general, the material analyzed to calculate the MDLs is not repre-
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sentative of the chemical and physical composition of the environmental samples.  Detection 
limits calculated using an actual environmental matrix could be higher than the MDL by an 
order of magnitude.  However, because of these factors, environmental laboratories often re-
port “detection limits” several times greater than MDLs (although there is no uniform stand-
ard for how this is done).  The detection limits proposed in Paragraph G-3 overcome the first 
two shortcomings of the MDL discussed above. 
 
 G-3.1.6.  Lastly, when detection limits such as the MDL are constructed from predic-
tion limits (using either a single concentration or calibration design), in order to minimize 
false positives at the specified level of confidence, a new detection limit must (in theory) be 
calculated (from a new study) prior to each new sample being analyzed.  However, this is not 
done in practice.  Detection decisions for an enormous number of test samples are calculated 
based on the results obtained from a single MDL study.  This results in a much greater fre-
quency of false positives than 1%.  To ensure that false positives are minimized for a large 
unspecified number of future measurements, detection limits may be constructed from toler-
ance intervals so that a large proportion of future measurements, p, will be less than the up-
per tolerance limit (UTL) with a high level of confidence when the “true” concentration is 
zero.  For the critical value, an UTL for p100% coverage (e.g., where p = 0.99) at the  
(1 – α)100% (e.g., 99%) level of confidence could be constructed for a “true” concentration 
of zero (e.g., refer to Paragraph G-3). 
 

G-3.2.  Alternative Method (Single Concentration Design).  Although the Currie ap-
proach is conceptually viable, there is a major practical problem with the approach.  Currie 
did not propose a practical experimental design to calculate LC, but expressed LC in terms of 
the population standard σ (which is usually unknown), rather than the sample standard devia-
tion, s. (In other words, LC = 2.33σ only when the distribution is normal and σ is known.)  
Similarly, LD cannot be calculated using σ if this quantity were unknown.  However, for a 
normal distribution, LC can be defined as an upper tolerance limit for a population mean µ = 
0 and can be calculated from s using an equation of the form (Georgian and Osborn, 2003):  
 
 sKL npC 1,1, −−= α  
 
The standard deviation s is calculated from a set of n replicate samples (e.g., a clean matrix 
such as reagent water spiked with the analyte of interest) that are processed through the en-
tire analytical method.  The factor Kp,1–α,n–1, which depends upon the coverage probability 
(p), level of confidence (1 – α) and number of samples (n), can be calculated from Tables  
B-2 and B-15 using the following equation:  
 
 ]/)1[( 2

,11,1, αα χ −−− −= npnp nZK  . 
 
For example, if 1 – α = 0.95 (i.e., α = 0.05), p = 0.99 and n = 7, then from Table B-2,  
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2
,1 ==− χχ αn  

 
and, from Table B-15, Zp = Z0.99 = 2.33.  Therefore, 
 

46.4]635.1/)17[(33.26,95.0,99.0 =−=K  . 
 
If a large number of blank samples are analyzed, with 95% confidence, at least 99% of all the 
measurements will be less than LC = 4.46 s.  The above equation, however, assumes normali-
ty and constant variance.  A conservative approximation for LD would consist of initially cal-
culating LC using the equation above then setting LD equal to two times LC. 
 
 G-3.3.  Calibration Designs.  In one type of calibration design, a series of samples are 
spiked at different known concentrations in the range of the hypothesized critical  
value, and variability is determined by examining the deviations of the actual response sig-
nals from a fitted regression line (instrument response versus concentration).  In this design, 
it is typically assumed that the distribution of the deviations from the fitted regression line is 
normal with constant variance across the range of concentrations used for the study.  The re-
lationship between response signal (Y) and spiking concentration (X) in the region of the crit-
ical value is assumed to be a linear function of the form: 
 
 εββ ++= XY 10  
 
where the (population) “residual” )( 10 XY ββε +−=  is the deviation of the measured value 
of Y from the “true” regression line X10 ββ + .  It is assumed that the distribution of values 
for ε is normal with mean µ = 0 and some constant variance.  A set of n measurements (xi, yi) 
would be used to estimate a line of the form XbbY 10 += , where the sample slope, b1, esti-
mates the population parameter β1 and the sample intercept, b0, estimates the population pa-
rameter β0.  The regression model is used to calculate the critical value and detection limit by 
constructing either prediction or tolerance limits for the regression line, XbbY 10 += .  (The 
specific mathematical formulas used are beyond the scope of this document.) 
 
 G-3.3.1.  Hubaux and Vos method calibration design is an example of an approach in 
which statistical prediction limits are used to calculate DLs.  The critical, LC, value is calcu-
lated from a 99% prediction interval for the linear regression model.  A single future meas-
urement will be less than LC at the 99% level of confidence when the “true” concentration is 
zero.  The limit of detection, LD, is then defined as the smallest concentration at which there 
is 99% confidence a value greater than LC will be obtained.  This method assumes that the 
variability is constant throughout the range of concentrations used in the calibration design 
(e.g., if this assumption is violated, a variance stabilizing transformation might be applied 
and the assumption of constant variance may be reevaluated).  The critical value obtained 
from the Hubaux and Vos design can be viewed as a multi-design concentration version of 
the single concentration-designed MDL (e.g., since the MDL is also a prediction limit, min-
imizing false positives for only one single future observation).  Regression models used for 
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multi-concentration designs can also be used to define detection limits based on prediction 
and tolerance intervals.  A tolerance or prediction interval can be constructed for each possi-
ble value of the independent variable X. 
 
 G-3.3.2.  As previously stated, the Hubaux and Vos calibration design assumes that the 
variance is homogeneous (constant) throughout the range of calibration function.  This as-
sumption is rarely completely justifiable.  In practice, variation in the response signal is often 
proportional to the concentration.  For example, if violations of this assumption are ignored, 
the variability at low levels can be overestimated and, as a result, detection limits can be 
overestimated.  However, some calibration designs account for non-constant variance.  For 
example, the detection limits for non-constant variance calibration designs can be calculated 
using a technique called weighted least squares (WLS).  The WLS calibration design is simi-
lar to the Hubaux and Vos design, but the underlying regression model would assume, for 
example, that variance is proportional to concentration (Gibbons and Coleman, 2001).  
 
G-4.  Quantitation Limits.  The ability to distinguish between the presence or absence of an 
individual analyte, particularly in a complex mixture such as an environmental sample, does 
not imply the ability to accurately and precisely measure the quantity of analyte present in 
the mixture.  Imagine, for example, a peak partially hidden in the noise of an instrument.  If 
the quantity of analyte is measured as proportional to the height or area of the response, as is 
the usual case in environmental analysis, from what point is it measured?  Where is the base-
line?  Should it be measured from the lowest point in the noise, the average noise level, or 
the top of the noise?  In other words, because the baseline is constantly shifting, what portion 
of the observed peak is noise and what portion is response?  The magnitude of the response 
ascribable to the analyte (e.g., peak area) cannot be known with a high degree of certainty 
(high accuracy and precision); therefore, the measured value must, by definition, be equally 
suspect.  There is a point at which the measured value is so much larger than any possible 
contribution from measurement noise that the noise becomes negligible relative to the 
analyte result.  That point is the quantitation limit (QL).  However, there is no standard ter-
minology for this quantity in the environmental testing industry.  It could be referred to as a 
“report limit” or erroneously referred to as “detection limit.”  Terms such as “practical quan-
titation limit” or “contract required quantitation limit” could be used.  Furthermore, as used 
by environmental testing laboratories, these terms may, but not would necessarily, refer to 
the “quantitation limit” as it is defined in this document. 
 
 G-4.1.  In EPA terminology, the QL is, by definition, a value sufficiently removed from 
the detection limit to ensure that quantitative statements made at that value meet defined  
degrees of precision and accuracy by most laboratories under most analytical conditions.  
Because the definition is vague, the QL is also vague.  In fact, most practical applications of 
this concept are altogether arbitrary.  For example, in EPA SW-846, the EQL for a given 
analysis is defined as 5 to 10 times the MDL.  However, the multiplication factor is some-
what arbitrary (e.g., various definitions of the QL for various programs have required the 
MDL to be multiplied by factors ranging from 2 to 10).  Some justification for the use of a 
factor of 5 to 10 is as follows: If the MDL is assumed to be roughly equal to the magnitude 
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of the uncertainty from analytical noise, the relative error should be 20 to 10% at 5 and 10 
times the MDL, respectively.  However, it should be noted that this assumes that analytical 
bias is negligible and the standard deviation (used to calculate the MDL) is not a function of 
concentration and possesses negligible uncertainty.  In general, these are not valid assump-
tions.  In particular, the standard deviation is typically an increasing function of concentra-
tion and can vary by a factor of about two when it is calculated at a fixed concentration using 
only seven replicates (as in 40 CFR).  Setting the QL at a concentration at least 5 or 10 times 
the MDL is stated only as guidance (e.g., since the uncertainty at these levels may still be 
relatively large).  
 
 G-4.2.  The “Practical Quantitation Limit” (PQL) is defined as the lowest limit of quan-
titation achievable by laboratories within specified limits on precision and accuracy during 
routine laboratory operating conditions.  Unfortunately, acceptance limits for precision and 
accuracy at the PQL are seldom defined.  In practice, the PQL is typically established by 
multiplying the MDL (as derived from 40 CFR Part 136 instructions) by a factor of three to 
five (from EPA SW-846, Chapter 1).  The result obtained is the EQL.  The EQL, being a 
multiple of the statistically derived MDL, will be different for each analyte tested.  In the 
commercial laboratory community, PQLs are frequently set at the low point of the curve and 
are relatively uniform for methods where multiple analytes are simultaneously determined.  
The values thus obtained are variously referred to as PQLs, Reporting Limits (RLs), Less 
Than (< or LT), Non-Detects (NDs), or “U”- values. 
 
 G-4.3.  To ensure acceptable precision and accuracy at any arbitrarily defined QL, qual-
ity control samples spiked at the QL could be included in the analytical sequence to actually 
measure the precision and accuracy of the measurement process (e.g., using control charts).  
Thus, this approach would quantify the uncertainty at the QL for “clean matrices” and is pre-
dominately how the DoD QSM defines the “Limit of Quantitation” (“LOQ”).  Precision and 
bias at the “LOQ” are determined by processing laboratory quality control samples at that 
concentration.  The “LOQ” is periodically verified by analyzing these low-level quality con-
trol samples at least quarterly.  The QSM also requires the “LOQ” to fall within the calibra-
tion range of the analytical method, as instrumental response is typically unknown at 
concentrations less than the lowest initial calibration standard. 
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APPENDIX H 
Censored Data 

 
H-1.  Introduction.  Laboratories report analytical data in two ways, as censored or uncen-
sored.  An environmental testing laboratory reports a result as “non-detected” or “ND” when 
the result is below some numerical reporting threshold.  The non-detect is typically reported 
as “< X” (e.g., or “X U”) where X is some numerical value.  This is called a “censored re-
sult,” and the value of X is called the “censoring limit.”  Results reported as “detected” are 
“uncensored” results.  Typically, uncensored results are numerical values in concentration 
units that are greater than either the critical value or the censoring limit.  Unfortunately, dif-
ferent environmental laboratories use different types of censoring limits and reporting con-
ventions.  There is no standard industry practice regarding how to establish the censoring 
limit for non-detections.  To exacerbate matters, as discussed previously, there is no standard 
terminology for the censoring limit.  Reporting conventions differ from laboratory to labora-
tory.  Some laboratories refer to the censoring limit as the DL, while other laboratories refer 
to this value as the “reporting limit” (RL). 
 
 H-1.1.  Before evaluating censored data, it is important to understand the nature of the 
censoring limit being used, that is, to understand how it is being defined for a particular set 
of data.  To confidently report a non-detect at the censoring limit, the censoring limit must be 
equal to or greater than the detection limit (as this quantity is defined by the IUPAC); ideally, 
non-detects should be reported as “< DL” (larger values are undesirable for statistical evalua-
tions and smaller values are undesirable for the minimization of minimize false negatives).  
For normally distributed data, in general, the censoring limit should be at least two times 
greater than the reported critical value.  However, it is not uncommon for laboratories to re-
port non-detects to values as low as the MDL (where false negatives cannot be reliably re-
ported).  The censoring limit is often the laboratory’s practical quantitation limit (PQL), 
which may also be simply called the QL.  Under these circumstances, a laboratory reports 
numerical results greater than the QL as quantitatively reliable values.  A result less than the 
QL may be reported as detection, consisting of a numerical value with a “data qualifier” or 
“flag” if the result is greater than the critical value (e.g., the method detection limit), or the 
result may be reported as a non-detect as “< QL.”  For example, if QL = 10 ppm, MDL = 1 
ppm, and a result of 5 ppm is measured, the laboratory may report the result as either “5 J” or 
as “< 10.”  The reporting of the result as “5 J” indicates that the analyte is present, but the 
concentration of 5 ppm is a highly estimated value (i.e., is not quantitatively reliable).  If the 
result were reported as “< 10,” the result would be a censored value (indicating the concen-
tration of analyte is no greater than 10 ppm).  The J-qualifier is typically applied when the 
analyte is believed to be present at some concentration less than the QL. (Detection and 
quantitation limits are discussed in detail in Appendix G.) 
 
 H-1.2.  When measurement data are reported as “ND,” the exact concentration of the 
chemical is unknown, but lies somewhere between zero and the censoring limit.  No  
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quantitative information is available for a non-detect (except that the result is less than the 
censoring limit) because no estimate is provided to quantify how much smaller the result is 
than the censoring limit.  Although useful for data reporting and presentation, censored data 
complicate statistical analyses and data interpretation.  Qualitative results cannot be used be-
cause statistical calculations require numerical values rather than attributes.  For example, the 
inequality “< 10 ppm” cannot be substituted into the equation to calculate the sample mean 
although a value of 5 could be substituted for a result reported as “5 J.”  
 
 H-1.3.  Statistical literature, Federal standards, and USEPA guidance advocate the use 
of uncensored measured concentrations for statistical calculations.  Uncensored data give rise 
to more accurate estimates of mean and standard error than censored data, which result in 
more accurate data interpretation and more reliable conclusions.  However, under these cir-
cumstances, numerical values (even negative values) would be reported for each sample re-
gardless of the magnitude of the concentrations relative to the DLs. Unfortunately, in 
practice, censored data are typically reported for environmental applications because uncen-
sored data are often unavailable or difficult to obtain, especially for prior sampling events 
(e.g., some laboratory instruments are incapable of reporting uncensored values).  Requesting 
uncensored data may also increase analytical laboratory costs because uncensored data are 
not routinely reported, but it can be done at a reasonable cost for select analytical methods 
(e.g., typically, for metal analyses). 
 
 H-1.4.  As censored data are commonly reported for environmental testing, the next 
Paragraph presents a variety of strategies for treating censored data.  Some are recommend-
ed, while others should be used with greater caution.  Gilbert (1987) and Gibbons (1994) 
contain more information on dealing with censored data.  Helsel (2005) presents a number of 
useful statistical methods for censored environmental data that are strongly recommended.  
The statistical methods described in this Appendix are not as comprehensive or powerful as 
those described in Helsel (2005); they are presented to facilitate only a basic understanding 
of how to process censored data.       
 
H-2.  Overview of Strategies for Treating Censored Data.  There are several possible ap-
proaches for treating censored data.  Four general strategies are listed below and then de-
scribed in more detail:  
 

a. The censored values can be ignored (omitted from the statistical calculations).  
 

b. Proxy values (e.g., the censoring limit, one-half the censoring limit, or zero) can be 
substituted for the NDs to obtain numerical values for computations (e.g., for the mean and 
variance).  

 
c. Statistical quantities such as the mean and variance can be adjusted based upon the 

proportion of NDs by making certain distribution assumptions.  
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d. Nonparametric methods can be used. 

 
No single approach can be used for all data sets and all data quality objectives.  The charac-
teristics of the data set and its end use must be taken into account when selecting the most 
appropriate approach. 
 
 H-2.1.  Approach 1.  The first approach, omitting the NDs from the data set, is typically 
undesirable as it decreases the total number of data points and the reliability (power) of the 
statistical evaluations.  In addition, the NDs often provide valuable information about the en-
vironmental population of interest.  For example, a set of NDs that are all less than some 
risk-based decision limit provides valuable information about the site.  This approach is po-
tentially viable only under select circumstances and for select data quality objectives.  For 
example, it may be appropriate if there are a large number of samples for a study area and the 
censoring limit is small relative to some risk-based decision limit to which monitoring is be-
ing performed.  If a statistical evaluation using only the set of detections were to indicate that 
contamination is present at concentrations significantly less than the decision limit, the omis-
sion of the NDs would probably not affect decision-making. 
 
 H-2.2.  Approach 2. 
 
 H-2.2.1.  The second approach is called the “substitution method.”  Proxy or surrogate 
values are assigned to all the NDs.  One approach for assigning proxy values is to assume 
that any value between zero and the censoring limit is equally probable and substitute one-
half the censoring limit (midpoint of the range of possible values) for each ND.  Other com-
mon proxy values are zero or the censoring limit itself.  However, assigning proxies requires 
assumptions about the distribution of NDs.  For example, assuming that all values less than 
the censoring limit are equally likely is equivalent to assuming a uniform probability distri-
bution for all possible measurements between zero and the censoring limit.  Assuming that 
all non-detects are equal to a fixed proxy value can bias the estimated standard deviation for 
the data set, particularly when a substantial number of results are NDs (see ASTM D-4210-
89 for further discussion of this topic).  For example, substituting the censoring limit could 
result in a sample mean that is biased high, and substituting zero could result in a mean that  
is biased low.  Substituting one half the censoring limits may not bias the mean, but often 
adversely affects the estimate of the standard deviation.  Biasing such summary statistics 
may result in erroneous conclusions about project objectives.  In general, it is undesirable to 
assign proxy values, especially when a significant portion of the data set (e.g., more than 
15%) contains censored values. 
 
 H-2.2.2.  As noted previously, laboratories often report uncensored data below the  
censoring limit as estimated positive detections (commonly indicated as J-flagged values).  
Using these uncensored data for statistical computations (not necessarily for data reporting) 
prevents the need to assign proxy concentrations based on arbitrary algorithms  
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(EPA 9285.7-09A, Gilbert, 1987).  While measurements below the censoring limit may not 
indicate the presence of target analytes as reliably as measurements above the limit, in many 
cases uncensored measurements are still better estimates of contaminant concentration than 
any proxy that might be applied.  Generally, this approach allows data users and decision-
makers to better characterize site conditions.  Censored data are always relevant for deter-
mining the presence or absence of a contaminant at a site, as long as appropriate qualitative 
identification criteria have been satisfied. 
 
 H-2.3.  Approach 3.  The third approach entails adjusting the average and standard de-
viation instead of estimating proxy values for each ND result.  However, to do this, it is also 
necessary to make assumptions about the data distributions (such as, all NDs vary in a man-
ner similar to results above the censoring limit—maximum likelihood estimation procedure 
and the probability plotting method—or Cohen’s method, which assumes a normal distribu-
tion).  Adjustment methods provide accurate results only when the distribution assumptions 
are valid; otherwise, elevated estimates of the average and standard error could result.  Usu-
ally, adjustment methods should be used when 15 to 50% of the values of the data results are 
censored. 
 
 H-2.4.  Approach 4.  A nonparametric approach should be considered when a signifi-
cant portion of the data set consists of censored values.  This approach typically involves or-
dering the data values (from smallest to largest) and replacing the data values with the 
corresponding rank number.  The NDs are then treated as tied ranks and would be replaced 
by some common mid-rank value.  Though not generally recommended, according to EPA 
guidance, if the DLs are not the same, then the NDs, instead of being treated as tied values, 
would be ranked according to their numerical estimates (EPA 68-W0-0025).  The advantage 
of a non-parametric approach over the strategy of assigning proxy values is that no distribu-
tion assumptions are made.  However, a larger number of data points are required for non-
parametric methods to achieve the same level of confidence as parametric methods.  
Furthermore, though non-parametric methods can tolerate a greater proportion of NDs than 
parametric methods, non-parametric methods will not be viable if there are many NDs.  For 
example, the median (refer to Appendix D) could not be determined from a data set that con-
sists of more than 50% NDs. 
 
 H-2.5.  Complicating Factors.  For most projects, uniform numerical censoring limits 
will be available; however, there are instances when this is not the case.  A laboratory can 
provide sample-specific detection limits or critical values (i.e., limit adjusted by the sample-
specific dilution factor, soil moisture, or other analytical adjustments) that vary from sample 
to sample.  In this case, use the sample-specific limits to establish the proxy values.  As there 
is no standard nomenclature or well-established conventions for generating censoring limits 
in the environmental testing industry, it is recommended that the project chemist be consult-
ed to establish the nature of the censoring limits being reported. 
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 H-2.5.1.  Censored results are sometimes reported as “ND” without the associated cen-
soring limit.  When censoring limits are not provided with data, this information can usually 
be obtained by contacting the laboratory if the analyses are current.  If this information is not 
available, it might be viable to estimate a censoring limit based upon the lowest reported 
concentration, such as the lowest J-flagged result.  Because J-flagged results are, by defini-
tion, concentrations that exceed the critical value, the minimum result represents a value that 
is closest to the critical value.  A chemist should be consulted to examine the J-flagged val-
ues to determine if there are anomalous values that would set proxies at inappropriate levels.  
For example, an examination of the J-flagged results may indicate that there may be, in ef-
fect, two different censoring levels—one for “dirty” samples and one for “clean” samples.  
The project chemist might want to consider the issues of aliquot sizes and dilution conformi-
ty, among others factors, prior to making a final recommendation. 
 
 H-2.5.2.  When using a nonparametric method to address NDs, ranking the data is often 
problematic when there are multiple censoring limits.  For example, in general, it cannot be 
concluded that “< 10” represents a value that is greater than “< 1.”  The most appropriate ap-
proach for addressing multiple censoring limits depends upon the nature of the parametric 
test being used.  One approach consists of setting all of the non-detects to the largest censor-
ing limit and treating these as tied values.  Detected values less than the largest censoring 
limit (i.e., detection limit) must also be censored to the highest detection limit and treated as 
ties.  This approach is not optimal because information is lost when all of the results are cen-
sored to the highest detection limit.  However, the approach is statistically valid, simple to 
implement, and could be adequate for a large data set.  It should also be noted that, rather 
than treating the NDs as ties, it is a common practice to rank the NDs according to their 
numerical estimates (EPA 68-W0-0025). Although this approach is used in this document (to 
be consistent with EPA guidance), it is not necessary appropriate. It is preferrable to use non-
parametric statistical methods designed to account for multiple censoring limits such as the 
“Gehan test” and “generalized Wilcoxon test” described in Helsel (2005). If these methods 
are not available, consider assigning the largest censoring limit to all the non-detects.   
 
 H-2.6.  Overview Summary.  Some general guidelines are presented in Table H-1 based 
on the percentage of NDs. Substitution methods can potentially be used when less than 15% 
of the data are NDs.  However, they are the preferred approach because the surrogate values 
that are substituted for the non-detects tend to distort the data sets to some degree.  Adjust-
ment or nonparametric methods should be considered, especially when more than 15% of the 
results are censored.  If more than 50% of the data set’s concentrations are NDs, it is recom-
mended that nonparametric methods be used instead of adjustment methods. 

 H-2.6.1.  OSWER 9285.7-41/EPA 540-R-01-003 recommends a substitution method 
for censored results that is not recommended herein.  The EPA suggests that a proxy value 
for NDs, based on one-half the censoring limit or on a random value between zero and the 
censoring limit, be used.  According to the document, the censoring limit should be equal to 
the “sample-specific quantitation limit” and the method may be used so long as fewer than 
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50% of the data set’s concentrations are NDs.  However, it is recommended that proxy val-
ues not be used, especially when more than 15% of the results are reported as NDs. Using 
proxy values can bias the results of the statistical evaluations.  The data user should verify 
that the “sample-specific quantitation limit” (SQL) is an appropriate censoring limit and ade-
quately addresses false negatives as discussed in Appendix G. False negatives will not be 
minimized at the SQL when this limit is essentially a sample-specific MDL. 
 
Table H-1. 
Guidelines for Analyzing Data with NDs 

Percentage 
of NDs Paragraph Proxy Definition/Statistical Analysis Method 

< 15 H-3 Replace NDs with one-half censoring limit or a very small 
number 

15–50 H-4 Trimmed mean, Cohen’s or Atchison’s adjustment, 
Winsorized mean, and standard deviation or non-parametric 
methods 

> 50 – 90 H-5 Use tests for proportions 
> 90 H-6 Use tests based on Poisson distribution 

 
 H-2.6.2.  Although guidelines in Table H-1 are usually adequate, they should be im-
plemented cautiously.  Professional judgment is critical.  In particular, the use of proxy val-
ues for a substitution approach should be evaluated in terms of the data quality objectives of 
the project.  If the censoring limits are greater than or near project decision levels, then this 
approach may not be appropriate. 
 
 H-2.6.3.  In Table H-1, all of the suggested procedures for analyzing data with NDs de-
pend on the percentage of data below the censoring limit.  For relatively small amounts be-
low the censoring limit, replacing the NDs with a small number and proceeding with the 
usual analysis may be satisfactory.  For moderate amounts of data below the censoring limit, 
a more detailed adjustment is appropriate.  In situations where relatively large amounts of da-
ta below the censoring limit exist, one may need only to consider whether a certain propor-
tion of the samples display values greater than some threshold values.  The interpretation of 
small, moderate, and large amounts of data below the censoring limit is subjective.  Table H-
1 provides guideline percentages to assist the user in evaluating their particular situation; 
however, it should be recognized that these percentages are not rigid rules, but should be 
based on judgment. 
 
 H-2.6.4.  In addition to the percentage of samples below the censoring limit, sample 
size influences which procedures should be used to evaluate the data.  For example, the case 
where the result for 1 sample out of 4 is not detected should be treated differently from the 
case where the results for 25 samples out of 100 are not detected.  It is recommended that the 
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data analyst consult a statistician for the most appropriate way to evaluate data containing 
values below the detection level. 
 
 H-2.6.5.  The remaining portion of this Appendix describes in detail the various meth-
ods outlined above.  Case studies and examples are also presented. 
 
H-3.  Substitution Methods for Less than 15% NDs.  If small proportions, 15% or fewer, of 
the observations are NDs, these may be replaced with a small number, the DL, DL/2, or a 
random value between the DL and zero (see EPA 540-R-01-003).  After the non-detected 
values have been given a proxy value, then the usual statistical analysis may be performed.  
If simple substitution of values below the DL is proposed when more than 15% of the values 
are reported as not detected, consider using nonparametric methods or a test of proportions to 
analyze the data. 
 
 H-3.1.  As a simplified case study showing the magnitude of effect on simple statistics 
attributable to different proxy concentrations, consider the data in Table H-2 for sodium in 
surface soil at a site.  This table presents summary statistics for sodium data when 3 results of 
the 21 samples analyzed are not detected and 8 types of proxy concentrations have been used 
to represent these non-detected results.  These proxies are the DL, RL, ½DL, ½RL, and a 
random number selected in four different ways as described in the table. 
 
 H-3.2.  Summary statistics, in particular the average and standard deviation, are affect-
ed by the choice of proxy concentration.  Proxy concentrations were developed based on the 
sample-specific DL and the project RL to illustrate how they are affected by the limit used 
for estimation.  In this case study, a concentration not detected is reported as < DL.  The DL 
is more appropriate to use to estimate a proxy than the RL, because it is the closest value at 
which the non-detected concentration may have occurred.  If a concentration was > DL, but 
still < RL, the concentration is reported as a detect.  Hypothetically, had only the RL been 
available and no DL had been provided, an alternative method to determine a proxy concen-
tration would be to select the lower of the RL and the minimum detected result.  Then, the 
proxy value would be at least below all of the detected concentrations. 
 
 H-3.3.  As a basis for comparison, the summary statistics were also calculated using on-
ly the positively detected results in column 1 of Table H-2.  In this instance, it is expected 
that the calculated average concentration would be higher than the true average, and the cal-
culated standard deviation would be lower than the true standard deviation.  When the RL is 
used to create proxy values (columns 7, 9, and 11), the average is higher and the standard de-
viation is lower than the associated summary statistics when the DL is used (columns 6, 8, 
and 10).  Of all the cases when the RL is used to create a proxy, the case when a random 
number between zero and the RL is used (column 11) tends to have estimates for the average 
and standard deviation that are similar to the cases when the DL is used.  This may be related 
to the fact that when a simple substitution such as the RL or ½RL is used, the variability is 
reduced because the proxy concentrations do not account for the inherent variation among 
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concentrations.  Proxy values are consistently the same number, whereas a proxy value based 
on a random number varies.  It is also interesting to note that, in general, the summary statis-
tics are similar for cases using random numbers as proxy values, no matter if the proxy value 
was based on the DL, RL, or the lowest detected result. 
 
H-4.  Methods for 15 to 50% NDs.  Adjustment methods for treating NDs are commonly ap-
plied when NDs compose 15 to 50% of the data set.  These various methods have their 
strengths and weaknesses, and they are presented first.  Cohen’s method is probably the most 
frequently used.  A brief outline of a non-parametric procedure follows the discussion of ad-
justment methods. 

 H-4.1.  Cohen’s Method.  Cohen’s method provides adjusted estimates of the sample 
mean and standard deviation that accounts for data below the detection level when data are 
normally distributed.  The adjusted mean and standard deviation can then be used in the par-
ametric test described in Appendix L (EPA/240/B-026/003, QA/G-9S).  This method re-
quires knowing the censoring level, the percent of NDs, and either the arithmetic mean and 
standard deviation of the data (if the data are normally distributed) or the arithmetic mean 
and standard deviation of the log-transformed data (if the data are log-normally distributed).  
The data must also be evaluated for normality (Appendix F).  For Cohen’s method, the dis-
tribution is tested on the entire data set: positive detections and censored data.  If the distribu-
tion testing fails to be normal or lognormal, Atchison’s method (described below) may be 
more appropriate.  Once the data distribution has been determined to be normal, the proxy 
concentrations themselves are essentially irrelevant when computing the adjusted mean and 
standard deviation.  
 
 H-4.1.1.  Cohen’s adjustment is a theoretically attractive method for handling cases 
with between 15 and 50% NDs. Conceptually, the method considers the detected results to be 
the top X% of an assumed distribution (normal, lognormal).  The mean and standard devia-
tion are then computed by filling in the bottom Y% of the assumed distribution (i.e., by as-
suming that the NDs represent the lower tail of the assumed distribution).  These are referred 
to as the adjusted mean and adjusted standard deviation.  This method appears to be a rea-
sonable method for handling NDs and is attractive because it does not require the use of 
proxy concentrations (after normality has been determined).  

 H-4.1.2.  There are, however, several practical difficulties encountered when applying 
this method, as follows. 
 
 H-4.1.2.1.  Because there are no tests for how reliably the top X% of the data represent 
the top X% of a normal or lognormal distribution, there is a high degree of reliance on sub-
jective judgment in selecting the appropriate distribution.  So, the dilemma remains whether 
it is more appropriate to determine the distribution based on just the detected values or 
whether it is more appropriate to determine the distribution based on detects and proxy con-
centrations representing the NDs. 
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 H-4.1.2.2.  With Cohen’s method, the sample size is effectively reduced because esti-
mates are based only on the detected results.  Estimates that are based on a small number of 
results are highly sensitive to the degree of uncertainty.  This is particularly true when a 
lognormal distribution is assumed, and there is a high proportion of ND results.  This leads to 
poorer estimates of the standard deviation, which can substantially impact calculations. 
 
 H-4.1.2.3.  The method assumes that a single censoring level applies to all ND results.  
This is not always true (for example, if some NDs are for diluted samples and others are not), 
and the selection of the censoring level used in the calculations can have a substantial effect 
on the outcome. 
 
 H-4.1.3.  Because this method requires knowing the censoring level, which is some-
times not reported and sometimes differs from one sample to another when it is reported, the 
following recommendations should be followed when Cohen’s method is used. 
 
 H-4.1.3.1.  If the censoring level (DL) is reported, and is the same for all non-detected 
results, use this value. 
 
 H-4.1.3.2.  If the censoring level (DL) is reported, but is not consistent across all non-
detected results, it is preferable to use the minimum censoring level among the NDs if there 
is justification to do so. 

 H-4.1.3.3.  If the censoring level is not reported, then the values used to compute the 
proxy concentrations is the lesser of the RL and the minimum detected result. 
 
 H-4.1.3.4.  If the RL and minimum detected results are the same for all non-detects, use 
that value.  

 H-4.1.3.5.  If the RL values are not consistent across all non-detected results, use the 
minimum value among the NDs if there is justification to do so. 
 
 H-4.1.4.  Because of the unrealistically elevated summary statistics that result when 
Cohen’s method is applied, this method should be used with caution.  Using Cohen’s method 
is not recommended in more complicated evaluations, such as those required for an analysis 
of variance.  Despite the limitations, there may be specific instances where it is applicable.  
In these cases, the results should be examined carefully to ensure that the conclusions are 
reasonable.  The computational details of Cohen’s method are presented in Paragraph H-4.2, 
and an example is given in Paragraph H-4.3. 

 H-4.2.  Directions for Cohen’s Method.  Let nm xxxx ,,, 21   represent the n data 
points with the first m values representing the data points above the DL.  Thus, there are 
 (n – m) data points below the DL.  
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 H-4.2.1.  Verify the distribution of the data to determine if they follow a normal or 
lognormal distribution (Appendix F).  If they follow a normal distribution, then the raw data 
should be used for the following calculations.  If the data follow a lognormal distribution, 
then the log-transformed data should be used for the following calculations. 
 
 H-4.2.1.1.  Compute the sample mean dx  from the data above the DL:  
 

 ∑
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Table H-2. 
Case Study, Sodium in Surface Soil: Summary Statistics Using Various Substitution Methods for Proxy Values 

  1 2 3 4 5 6 7 8 9 10 11 

Sampling 
Event Sample 

Result 
(mg/kg) 

DL 
(mg/kg) 

RL 
(mg/kg) 

1/2DL 
as 

Proxy 

1/2RL 
as 

Proxy 
DL as 
Proxy 

RL as 
Proxy 

Random 
Number 

between 0 
and DL as 

Proxy 

Random 
Number  

between 0 
and RL as 

Proxy 

Random Number 
between 0 and  

lower of min. result 
and DL as Proxy 

Random Number  
between 0 and 

lower of min. result 
and RL as Proxy 

A SS-010 ND 50 500 25 250 50 500 18.4 68.4 4.4 7.3 
A SS-020 ND 50 500 25 250 50 500 24.5 272.0 38.1 56.3 
A SS-030 1710           
A SS-040 1860           
A SS-050 2150           
A SS-060 ND 50 500 25 250 50 500 13.9 47.8 48.1 28.6 
B SB01 750           
B SB02 2430           
B SB03 1160           
B SB04 66           
B SB05 140    Positive detections for columns 2 through 11 are the same as reported 

in column 1.  They are omitted to highlight the DL, RL, and various 
proxy values. 

 
B SB06 89     

B SB07 120           
B SB08 60           
B SB09 107           
B SB10 170           
B SB11 180           
B SB12 310           
B SB13 71           
B SB14 88           
B SB15 61           

Summary Statistics 
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  1 2 3 4 5 6 7 8 9 10 11 
25th Percentile 88.25   66 89 66 89 66 71 66 66 
Median 155   120 180 120 180 120 140 120 120 
75th Percentile 1057.5   750 750 750 750 750 750 750 750 
Average 640.1   552.2 584.4 555.8 620.1 551.4 567.2 553.0 553.1 
Standard Deviation 828.9   795.4 776.9 792.9 765.8 796.0 786.8 794.9 794.8 
DL = Sample-specific Detection Limit  
RL = Project Reporting Limit 
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 H-4.2.1.4.  Use h and γ  in Table B-3 of Appendix B to determine λ̂ .  For example, if h 
= 0.4 and γ = 0.30, then λ̂ = 0.6713.  If the exact value of h and γ  do not appear in the table, 
use double linear interpolation (Paragraph H-4.4) to estimate λ̂ . 
 
 H-4.2.1.5.  Estimate the corrected sample mean, x , and sample variance, 2s , to account 
for the data below the DL as follows:  
 
 )(ˆ DLxxx dd −−= λ  
 
 222 )(ˆ DLxss dd −+= λ .  
 
 H-4.2.2.  If these estimates are based on the log-transformed data, then they can be 
transformed back to the original units to estimate the mean and variance of the lognormal 
distribution.  For example, if n is large, the mean and variance (of the untransformed data 
set) can be calculated as follows: 
 

 







+=

2
exp

2sxxLn  and ( )[ ]1exp 222 −= sxsLn . 

 
 H-4.3.  Example—Application of Cohen’s Method.  Of the groundwater analyses for 
benzene at Site A in monitoring well MW03, 10 of the 15 sample results are positive detec-
tions and 5 of the 15 sample results are NDs. Table H-3 presents the benzene concentrations, 
the DL, and natural log of the concentrations. 
 
 H-4.3.1.  The total number of samples 15=n , the number of detects 10=m , and the 
number of non-detects 5=− mn . 
 
 H-4.3.2.  The distribution of the positive detections was determined by the Shapiro-
Wilk test (Appendix F) to be lognormal.  The distribution of the entire data set, including 
NDs set to the proxy concentration equal to the DL, was also tested and evidence of a 
lognormal distribution was found.  Thus, the Cohen’s adjustment may be used. 
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 3333.0
15
5
==

−
=

n
mnh  . 

 
 H-4.3.3.  The DLs vary for the NDs.  The lowest DL associated with the NDs will be 
used in these calculations.  So, Ln(0.0375) 3.283DL = = − . 

 1731.0
))283.3(1650.0(

683.1
2 =

−−−
=γ  . 

 
Table H-3. 
Benzene Concentrations, the DL, and Natural Log of the Concentrations 

Sampling Event Result, X (μg/L) DL (μg/L) Ln(X) (Ln[μg/L]) 
29-Jan-98 ND 0.0605 ND 
18-Apr-98 1.78 0.0375 0.5766 
15-Jul-98 ND 0.0375 ND 
18-Oct-98 2.31 0.0375 0.8372 
18-Apr-99 7.24 0.0469 1.980 
18-Jul-99 1.85 0.0759 0.6152 
20-Oct-99 0.308 0.0759 –1.178 
1-Apr-00 2 0.0504 0.6931 
17-Jul-00 0.143 0.0353 –1.945 
16-Oct-00 0.235 0.0353 –1.448 
17-Jan-01 ND 0.0641 ND 
4-May-01 0.759 0.0401 –0.2758 
28-Jul-01 0.222 0.0401 –1.505 
5-Nov-01 ND 0.0465 ND 
31-Jan-02 ND 0.0465 ND 

 
 H-4.3.4.  Using 3333.0=h and 1731.0=γ  in Table B-3 of Appendix B and double lin-
ear interpolation (see Paragraph H-4.4 for details), 5020.0ˆ =λ ,  
 
 [ ]{ }0.1650 0.5020 0.1650 ( 3.283) 1.730x = − − × − − − = −  
 
and  
 [ ]{ }22 1.683 0.5020 0.1650 ( 3.283) 6.563s = + × − − − = . 
 
 H-4.3.5.  Though n is relatively small, for the purposes of illustration, the corrected 
sample mean and variance for the lognormal distribution (based on the original units) are 
calculated as discussed in Paragraph H-4.2. 
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 719.4
2
563.6730.1exp =






 +−=Lnx  

 
and  
 
 ( )[ ] .21171563.6exp)730.1( 22 =−−=Lns   
 
 H-4.4.  Double Linear Interpolation.  The details of the double linear interpolation are 
provided to assist in the use of Table B-3 of Appendix B. Suppose the desired value corre-
sponds to γ = 0.1731 and h = 0.3333 from Paragraph H-4.3.  The values λ̂  from Table B-3 
for interpolation are: 
 

γ   H = 0.30  h = 0.35 
0.15 0.4330 0.5296 
0.20 0.4422 0.5403 

 

 H-4.4.1.  There are 0.05 units between 0.30 and 0.35 on the h scale, and 0.0333 units 
between 0.30 and 0.3333.  Therefore, the value of interest lies (0.0333/0.05)1000% = 66.6% 
of the distance along the interval between 0.30 and 0.35.  To linearly interpolate between 
tabulated values on the h axis for γ = 0.15, the range between the values must be calculated, 
0.5296 – 0.4330 = 0.0966; the value that is 66.6% of the distance along the range must be 
computed, 0.0966 × 0.666 = 0.06434; and then that value must be added to the lower point 
on the tabulated values, 0.4330 + 0.06434 = 0.4973.  Similarly for γ = 0.20, 0.5403 – 0.4422 
= 0.0981, 0.0981 × 0.666 = 0.06533, and 0.4422 + 0.06544 = 0.5075.  So,  
 

γ   h = 0.30  h = 0.3333  h = 0.35 
0.15 0.4330 0.4973 0.5296 
0.20 0.4422 0.5075 0.5403 

 
 H-4.4.2.  On the γ -axis there are 0.0231 units between 0.15 and 0.1731, and there are 
0.05 units between 0.15 and 0.20.  The value of interest (0.1731) lies (0.0231/0.05)100% = 
46.2% of the distance along the interval between 0.15 and 0.20, so 0.5075 – 0.4973 = 0.0102, 
0.0102 × 0.462 = 0.004712.  Therefore, .5020.0004712.04973.0ˆ =+=λ  

 H-4.5.  Atchison’s Method.  Previous adjustments to the mean and variance assumed 
that the data values really were present, but could not be recorded or seen as they were below 
the DL.  In other words, if the DL had been substantially lower, the data values would have 
been recorded.  There are cases, however, where the data values are below the DL because 
they are actually not present, the contaminant or chemical of concern being entirely absent.  
The investigator may have reason to believe that the contaminant is absent, but is unable to 
prove it is below the analytical DLs.  Such data sets are actually a mixture—partly the  
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assumed distribution (for example, a normal distribution) and partly a number of real zero 
values.  Atchison’s method is used in this situation to adjust the mean and variance for the 
zero values.  It should also be noted that Atchison’s method differs from Cohen’s method, in 
that, for Atchison’s method, a normality test is performed for the detected results only. 
 
 H-4.5.1.  Atchison’s method for adjusting the mean and variance of the values above 
the DL works quite well provided the percentage of NDs is between 15 and 50% of the total 
number of values.  Care must be taken when using Atchison’s adjustment because the mean 
is reduced and variance increased.  With such an effect, it may become very difficult to use 
the adjusted data for tests of hypotheses or for predictive purposes. 
 
 H-4.5.2.  As a diagnostic tool, Atchison’s adjustment can lead to an evaluation of the 
data to determine if two populations are being sampled simultaneously: one population being 
represented by a normal distribution, the other being simply blanks.  In some circumstances, 
such as investigating a hazardous site, it may be possible to relate the position of the sample 
through a posting plot and determine if the target population has not been adequately strati-
fied.  Directions for Atchison’s method are contained in Paragraph H-4.6, and an example is 
contained in Paragraph H-4.7. 
 
 H-4.6.  Directions for Atchison’s Method to Adjust Means and Variances.  Let 

nm xxxx ,,,,, 21   represent the data points where the first m values are above the DL and 
the remaining (n – m) data points are below the DL.  

 H-4.6.1.  Using the data above the detection level, verify this subset of data follows a 
normal distribution. 
 
 H-4.6.2.  Using the data above the detection level, compute the sample mean,  
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 H-4.6.3.  Estimate the corrected sample mean, 
 

 dx
n
mx =   
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and the sample variance,  
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 H-4.7.  Example for Atchison’s Method to Adjust Means and Variances.  Atchison’s 
method will be used to adjust the mean and standard deviation of the groundwater concentra-
tions for benzene at Site A and well MW03, presented in Paragraph H-4.3.  
 
 H-4.7.1.  So, 15=n , 10=m , and 5=− mn . 
 
 H-4.7.2.  According to Paragraph H-4.3, the detected results from this data set follow a 
lognormal distribution; so, the log-transformed data will be used to adjust the mean and vari-
ance.  The sample mean and variance based on just the data above the detection level are  
 
 1650.0−=dx  
and  
 
 683.12 =ds . 

 H-4.7.3.  The corrected sample mean and variance (in the log-scale) are: 
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 H-4.8.  Selecting Between Atchison’s Method or Cohen’s Method.  To determine if a 
data set is better adjusted by Cohen’s method or Atchison’s method, a simple graphical pro-
cedure using a normal probability plot can be used.  Directions for this procedure are given 
in Paragraph H-4.9, and an example is contained in Paragraph H-4.10. 
 
 H-4.9.  Directions for Selecting Between Atchison’s Method or Cohen’s Method.  Let 

nm xxxx ,,,,, 21  represent the data points with the first m values above the DL and the re-
maining n-m data points below the DL. 
 
 
 H-4.9.1.  Use Paragraph H-4.3 to construct a Normal Probability Plot using all the data, 
but only plot the values above the detection level.  This is called the Censored Plot. 
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 H-4.9.2.  Use Paragraph H-4.3 to construct a Normal Probability Plot using only those 
values above the detection level.  This is called the Detects Only Plot. 
 
 H-4.9.3.  If the Censored Plot is more linear than the Detects Only Plot, use Cohen’s 
method to estimate the sample mean and variance.  If the Detects Only Plot is more linear 
than the Censored Plot, then use Atchison’s method to estimate the sample mean and vari-
ance.  
 
 H-4.10.  Example for Selecting Between Cohen’s Method or Atchison’s Method.   
 
 H-4.10.1.  This comparison will be made with the groundwater concentrations for ben-
zene at Site A and well MW03, based on the log-transformed data presented in Paragraph H-
4.3.  
 
 H-4.10.2.  Using Paragraph H-4.3, we constructed normal probability plots based on the 
log-transformed data, as the data seem to follow a lognormal distribution based on the 
Shapiro-Wilk test.  The Figure H-1 shows these plots.  The Censored Plot was developed 
with just the detected results.  The Detects Only Plot was developed with all of the data (us-
ing the DL as a proxy value), but only the detected results were plotted.  The Detects Only 
Plot appears to fit a line better than the Censored Plot, so Atchison’s Method seems to be the 
more appropriate method to estimate the sample mean and variance. 
 
 H-4.11.  Trimmed Mean.  Trimming discards the data in the tails of a data set to devel-
op an unbiased estimate of the population mean.  This method is considered useful when the 
data set is generally symmetric, and there are concerns about outlier data that might be mis-
takes or otherwise unexplainable.  
 
 H-4.11.1.  For environmental data, NDs usually occur in the left tail of the data, so 
trimming the data can be used to adjust the data set to account for NDs when estimating a 
mean.  Developing a p100% trimmed mean involves trimming p100% of the data in both the 
lower and the upper tail.  Note that p must be between 0 and 0.5 as p represents the portion 
deleted in both the upper and the lower tail.  After np of the largest values and np of the 
smallest values are trimmed, there are n(1 – 2p) data values remaining where n represents the 
original number of samples.  
 
 H-4.11.2.  The proportion trimmed depends on the total sample size (n), as a reasonable 
number of samples must remain for analysis.  For approximately symmetrical distributions, a 
25% trimmed mean (the mid-mean) is a good estimator of the population mean.  However, 
environmental data are often skewed (asymmetrical), and in these cases a 15% trimmed 
mean may be a better estimator of the population mean.  It is also possible to trim the data 
only to replace the NDs.  For example, if 3% of the data are below the DL, a 3% trimmed 
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mean could be used to estimate the population mean.  Directions for developing a trimmed 
mean are contained in Paragraph H-4.12, and an example is given in Paragraph H-4.13.  A 
trimmed variance is rarely calculated and is of limited use.   

 
Figure H-1.  Example of Selecting between Atchison’s Method and Cohen’s Method. 

 
 H-4.12.  Directions for Developing a Trimmed Mean.  Let nxxx ,,, 21   represent the n 
data points.  To develop a p100% trimmed mean (0 < p < 0.5): 

 H-4.12.1.  Let j represent the integer part of the product np.  For example, if p = 0.25 
and n = 17, np = (0.25)(17) = 4.25, so j = 4.  
 
 H-4.12.2.  Delete the j smallest values of the data set and the j largest values of the data 
set.  
 
 H-4.12.3.  Compute the arithmetic mean of the remaining n – 2j values,  
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This value is the estimate of the population mean. 

 H-4.13.  Example for Developing a Trimmed Mean.  For simplicity, a 100p% trimmed 
mean (0 < p < 0.5) will be estimated using the benzene data presented in the example in Par-
agraph H-4.3.  As 5 out of 15 of the data are NDs, a 33.3% trimmed mean will be calculated. 
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 15=n  
 
 333.0=p  
 
 5333.015 =×=np  
 
 5=j (the integer part of np) . 
So, the 5 NDs and the 5 largest values of the data set will be removed, and the remaining 
samples will be used to estimate the average:  
 

 .3334.0)222.0759.0235.0143.0308.0(
5
1

=++++=x  
 
 H-4.14.  Winsorized Mean and Standard Deviation.  Winsorizing replaces data in the 
tails of a data set with the next most extreme data value.  For environmental data, NDs usual-
ly occur in the left tail of the data.  Winsorizing can be used to adjust the data set to account 
for NDs, and the mean and standard deviation can then be computed on the new data set.   
Directions for Winsorizing data (and revising the sample size) are contained in Paragraph  
H-4.15, and an example is in Paragraph H-4.16. 
 
 H-4.15.  Directions for Developing a Winsorized Mean and Standard Deviation.  Let 

nm xxxx ,,,, 21  represent the n data points and m represent the number of data points 
above the DL, and hence n – m below the DL.  
 
 H-4.15.1.  List the data in order from smallest to largest, including NDs. Label these 
points x(1), x(2),..., x(n) such that x(1) is the smallest, x(2) is the second smallest, …., and x(n) is 
the largest.  
 
 H-4.15.2.  Replace the n – m non-detects with )1( +mx  and replace the n – m largest val-
ues with )( mnx − . 
 
 H-4.15.3.  Using the revised data set, compute the sample mean, x , and the sample 
standard deviation, s: 
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 H-4.15.4.  The Winsorized mean wx is equal to x .  The Winsorized standard deviation is  
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 H-4.16.  Example for Developing a Winsorized Mean and Standard Deviation.  A 
Winsorized mean and standard deviation will be estimated using the groundwater concentra-
tions for benzene at Site A and well MW03.  Table H-4 presents these concentrations ordered 
from smallest to largest, where the NDs are considered the lowest concentrations.  The five 
NDs are replaced by the smallest detected result (the 6th highest result) of 0.143, and the 
highest five detected results are replaced with the 10th highest result of 0.759. 

 15=n , 10=m , 5=− mn . 
 
Table H-4. 
Groundwater Concentrations for Benzene at Site A for Well MW03 

Sampling Event Detected Result (μg/L) DL (μg/L) Revised Data (NDs replaced 
with smallest detected result)  

15-Jul-98 ND 0.0375 0.143 
05-Nov-01 ND 0.0465 0.143 
31-Jan-02 ND 0.0465 0.143 
29-Jan-98 ND 0.0605 0.143 
17-Jan-01 ND 0.0641 0.143 
17-Jul-00 0.143 0.0353 0.143 
28-Jul-01 0.222 0.0401 0.222 
16-Oct-00 0.235 0.0353 0.235 
20-Oct-99 0.308 0.0759 0.308 
04-May-01 0.759 0.0401 0.759 
18-Apr-98 1.78 0.0375 0.759 
18-Jul-99 1.85 0.0759 0.759 
01-Apr-00 2.00 0.0504 0.759 
18-Oct-98 2.31 0.0375 0.759 
18-Apr-99 7.24 0.0469 0.759 

 
 H-4.16.1.  Using the revised data set, we find the sample mean to be 4118.0=x ; this 
value is also the Winsorized mean.  Using the revised data set, we find the sample standard 
deviation to be 2970.0=s .  
 
 H-4.16.2.  The Winsorized standard deviation is 
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 H-4.17.  Nonparametric Procedure.  Another procedure that may be used, when the per-
cent of NDs is between 15 and 50%, is a nonparametric analysis.  First, all the data values 
need to be ordered and then replaced by their ranks.  The NDs are then treated as tied values 
and replaced by their mid-ranks.  The ranking procedure and adjustments for tied ranks are 
routinely performed for non-parametric tests such the Wilcoxon rank sum test. 
 
H-5.  50 to 90% NDs.  If more than 50% of the data are below the DL but at least 10% of the 
observations are quantified, tests of proportions may be used to test hypotheses using the da-
ta.  If the parameter of interest is a mean, consider switching the parameter of interest to 
some percentile greater than the percent of data below the DL.  For example, if 67% of the 
data are below the DL, consider switching the parameter of interest to the 75th percentile.  
Then, the test of proportion can be applied to test the hypothesis concerning the 75th percen-
tile.  It is important to note that tests of proportions may not be applicable for composite 
samples.  In this case, the data analyst should consult a statistician before proceeding with 
analysis.  
 
H-6.  Greater than 90% NDs.  The Poisson distribution can be used when 90% or more of the 
data is non-detected.  In this instance, the detected results would be considered the “rare 
events” as modeled by the Poisson distribution.  The Poisson model describes the behavior of 
a series of independent events over a large number of trials, where the probability of occur-
rence is low but stays constant from trial to trial.  This model represents a counting process 
where each particle or molecule of contamination is counted separately but cumulatively, so 
that the counts for detected samples with high concentrations are larger than counts for sam-
ples with smaller concentrations.  So, the Poisson model maintains the magnitude of detected 
concentrations.  For example, a detected result with a concentration of 100 ppb would have a 
Poisson count of 100.  Counts for non-detected results can be taken as zero or half the DL.  
The Poisson model is a distribution, like a normal distribution, that can be used to derive 
summary statistics such as prediction limits and tolerance limits.  See Appendix E for a de-
scription of the Poisson distribution. 
 
H-7.  Recommendations. 
 
 H-7.1.  If the degree of censoring (the percentage of data below the DL) is relatively 
low, reasonably good estimates of means, variances, and upper percentiles can be obtained.  
However, if the rate of censoring is very high (greater than 50%), then little can be done sta-
tistically except to focus on some upper quantile of the contaminant distribution, or on some 
proportion of measurements above a certain critical level that is at or above the censoring 
limit.  Using nonparametric analyses is another approach for analyzing such data. 
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 H-7.2.  When the numerical standard is at or below one of the censoring levels and a 
one-sample test is used, the most useful statistical method is to test whether the proportion of 
a population is above (or below) the standard, or to test whether an upper quantile of the 
population distribution is above the numerical standard. 
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APPENDIX I 

Identification and Handling of Outliers 

 

I-1.  Purpose. 

 

 I-1.1.  Outliers are measurements that are extremely large or small relative to the rest  

of the data and, therefore, are suspected of misrepresenting the population from which they 

were collected.  Outliers influence statistics if used in calculations, and statistical tests based 

on parametric methods are generally more sensitive than nonparametric methods to outliers.  

Outliers may result from transcription errors, data-coding errors, or measurement system 

problems, such as instrument breakdown.  However, outliers may also represent true extreme 

values of a distribution and may indicate more variability in the population or a different  

underlying distribution for the population than what was initially assumed.  For example, a 

point that appears as an outlier under the assumption that the underlying distribution is nor-

mal will not necessarily appear as an outlier if it were initially assumed that the distribution 

is lognormal.  Not removing true outliers or removing false outliers can lead to a distortion of 

estimates of population parameters. 

 

 I-1.2.  Statistical outlier tests give the analyst probabilistic evidence that an extreme 

value (potential outlier) does not fit with the distribution of the remainder of the data and is a 

statistical outlier.  These tests should only be used to identify data points that require further 

investigation.  Tests alone cannot determine whether a statistical outlier should be discarded 

or corrected within a data set; this decision should be based on judgment and scientific rea-

soning.  (See EPA 600/R-96/084, Gilbert, 1987, for further details on identifying and han-

dling outliers.) 

 

I-2.  Methods.  Five steps are involved in treating extreme values or outliers 

 

1. Identify extreme values that may be potential outliers. 

 

2. Apply a statistical test. 

 

3. Scientifically review statistical outliers and decide on their disposition. 

 

4. Conduct data analyses with and without statistical outliers. 

 

5. Document the entire process. 

 

Potential outliers can be identified through graphical representations.  Graphs, such as the 

box- and-whisker plot, normal probability plot, and time plot, can be used to identify  
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observations that are much larger or smaller than the rest of the data.  (Appendix J presents 

these graphical tools.)  If potential outliers are identified, the next step is to apply one of the 

statistical tests described below.  

 I-2.1.  Dixon’s Test.  Dixon’s extreme value test can be used to test for statistical outli-

ers when the sample size is less than or equal to 25.  This test considers extreme values that 

are much smaller or larger than the rest of the data.  Because this test assumes that the data 

without the suspected outlier are normally distributed, it is necessary to test for normality in 

the data without the suspected outlier before applying Dixon’s test.  If the data are not nor-

mally distributed, a transformation that normalizes the data should be applied, or a different 

test should be used.  Directions for the extreme value test are contained in Paragraph I-2.1.1 

followed by an example in Paragraph I-2.1.2.  Dixon’s test should be used when only one 

outlier is suspected in the data.  If more than one outlier is suspected, the extreme value test 

may lead to masking, in which two or more outliers close in value obscure one another.  

Therefore, if the analyst decides to use the extreme value test for multiple outliers, it should 

be applied to the least extreme value first; otherwise, Rosner’s test should be used to test for 

multiple outliers.  Rosner’s test is discussed below. 

 

 I-2.1.1.  Directions for the Extreme Value Test (Dixon’s Test).  Let x(1), x(2),...,x(n)  
represent the data ordered from smallest to largest.  Check that the data without the suspected 
outlier are normally distributed, using one of the methods in Appendix F.  
 

 I-2.1.1.1.  If normality fails, transform the data or apply a different outlier test.  

 

 I-2.1.1.2.  Case 1: )1(x is a potential outlier.  Compute the test statistic C , where  

 

)1()(

)1()2(

xx

xx
C

n 


  for 73  n ,  

)1()1(

)1()3(

xx

xx
C

n 






 for 1311  n , 

 

)1()1(

)1()2(

xx

xx
C

n 






 for 108  n ,  
)1()2(

)1()3(

xx

xx
C

n 






 for 2514  n . 

 

 I-2.1.1.3.  If C  exceeds the critical value from Table B-5 of Appendix B for the  
specified significance level  , )1(x is an outlier and should be further investigated.  
 

 I-2.1.1.4.  Case 2: )(nx is a potential outlier.  Compute the test statistic C , where 
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 I-2.1.1.5.  If C  exceeds the critical value from Table B-5 of Appendix B for the speci-
fied significance level , x(n) is an outlier and should be further investigated. 
 

 I-2.1.2.  Example for the Extreme Value Test (Dixon’s Test).  Consider the following 

subsurface background chromium data in order of magnitude from smallest to largest: 3.84, 

4.26, 4.53, 4.60, 5.28, 5.29, 5.74, 5.86 (in mg/kg).  Suppose there was an additional sample 

with a result of 10 mg/kg.  As this additional sample is much larger than the other values, it 

is suspected that this point might be an outlier.  The required level of significance for an 

outlier is 5%. 

 
 I-2.1.2.1.  Testing the data for normality using the Shapiro-Wilk test (without the ex-
treme value) indicated that the data were normal.  Therefore, the extreme value test may be 
used to determine if the largest data value is an outlier.  
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 I-2.1.2.2.  Because 512.072.0 C  (from Table B-5 of Appendix B with 9n  and  
 = 0.05), there is evidence that x(n) is an outlier at a 5% significance level and should be  
further investigated. 
 

 I-2.2.  Discordance Test.  The discordance test can be used to test if one extreme value 

is an outlier.  This test considers two cases: i) where the extreme value (potential outlier) is 

the smallest value of the data set; and ii) where the extreme value (potential outlier) is the 

largest value of the data set.  The discordance test assumes that the data are normally distrib-

uted; therefore, it is necessary to perform a test for normality before applying the discordance 

test.  If the data are not normally distributed, transform the data, apply a different test, or 

consult a statistician.  Note that the test assumes that the data without the outlier are normally 

distributed, so the test for normality should be performed without the suspected outlier.   

Directions and an example of the discordance test are contained in Paragraphs I-2.2.1 and  

I-2.2.2, respectively. 
 

 I-2.2.1.  Directions for the Discordance Test.  Let x(1), x(2),...,x(n) represent the data or-
dered from smallest to largest.  Check that the data without the suspect outlier are normally 
distributed, using one of the methods of Appendix F, Paragraph F-11.  If normality fails, 
transform the data or apply a different outlier test.  
 

 I-2.2.1.1.  Compute the sample mean, x , and the sample standard deviation, s, without 

the suspected outlier.  If the minimum value x(1) is a suspected outlier, compute the test statis-

tic 
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 I-2.2.1.2.  If D exceeds the critical value from Table B-4 of Appendix B, x(1) is an outli-

er and should be further investigated.  

 

 I-2.2.1.3.  If the maximum value )(nx is a suspected outlier, compute the test statistic 

 

 
s

xx
D n   . 

 

 I-2.2.1.4.  If D exceeds the critical value from Table B-4 of Appendix B, x(1) is an outli-

er and should be further investigated. 

 
 I-2.2.2.  Example for the Discordance Test.  Consider the following subsurface back-
ground chromium data from smallest to largest: 3.84, 4.26, 4.53, 4.60, 5.28, 5.29, 5.74, 5.86 
(in mg/kg).  Suppose there was an additional sample with a result of 10 mg/kg.  Because this 
additional sample is much larger than the other values, it is suspected that this point might be 
an outlier.  The required level of significance for an outlier is 5%. 
 

 I-2.2.2.1.  Testing the data for normality using the Shapiro-Wilk test (without the ex-

treme value) indicated the data were normal.  Therefore, the discordance test may be used to 

determine if the largest data value is an outlier. 

 

 48.5x  mg/kg and 82.1s  mg/kg without the suspected outlier. 

 I-2.2.2.2  Because the maximum value )(nx  is a suspected outlier, do the following: 
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 I-2.2.2.3.  Because 110.248.2 D  (from Table B-4 of Appendix B with 9n  and  
 = 0.05), there is evidence that x(1) is an outlier at a 5% significance level and should be fur-
ther investigated. 
 

 I-2.3.  Rosner’s Test.  Rosner developed a parametric test that can be used to detect up 

to 10 outliers for sample sizes of 25 or more.  This test assumes that the data are normally 

distributed; therefore, a test for normality should be performed before applying it.  If the data 

are not normally distributed, transform the data, apply a different test, or consult a statisti-

cian.  Note that the test assumes that the data without the outlier are normally distributed, so 

the test for normality may be done without the suspected outlier.  Directions for Rosner’s test 

are contained in Paragraph I-2.3.2 and an example is contained in Paragraph I-2.3.3. 
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 I-2.3.1.  Caveats.  Rosner’s test is not as easy as the preceding tests to apply.  To apply 

this test, first determine an upper limit r0  for the number of outliers (r0 ≤ 10), then order the 

r0 extreme values from most extreme to least extreme.  Rosner’s test statistic is then based on 

the sample mean and sample standard deviation computed without the r = r0  extreme values.  

If this test statistic is greater than the critical value given in Table B-18 of Appendix B, there 

are r0 outliers.  Otherwise, the test is performed again with the r = r0 – 1 extreme values.  

This process is repeated until either Rosner’s test statistic is greater than the critical value or 

r = 0. 

 

 I-2.3.2.  Directions for Rosner’s Test for Outliers.  Let x(1), x(2),...,x(n) represent the or-

dered data points.  By inspection, identify the maximum number of possible outliers, r0.  

Check that the data are normally distributed, using one of the methods in Appendix F,  

Paragraph F-11.  

 
 I-2.3.2.1.  Compute the sample mean, x , and the sample standard deviation, s, for  
all of the data.  Label these values )0(x and )0(s , respectively.  Determine the observation far-
thest from )0(x and label this observation 

)0(y .  Delete
)0(y  from the data and compute the 

sample mean, labeled )1(x , and the sample standard deviation, labeled )1(s .  Then  
determine the observation farthest from )1(x and label this observation 

)1(y .  Delete 
)1(y and 

compute )2(x and )2(s .  Continue this process until 0r  extreme values have been eliminated. 
 

 I-2.3.2.2  In summary, after the above process the analyst should have  

 

  )0()0()0( ,, ysx ;  )1()1()1( ,, ysx ; …,  )1()1()1( 00 ,,
 rrr

ysx o   
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  
2/1

1

1

2)()(

1

)( 1
,

1














 









n

j

i

j

i
in

j

j

i xx
in

sx
in

x  

 

and 
)(iy  is the farthest value from )(ix .  (Note the above formulas for )(ix and )(is assume that 

the data were renumbered after each observation was deleted.)  
 

 I-2.3.2.3.  To test if there are r outliers in the data, compute  
 

)1(

)1()1(



 


r

rr

r
s

xy
R  . 

 

Compare Rr to λr in Table B-18 of Appendix B.  If, Rr ≥ λr conclude that there are r outliers.  
First, test if there are r0 outliers (compare 

0r
R to 

0r
 ).  If not, test if there are r0 – 1 outliers 

(compare 10rR to 10r ).  If not, test if there are r0 – 2 outliers, and continue until it is deter-
mined there are a certain number of outliers or no outliers at all. 
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 I-2.3.3.  Example for Rosner’s Test for Outliers.  Consider the following subsurface site 

copper data in order from smallest to largest: 1.99, 2.19, 2.34, 2.42, 2.45, 2.64, 2.70, 2.79, 

2.82, 2.85, 2.86, 2.93, 3.10, 3.19, 3.21, 3.23, 3.25, 3.26, 3.28, 3.43, 3.55, 3.66, 3.71, 3.76, 

3.83, 3.91, 3.92, 3.97, 3.98, 4.48, 5.0, 11.1, 11.6, 12.3, 32.1, 44.2.  
 

 I-2.3.3.1.  By inspection, five potential outliers are suspected.  Testing the data for nor-

mality using the Shapiro-Wilk test (without the extreme values) indicated that the data were 

normal.  So Rosner’s test for outliers may be used to determine if there are five or fewer out-

liers.  
 

 I-2.3.3.2.  First the sample mean and sample standard deviation were computed for the 
entire data set, )0(x  and )0(s .  Subtraction showed that 44.20 was the farthest data point from 

)0(x , so 
)0(y = 44.20.  Then 44.20 was deleted from the data and the sample mean, )1(x , and 

the sample standard deviation, )1(s , were computed.  Subtraction showed that 32.10 was the 
farthest value from )1(x .  This value was then dropped from the data and the process was re-
peated again on 12.30 and 11.60 to yield the values below.  
 

i  )(ix  

5.88 

4.79 

3.99 

3.74 

3.49 

)(is  

8.43 

5.36 

2.51 

2.07 

1.54 

)(iy  

44.20 

32.10 

12.30 

11.60 

11.10 

0 

1 

2 

3 

4 

 

 I-2.3.3.3.  To apply Rosner’s test, it is first necessary to test if there are five outliers (r = 

5) by computing 

 

94.4
54.1

61.7

54.1

49.310.11
)4(

)4()4(

5 






s

xy
R  

 

and comparing 5R  to 5  in Table B-18 of Appendix B with n = 36 and  = 0.05.  Because 

94.294.4 55  R , there are five outliers in the data set. 

 

 I-2.3.3.4.  Suppose 94.255  R . 

 

 I-2.4.  Walsh’s Test.  Walsh developed a nonparametric test to detect multiple outliers 
in a data set.  This test requires a large sample size: n > 220 for a significance level of  
 = 0.05, and n > 60 for a significance level of 10.0 .  However, as the test is nonpara-
metric, it may be used whenever the data are not normally distributed.  Directions for the 
Walsh test for large sample sizes are provided in Paragraph I-2.4.1, followed by an example 
in Paragraph I-2.4.2. 
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 I-2.4.1.  Directions for Walsh’s Test for Large Sample Sizes.  Let x(1), x(2),...,x(n) repre-

sent the data ordered from smallest to largest.  If 60n , do not apply this test.  If 

22060  n , then 10.0 .  If 220n , then 05.0 .  

 

 I-2.4.1.1.  Identify the number of possible outliers, r. Note that r can equal 1. 

 

 I-2.4.1.2.  Compute  

 

  nc 2 , crk  , /12 b  

 

and 

 

 
1

)1/()(1
2

2






bc

cbcb
a  

 

where [ ] indicates rounding the value up to the next largest integer (i.e., 3.24 becomes 4).  

 

 I-2.4.1.3.  The r smallest points are outliers (with an  % level of significance) if  

 

 0)1( )()1()(   krr xaxax . 

 

 I-2.4.1.4.  The r largest points are outliers (with an  % level of significance) if 

 

 0)1( )1()()1(   knrnrn xaxax . 

 

 I-2.4.1.5.  If both of the inequalities are true, small and large outliers are indicated. 

 

 I-2.4.2.  Example for Walsh’s Test for Large Sample Sizes.  Consider that the following 
surface soil lead data from Site 2 in order from smallest to largest: 11.7, 13.9, 14.4, 15.1, 
17.2, 19.1, 19.3, 19.5, 19.6, 19.9, 20.8, 21.2, 21.8, 23.4, 24.2, 24.3, 25.8, 26.4, 27.4, 28.1, 
29.1, 34.3, 35.3, 36, 37.9, 39.8, 43.8, 45.4, 51.4, 65.4, 74.4, 78.5, 87, 93.3, 105, 108, 120, 
134, 135, 136, 143, 150, 178, 186, 194, 203, 214, 216, 232, 251, 263, 268, 277, 283, 300, 
421, 446, 510, 811, 1260, 5320. 
 

 I-2.4.2.1.  The possible outliers are 811, 1260, 5320.  So r = 3. 

 

     12]22.11[6322  nc  

 

 15123  crk  
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 10
10.0

1
/12  b  
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)112/()1012(16.31
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 0)1( )1()()1(   knrnrn xaxax  

 

 0347.2)347.21( )15163()363()3163(   xxx  

 

 0347.2)347.21( )49()60()61(  xxx  

 
 0)214(347.2510)347.21(811   

 

 0712.393  . 

 

 I-2.4.2.2.  Therefore the largest points, 811, 1260, 5320, are not outliers at 10.0 . 

 

 I-2.5.  Fourth-Spread Outlier Test.  A graphical qualitative method for identifying outli-
ers entails creating box-and-whisker plots.  Paragraph J-3 of Appendix J describes how to 
create such a plot.  The process of identifying outliers by generating box-and-whisker plots is 
the same as identifying outliers using the “fourth-spread” outlier test (Hoaglin et al. 1983).  
The fourth-spread outlier test can identify one or more outliers from either end of the range 
of sample results.  
 
 I-2.5.1.  A box-and-whisker plot identifies mild and extreme outliers.  A mild outlier is 
a statistical outlier that is any result less than the difference of the 25th percentile and 1.5 
times the inter-quartile range (IQR), or any result greater than the sum of the 75th percentile 
and 1.5  IQR.  An extreme outlier is a statistical outlier that is any result less than the differ-
ence of the 25th percentile and 3  IQR, or any result greater than the sum of the 75th percen-
tile and 3  IQR.  Extreme outliers are more severe than mild outliers and should be 
considered more influential. 
 

 I-2.5.2.  The advantages of this test are that it does not have any sample size require-
ments and can identify one or more outliers.  A disadvantage of the test is that no level of 
significance is placed on the decision to declare a result an outlier.  However, it should be 
noted that, for a normally distributed variable X with a standard deviation of , 1.5  IQR is 
approximately 2 and there is slightly less than a 1% chance that points will be greater than 
X0.75 + 1.5  IQR or less than X0.25 – 1.5  IQR.  Otherwise, the choice of 1.5 times the  
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inter-quartile range is “somewhat arbitrary, but experience with many data sets indicates that 
this definition serves well in identifying values that may require special attention” (Hoaglin 
et al., 1983). 

 I-2.6.  Multivariate Outliers.  Multivariate analysis, such as factor analysis and principal 
components analysis, involves the statistical analysis of several variables simultaneously.  
Outliers in multivariate analysis are values that are extreme in relationship to one or more 
variables.  As the number of variables increases, identifying potential outliers using graphical 
representations becomes more difficult.  Special procedures are required to test for multivari-
ate outliers.  Details of these procedures are beyond the scope of this document, but are con-
tained in statistical textbooks on multivariate analysis (see Gnanadesikan, 1997). 
 

I-3.  Retaining or Discarding Outliers.  Once outliers are identified, the project team should 
review outliers and determine, case-by-case, if there is an explanation for each outlier.  Fur-
thermore, any suspect data point, whether identified as a statistical outlier or not, should be 
reviewed.  Unexpected values, especially those identified as statistical outliers, should not be 
removed from any data evaluations unless a specific reason for the unexpected measurements 
can be determined.  

 I-3.1.  If a data point is found to be an outlier, the analyst may: i) correct the data point; 
ii) discard the data point from analysis; or iii) use the data point in all analyses.  Removing 
outliers should be based on scientific reasoning in addition to the results of the statistical test.  
An outlier should never be discarded based solely on a statistical test.  Instead, the decision 
should be based on some scientific or quality assurance basis.  Discarding an outlier from a 
data set should be done with extreme caution, particularly for environmental data sets, which 
often contain legitimate extreme values.  
 

 I-3.2.  According to EPA 530-SW-89-026, a value may be corrected or dropped only if 

one can determine that an error has occurred.  If an error can be identified, the correction 

should be made and the correct value used.  Data points containing transcription errors 

should be corrected whether they are outliers or not.  A value that is identified as incorrect 

may be deleted from the data set.  Valid reasons for removing outliers or unexpected values 

include, for example, evidence they are the result of contaminated sampling equipment, la-

boratory errors, malfunctioning instrumentation, transcription errors, sampling of differing 

geological strata, or a non-typical sampling location taken for background.  If a plausible rea-

son cannot be found for removing an unexpected value or a statistical outlier, the result 

should be treated as a true but extreme value and retained in the data.  

 

 I-3.3.  The spatial context of outliers or potential outliers should be considered.  If out-

liers occur at different locations for different analytes and tend to be located close to low 

concentrations, then sporadic high concentrations are simply a feature of the area; there is no 

reason to treat the data differently as a result of their presence.  If outliers tend to occur in the 

same location for different analytes and are found close to other locations with elevated con-

centrations, it may be appropriate to consider the elevated locations separately. 
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 I-3.4.  If an outlier is discarded from the data set, all statistical analysis of the data 

should be applied to both the full and truncated data set so that the effect of discarding ob-

servations may be assessed.  If scientific reasoning does not explain the outlier, it should not 

be discarded from the data set. 

 I-3.5.  If any data points are found to be statistical outliers, this information should be 

documented along with the analysis of the data set, regardless of whether any data points are 

discarded.  If no data points are discarded, the analyst should document that a process was 

implemented to identify any statistical outliers but none were found.  If any data points are 

discarded, the analyst should document each data point, the statistical test performed, the  

scientific reason for discarding each data point, and the effect on the analysis of deleting the 

data points.  Such information is critical for effective peer review. 

I-4.  Applications.  This Paragraph provides a case study regarding outliers and how conclu-

sions are affected by including or excluding outliers.  This case study focuses on identifying 

outliers in background data.  

 I-4.1.  A background metals study was conducted to determine background concentra-

tions that may be compared to site concentrations.  Regulators were concerned with identify-

ing outliers in the background data and removing them from the background data set, based 

upon the erroneous assumption that unusually high concentrations cannot represent back-

ground conditions and necessarily represent site-related contamination.  All background data 

(by metal), were evaluated for outliers using two outlier tests—the discordance test and 

fourth-spread test.  For this investigation, the regulator required that any result identified as a 

statistical outlier be removed from the background data set, which biased the background 

sample towards smaller values.  This case study focuses on the evaluation of antimony in 

surface soil. 

 I-4.2.  Table I-1 presents the 20 samples associated with antimony concentrations from 

the background surface soil.  Generally, the concentrations were quite small, ranging from 

0.182 to 0.398 mg/kg.  Outlier tests were performed on the highest concentration, 0.398 at 

sample BACK-005-005, to see if this concentration could be considered a statistical outlier.  

 I-4.3.  First, a box-and-whisker box plot was generated to visualize the data and to per-

form the fourth-spread test.  As Figure I-1 presents with the box plot, the highest concentra-

tion is a mild outlier. 
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Table I-1. 

Background Surface Soil Data for Antimony 

Sample ID Result (mg/kg) Sample ID Result (mg/kg) 

BACK-001-0005  0.235 BACK-0011-0005  0.202 

BACK-002-0005  0.285 BACK-0012-0005  0.27 

BACK-003-0005  0.202 BACK-0013-0005  0.298 

BACK-004-0005  0.22 BACK-0014-0005  0.209 

BACK-005-0005  0.398 BACK-0015-0005  0.182 

BACK-006-0005  0.279 BACK-0016-0005  0.233 

BACK-007-0005  0.215 BACK-0017-0005  0.186 

BACK-008-0005  0.25 BACK-0018-0005  0.267 

BACK-009-0005  0.279 BACK-0019-0005  0.273 

BACK-0010-0005  0.23 BACK-0020-0005  0.28 
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Figure I-1.  Box-and-Whisker Plot for Antimony. 

 I-4.4.  The discordance test was done to determine if the maximum result might be con-
sidered a statistical outlier.  Results of the discordance test show the maximum result is an 
outlier, as seen below. 
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 I-4.4.1.  Normality Assumption.  The Shapiro-Wilk test was performed on the raw data, 
without the maximum result.  The test statistic for this test was 0.9319 and the p value asso-
ciated with this test statistic was 0.1878.  Based on 95% level of confidence, because  
0.1878 > 0.05, there is evidence to suggest the data without the maximum result were nor-
mal.  Therefore, doing the discordance test on the raw data was appropriate. 

 I-4.4.2.  Test Statistic.  268.4
0366.0

2418.0398.0








s

xX
D n . 

 I-4.4.3.  Critical Value.   2.557 (based on )05.0 . 

 I-4.4.4.  Conclusion.  Because 4.268 > 2.557, there is evidence that the maximum result 

is an outlier. 

 I-4.5.  As both outlier tests showed the maximum result is a statistical outlier, the max-

imum antimony result for surface soil was removed from the background data set at the re-

quest of the regulator even though the outlier appeared to be a valid result (i.e., it was not 

entered incorrectly or demonstrated to be the result of a non-complaint sampling or analytical 

procedure). 

 

Table I-2. 

Summary Statistics for Antimony Background Surface Soil Data 

 All Samples All but Max 

n 20 19 

Minimum (mg/kg) 0.182 0.182 

Maximum (mg/kg) 0.398 0.298 

Median (mg/kg) 0.2425 0.235 

Mean (mg/kg 0.25 0.242 

Standard Deviation (mg/kg) 0.04988 0.0366 

95% UCL (mg/kg) 0.270 0.256 

Distribution Log-

normal 

Normal 

p value for Shapiro-Wilk test for original data 0.0369 0.1878 

p value for Shapiro-Wilk test for log-

transformed data 

0.3309 0.1667 

 

 I-4.6.  From a statistical perspective, it was probably inappropriate to remove the max-

imum detected concentration as an outlier for the antimony data set.  To illustrate this conjec-

ture, separate lists of summary statistics are presented in Table I-2 for all 20 antimony results 

and for the 19 antimony results without the maximum concentration. 

 

 I-4.7.  The most striking difference between the two data sets is their distribution.  

When all samples were evaluated, there was evidence that the data followed a lognormal  
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distribution, but when all samples except the maximum were evaluated, there was evidence 

that the data followed both a normal and lognormal distribution.  (A data point from a 

lognormal distribution can appear as an outlier when it is erroneously assumed that the data 

set is normally distributed.)  However, for this particular data set, the removal of the outlier 

(0.398 mg/kg) did not significantly affect decision-making because all of the antimony con-

centrations were less than the state-specified risk-based decision level of 2.7 mg/kg.  Fur-

thermore, fortuitously, similar statistical results were obtained with and without the outlier.  

Although the maximum detected concentration was eliminated, the sample median and mean 

were not seriously affected, and the difference between maximum concentrations was less 

than an order of magnitude.  However, under different circumstances (e.g., had the risk-based 

decision limit or the difference between the two highest values been larger), the comparisons 

between the site and background data sets could have been adversely affected (e.g., a “false 

positive” could have resulted).  Data points should never be removed from any data set 

(background or otherwise) solely on the basis of an outlier test unless an independent weight 

of evidence indicates that the data points are not representative of the underlying population 

of interest. 
 

I-5.  Recommendations.  If the data are normally distributed, Rosner’s test is recommended 

when the sample size is greater than 25 and the extreme value test is recommended when the 

sample size is less than 25.  If only one outlier is suspected, the discordance test may be sub-

stituted for either of these tests.  If the data are not normally distributed, or if the data cannot 

be transformed so that the transformed data are normally distributed, the analyst should apply 

a nonparametric test, such as the fourth-spread test, or Walsh’s test.  A summary of this in-

formation is contained in Table I-3.  Recommendations on selecting a statistical test for out-

liers are listed. 
 

Table I-3. 

Recommendations for Selecting a Statistical Test for Outliers 

Sample Size Test 
Assumes  

Normality 

Multiple 

Outliers 

25n  Extreme Value Test Yes No/Yes 

50n  Discordance Test Yes No 

25n  Rosner’s Test Yes Yes 

50n  Walsh’s Test No Yes 

Any sample size Fourth-Spread Test No Yes 
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APPENDIX J 
Graphical Tools 

 
J-1.  Introduction.  Graphs are powerful data evaluation tools, providing a quick assessment 
of concentration ranges, extreme concentrations or data anomalies, and patterns and trends 
that may be unapparent otherwise.  In exploratory data analysis, various graphical techniques 
are used initially to display the data so that users may determine what statistical evaluations 
will be used.  Although a subjective assessment of a plot alone is often inadequate to make 
conclusions about the significance of a trend or association, plots support quantitative statis-
tical tests. 
 
 J-1.1.  This Appendix presents some common graphical methods for presenting envi-
ronmental data in meaningful ways.  These graphical methods are: 

a. Histogram/Frequency Plots. 

b. Box-and-Whiskers Plots. 

c. Quantile Plots. 

d. Normal Probability Plots (Quantile-Quantile Plots). 

e. Empirical Quantile-Quantile Plots. 

f. Plots for Temporal Data. 

g. Plots for Spatial Data. 

h. Plots for Two or More Variables. 

i. Contouring Data. 

 J-1.2. Additional information on most of the plots presented here may be found in Ma-
son et al. (1989).  For temporal and spatial plots see EPA/240/B-026/003, QA/G-9S. 
 
J-2.  Histogram/Frequency Plots. 
 
 J-2.1.  Introduction.  Two of the oldest methods for summarizing data distributions are 
the frequency plot (Figure J-1) and histogram (Figure J-2).  Both frequency plots and histo-
grams divide the range of measured values of a variable into equal intervals, and use a bar 
graph to display the results.  In a frequency plot, the height of each bar represents the number 
of observations within each interval.  In a histogram, the height of each bar represents the 
percentage of observations within each interval. 
 
 J-2.1.1.  There are slight differences between the histogram and the frequency plot.  In 
the frequency plot, the relative height of the bars represents the relative density of the data or 
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number of observations within a group.  In a histogram, the area within the bar represents the 
relative density of the data or percentage of observations within a group.  
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Figure J-1.  Frequency Plot: Normal Data. 

 

 J-2.1.2.  When plotting a histogram for a continuous variable (such as concentration), it 
is necessary to decide on an endpoint convention, that is, what to do with cases that fall on 
the boundary of a box.  With discrete variables (i.e., family size), the intervals can be cen-
tered in between the variables.  For the family size data, the intervals can span between 1.5 
and 2.5, 2.5 and 3.5, and so on, so that the whole numbers that relate to the family size can be 
centered within the box.  The visual impression conveyed by a histogram or a frequency plot 
can be quite sensitive to the choice of interval width.  The choice of the number of intervals 
determines whether the histogram shows more detail for small sections of the data or whether 
the data will be displayed more simply as a smooth overview of the distribution.  For a con-
tinuous measurement variable, X, the histogram should approach the “true” probability dis-
tribution as the sample size increases and the width of the intervals decrease.  For example, if 
the variable X is normally distributed, then the histogram will approach a Gaussian curve 
(see Appendix F).  Figure J-1 plots 95 observations from a sample from a normal distribution 
with a mean of 5 and a standard deviation of 2.  Notice how the histogram approximates a 
normal curve.  Likewise, Figure J-2 plots 95 observations from a sample from a lognormal 
distribution with µ = 1 and σ = 1. 
 
 J-2.1.3.  Directions for generating a histogram and a frequency plot are presented in 
Paragraph J-2.2 and an example is contained in Paragraph J-2.3.  
 
 J-2.2.  Directions for Generating a Histogram and a Frequency Plot.  Let x1, x2,..., xn 
represent the n data points.  To develop a histogram or a frequency plot do the following. 
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Figure J-2.  Histogram: Lognormal Data. 

 
 J-2.2.1.  Select intervals that cover the range of observations.  If possible, these inter-
vals should have equal widths.  A rule of thumb is to have between 7 to 11 intervals.  If  
necessary, specify an endpoint convention, i.e., what to do with cases that fall on interval 
endpoints. 
 
 J-2.2.2.  Compute the number of observations within each interval.  For a frequency 
plot with equal interval sizes, the number of observations represents the height of the boxes 
on the frequency plot. 
 
 J-2.2.3.  Determine the horizontal axis based on the range of the data.  The vertical axis 
for a frequency plot is the number of observations.  The vertical axis of the histogram is the 
percentage (or proportion) of results that fall within each interval on the  
x-axis. 
 
 J-2.2.4.  For a histogram, compute the percentage of observations within each interval 
by dividing the number of observations within each interval (Step J-2.2.3) by the total num-
ber of observations. 
 
 J-2.2.5.  For a histogram, select a common unit that corresponds to the x-axis (Step  
J-2.2.1).  Compute the number of common units in each interval and divide the percentage of 
observations within each interval (Step J-2.2.4) by this number.  This step is only necessary 
when the intervals (Step J-2.2.1) are not of equal widths. 

 J-2.2.6.  Using boxes, plot the intervals against the results of Step J-2.2.5 for a histo-
gram or the intervals against the number of observations in an interval (Step J-2.2.2) for a 
frequency plot. 
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 J-2.3.  Example of a Histogram and a Frequency Plot.  Consider the following results of 
benzene concentrations in groundwater (ppb):  0.0292, 0.0300, 0.0300, 0.0300, 0.0353, 
0.0353, 0.0353, 0.0353, 0.0353, 0.0353, 0.0375, 0.0375, 0.0375, 0.0375, 0.0375, 0.0375, 
0.0375, 0.0375, 0.0375, 0.0401, 0.0401, 0.0401, 0.0401, 0.0401, 0.0401, 0.0444, 0.0465, 
0.0465, 0.0465, 0.0465, 0.0465, 0.0465, 0.0465, 0.0465, 0.0469, 0.0469, 0.0469, 0.0480, 
0.0504, 0.0504, 0.0504, 0.0548, 0.0585, 0.0605, 0.0605, 0.0605, 0.0641, 0.0641, 0.0641, 
0.0641, 0.0759, 0.0759, 0.0759, 0.0759, 0.0759, 0.0759, 0.0786, 0.0786, 0.0855, 0.0970, 
0.0971, 0.1430, 0.2220, 0.2350, 0.3080, 0.4840, 0.6350, 0.7590, 0.8130, 1.1500, 1.7200, 
1.7800, 1.8400, 1.8500, 1.9200, 2.0000, 2.0100, 2.1700, 2.1900, 2.3100, 2.4600, 2.6800, 
2.7500, 2.9500, 3.4200, 3.4500, 3.7900, 4.3000, 5.4700, 5.7700, 5.8700, 6.1700, 6.9100, 
7.2400, 7.5600, 8.3400, 8.6400, 9.3300, 11.000, 11.100, 12.200, 14.100, 17.000, 20.200, 
21.800, 29.100, 36.700 and 44.500. 

 J-2.3.1.  These data values span 0 to 50 ppb.  Equally sized intervals of 5 ppb will be 
used: 0 to 5 ppb, 5 to 10 ppb, etc.  The endpoint convention will be that values are placed in 
the highest interval containing the value.  For example, a value of 5 ppb will be placed in the 
interval 5 to 10 ppb instead of 0 to 5 ppb.  Table J-1 shows the number of observations with-
in each interval defined here 

 J-2.3.2.  The horizontal axis for the data is from 0 to 50.  The vertical axis for the fre-
quency plot is from 0 to 88 and the vertical axis for the histogram is from 0 to 81.5%. 

 J-2.3.3.  There are 108 observations total, so the number of observations shown in the 
table will be divided by 108.  The results are shown in the third column of the table. 

 J-2.3.4.  A common unit for this data is 1 ppb.  In each interval there are five common 
units so the percentage of observations (third column of the table) should be divided by 5 
(fourth column). 

 J-2.3.5.  The frequency plot (Figure J-3) and the histogram (Figure J-4) are shown  
below. 
 

Table J-1. 
Number of Observations within Each Interval 

Interval (ppb) Observations in 
Interval 

Percent Observations 
in Interval 

Percent Observations 
per ppb 

0–5 88 81.5 16.3 
5–10 10 9.26 1.85 
10–15 4 3.70 0.74 
15–20 1 0.926 0.185 
20–25 2 1.85 0.370 
25–30 1 0.926 0.185 
30–35 0 0 0 
35–40 1 0.926 0.185 
40–45 1 0.926 0.185 
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Figure J-3.  Frequency Plot. 

 
Figure J-4.  Histogram. 

 
J-3.  Box-and-Whiskers Plots. 
 
 J-3.1.  Introduction.  A box-and-whiskers plot (or a box plot ) is a schematic diagram 
useful for visualizing important statistical quantities such as the center, spread, and distribu-
tion of a data set. 
 
 J-3.1.1.  A box-and-whiskers plot (Figure J-5) is composed of a central box divided by 
a line and two lines extending out from the box called whiskers.  The length of the central 
box—the interquartile range (IQR) or the distance from the 25th to the 75th percentile—
indicates the spread of the bulk of the data (the central 50%) while the length of the whiskers 
shows the extent of the tails in the distribution.  The length of each whisker is 1.5 IQR 
(roughly equal to two standard deviations for a normal data set).  The width of the box has no 
particular meaning; the plot can be made quite narrow without affecting its visual impact.  
The sample median is displayed as a solid horizontal line through the box and the sample 
mean is displayed using a dotted horizontal line. 
 
 J-3.1.2.  Box-and-whisker plots are useful for identifying possible outliers as they iden-
tify values that would be unusually large or small data if the data were assumed to be nor-
mally distributed.  Any data points falling outside of the whiskers are displayed as “outliers” 
by an “o” or “x” on the plot.  In particular, points falling 3.0 × IQR from the top or bottom of 
the box are “extreme outliers” displayed by an “x,” while points falling 1.5 × IQR (but within 
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3.0 × IQR) from the top or bottom of the box are “mild outliers” displayed by an “o.”  For 
example, the box plot of the lognormal data in Figure J-5 contains three data values that are 
identified as unusual (two “mild outliers” and one “extreme outlier”) if the data were as-
sumed to be from a normal distribution.  Each of the features described in this paragraph has 
been labeled in Figure J-5 to help you identify the most important features of box plots. 
 
 J-3.1.3.  A box-and-whiskers plot can also be used to assess the symmetry of the data.  
If the distribution is symmetrical, then the box is divided in two equal halves by the median, 
the whiskers will be the same length and the number of extreme data points will be distribut-
ed equally on either end of the plot.  For instance, the box plot of the normal data in Figure  
J-5 displays a highly symmetrical distribution of data.  The mean and median are about the 
same, the 25th and 75th percentiles are about the same distance from the median, and the 
whiskers are roughly the same length.  In contrast, the box plot of the lognormal data in  
Figure J-5 shows a noticeable positive skew.  The mean is greater than the median, the upper 
whisker appears longer than the lower whisker, and several unusually large values are pre-
sent on the upper end of the distribution.  To see the variety in plots, the reader is urged to 
plot project-specific data. 
 
 J-3.1.4.  Box-and-whiskers plots are extremely useful for visual comparisons of data 
from multiple sources when they are presented side-by-side.  For example, separate box plots 
can be constructed for comparing background concentrations to site concentrations.  This 
provides simultaneous comparison of the medians and IQRs of several sets of data.  Another 
example where box plots can be useful is when trying to determine if an assumption of equal 
variances is valid, by qualitatively comparing the IQRs of two data sets (Appendix M).   
Directions for generating a box-and-whiskers plot are contained in Paragraph J-3.2 and an 
example follows in Paragraph J-3.3. 
 
 J-3.2.  Directions for Generating a Box-and-Whiskers Plot.   
 
 J-3.2.1.  Set the vertical scale of the plot based on the maximum and minimum values 
of the data set.  Select a width for the box plot keeping in mind that the width is only a visu-
alization tool.  Label the width W; the horizontal scale then ranges from –½W to ½W. 
 
 J-3.2.2.  Compute the upper quartile (x0.75, the 75th percentile) and the lower quartile 
(x0.25, the 25th percentile).  Compute the sample mean and median.  Compute the interquartile 
range (IQR).  (Refer to Appendix D to do these computations, as necessary.) 
 
 J-3.2.3.  Draw a box through points (–½W, x0.75), (–½W, x0.25), (½W, x0.25), and  
(½W, x0.75).  Draw a line from (½W, x0.50) to (–½W, x0.50) and mark point (0, x ) with (+).  
 
 J-3.2.4.  Compute the upper end of the top whisker by finding the largest data value XL 
less than x0.75 + 1.5 × IQR.  Draw a line from (0, x0.75) to (0, xL).  Compute the lower end of 
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the bottom whisker by finding the smallest data value xS greater than x0.25 – 1.5 × IQR.  Draw 
a line from (0, x0.25) to (0, xS).  
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Figure J-5.  Examples of Box-and-Whiskers Plots. 

 
 J-3.2.5.  For all points * 0.75 3.0 IQRLx x x< < + × , place an “o” at the point (0, *x ).   
These points are considered mild outliers.  For all points ** 0.75 3.0 IQRx x> + × , place an  
“x” at the point (0, **x ).  These points are considered extreme outliers.  Likewise, for all 
points 0.25 *3.0 IQR Sx x x− × < < , place an “o” at the point (0, *x ).  Finally, for all points 

** 0.25 3.0 IQRx x< − × , place an “x” at the point (0, **x ). 
 
 J-3.3.  Example of a Box-and-Whiskers Plot.  Consider the following site data of chro-
mium concentrations (mg/kg) in surface soil : 3.08, 3.35, 4.09, 4.13, 4.14, 4.36, 4.37, 4.42, 
4.68, 4.76, 4.78, 4.82, 4.87, 4.89, 4.91, 4.94, 4.96, 4.96, 5.51, 6.4, 10.1, 10.3, 10.6 and 18.5 
 
 J-3.3.1.  When generating the plot the width was set at a –0.25 to 0.25 horizontal range.  
Do not forget that the width is only a visualization tool and can be set to any value.  
 
 J-3.3.2.  Compute the 75th percentile: 
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 75.0=p  
 
 1875.24 =×=np  
 
 018 +=+= gjnp  
 
since g = 0 
 

 235.5
2

51.596.4
2

)19()18(
75.0 =

+
=

+
=

XX
x  . 

 
 J-3.3.3  Compute the 25th percentile: 
 
 0.25p =  
 
 625.24 =×=np  
 
 06+=+= gjnp ,  
 
since g = 0 
 

 365.4
2

37.436.4
2

)7()6(
25.0 =

+
=

+
=

XX
x  . 

 
Sample mean = 5.91, sample median = 4.845, interquartile range = 87.0)25(.)75(. =−QQ . 

 
 J-3.3.4.  Compute the upper end of the top whisker by finding the largest data value xL 
less than  

 54.6)87.0(5.1235.55.175.0 =+=×+ IQRx .  
 
So, xL = 6.4.  Draw a line from (0, 5.235) to (0, 6.4).  Compute the lower end of the bottom 
whisker by finding the smallest data value xS greater than 
 
 06.3)87.0(5.1365.45.125.0 =−=×− IQRx . 
 
So, Sx  = 3.08.  Draw a line from (0, 4.365) to (0, 3.08). 
 
 J-3.3.5.  There are no points, *x , greater than 4.6=Lx but less than  
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 845.7)87.0(0.3235.50.375.0 =+=×+ IQRx  
 

so no points are considered mild outliers.  For all points  
 
 ** 0.75 3.0 7.845x x IQR> + × =   
 
place an “x” at the point (0, x**).  These points are considered extreme outliers.  There are no 
points less than xS = 3.08 so no points are drawn below the bottom whisker.  Figure J-6 
shows the box-and-whiskers plot. 
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Figure J-6.  Box-and-Whiskers Plot. 

 

J-4.  Quantile Plots. 

 J-4.1.  Introduction.  A quantile plot is a graph of the quantiles of data.  It plots each 
point according to the fraction of the points it exceeds.  It is a graphical representation of the 
data that is easy to construct, easy to interpret, and makes no assumptions about a model for 
the data. 

 J-4.1.1.  A quantile plot displays every data point ranging from the lowest value to the 
highest value; it is a graphical representation of the data instead of a summary of the data.  
The advantage of using a quantile plot is that the analyst does not have to make any arbitrary 
choices regarding the data to construct a quantile plot (such as selecting the cell sizes for a 
making a histogram).  

 J-4.1.2.  The vertical axis of the quantile plot is the measured concentration, and the 
horizontal axis of the quantile plot is the percentile of the data distribution.  Directions for 
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developing a quantile plot are given in Paragraph J-4.2 and an example follows in Paragraph 
J-4.3. 
 
 J-4.1.3.  A quantile plot can be used to read quantile information (the median, quartiles, 
and the interquartile range) because each data value is plotted against the percentage of the 
data with that value or less.  In addition, the plot can be used to determine the density of the 
data points: Are all the data values close to the center with relatively few values in the tails or 
are there a large number of values in one tail with the rest evenly distributed?  The density of 
the data is displayed through the slope of the graph.  A flat slope indicates a large number of 
data values; the graph rises slowly.  A steep slope indicates a small number of data values; 
the graph rises quickly.  A quantile plot can be used to determine if the data are skewed or if 
they are symmetrical.  Figure J-7 shows examples of three quantile plots.  If the data are 
symmetrical, then the top portion of the graph will stretch to the upper right corner in the 
same way the bottom portion of the graph stretches to the lower left, creating an s-shape sim-
ilar to Figure J-7a.  A quantile plot of data that are skewed to the right is steeper at the top 
right than the bottom left, as shown in Figure J-7b.  A quantile plot of data that are skewed to 
the left increases sharply near the bottom left of the graph as shown in Figure J-7c.  

 
Figure J-7.  Examples of Quantile Plots. 

 
 
 J-4.2.  Directions for Developing a Quantile Plot.  Let ( ) ( ) ( )nxxx ,,, 21   represent the n 
data points ordered from least to greatest.  

 J-4.2.1.  For each i from 1 to n, compute the fraction if  = (i – 0.5)/n.  The quantile plot 
is a plot of the pairs ( )(, ii xf ). 

 J-4.2.2.  An example is given below in Paragraph J-4.3.  (There are a number of ways to 
calculate the quantile fi.   Software that performs quantile plots may not necessarily use the 
same formula presented in Paragraph J-4.2 to calculate the quantile.  For example, for the 
Weibull method fi = i/(n+1).)  

 J-4.3.  Generating a Quantile Plot.  Consider the following 108 data points for benzene 
groundwater results in μg/L: 0.0292, 0.0300, 0.0300, 0.0300, 0.0353, 0.0353, 0.0353, 0.0353, 
0.0353, 0.0353, 0.0375, 0.0375, 0.0375, 0.0375, 0.0375, 0.0375, 0.0375, 0.0375, 0.0375, 
0.0401, 0.0401, 0.0401, 0.0401, 0.0401, 0.0401, 0.0444, 0.0465, 0.0465, 0.0465, 0.0465, 
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0.0465, 0.0465, 0.0465, 0.0465, 0.0469, 0.0469, 0.0469, 0.0480, 0.0504, 0.0504, 0.0504, 
0.0548, 0.0585, 0.0605, 0.0605, 0.0605, 0.0641, 0.0641, 0.0641, 0.0641, 0.0759, 0.0759, 
0.0759, 0.0759, 0.0759, 0.0759, 0.0786, 0.0786, 0.0855, 0.0970, 0.0971, 0.1430, 0.2220, 
0.2350, 0.3080, 0.4840, 0.6350, 0.7590, 0.8130, 1.1500, 1.7200, 1.7800, 1.8400, 1.8500, 
1.9200, 2.0000, 2.0100, 2.1700, 2.1900, 2.3100, 2.4600, 2.6800, 2.7500, 2.9500, 3.4200, 
3.4500, 3.7900, 4.3000, 5.4700, 5.7700, 5.8700, 6.1700, 6.9100, 7.2400, 7.5600, 8.3400, 
8.6400, 9.3300, 11.0000, 11.1000, 12.2000, 14.1000, 17.0000, 20.2000, 21.8000, 29.1000, 
36.7000 and 44.5000. 
 
 J-4.3.1.  The data, ordered from smallest to largest, x(i), are shown in the first column of 
Table J-2 and the ordered number for each observation, i, is shown in the second column.  
The third column displays the values fi for each i where fi = (i – 0.5)/n. 
 

Table J-2.  Quantile Plot Data 

)(ix
 

(Mg/L) 
i  if  

0.0290 1 0.0046 
0.0300 2 0.014 
0.0300 3 0.023 

. . . 

. . . 

. . . 
29.100 106 0.9769 
36.700 107 0.9861 
44.500 108 0.9954 

 
 J-4.3.2.  The pairs ),( ii xf  are then plotted to yield the quantile plot in the Figure J-8. 
 
J-5.  Normal Probability Plots (Quantile-Quantile Plots).  There are two types of quantile-
quantile plots or q-q plots: an empirical quantile-quantile plot and a theoretical quantile-
quantile plot.  A normal probability plot is an extension of these q-q plots. 
 
 J-5.1.  Empirical Quantile-Quantile Plot.  A plot of the quantiles of two variables (e.g., 
the quantiles of X versus the quantiles of Y). 

 
 J-5.2.  Theoretical Quantile-Quantile Plot.  A plot of quantiles of a set of data against 
the quantiles of a specific theoretical probability distribution. 
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Figure J-8.  Example of a Quantile Plot. 

 
 J-5.3.  Normal Probability Plot.  A theoretical quantile-quantile plot where the quantiles 
of a data set are plotted against the quantiles of the normal distribution. 
 
 J-5.4.  Introduction.  The following discussion will focus on the plot most commonly 
used for environmental data—the normal probability plot (the normal q-q plot); however,  
the discussion also holds for other q-q plots.  The normal probability plot is used to roughly 
determine how well the data set is modeled by a normal distribution.  
 
 J-5.4.1.  A normal probability plot, as defined above, is the graph of the quantiles of a 
data set against the quantiles of the normal distribution (see Figure J-9).  If the graph is line-
ar, the data may be normally distributed as shown in Figure J-9a.  If the graph is not linear, 
the departures from linearity give important information about how the data distribution de-
viates from a normal distribution.  Further, the graph may be used to determine the degree  
of symmetry (or asymmetry) displayed by the data.  If the data in the upper tail fall above 
and the data in the lower tail fall below the quartile line, the data are too slender to be well 
modeled by a normal distribution (Figure J-9b); there are fewer values in the tails of the data 
set than what is expected from a normal distribution.  If the data in the upper tail fall below 
and the data in the lower tail fall above the quartile line, then the tails of the data are too 
heavy to be well modeled using a normal distribution (Figure J-9c); there are more values in 
the tails of the data than what is expected from a normal distribution.  
 
 J-5.4.2.  A normal probability plot can be used to identify potential outliers and extreme 
values.  Data values much larger or much smaller than the rest will cause the other data val-
ues to be compressed into the middle of the graph, ruining the resolution.  In addition, a nor-
mal probability plot is a useful technique for identifying irregularities in the data, especially 
in the tails, when compared to a certain distribution.  
 

 

Fraction of Data(f-values)

D
at

a 
V

al
ue

s

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40

       



 
 
 
 

EM 200-1-16 
31 May 13 

 

J-13 
 

 
Figure J-9.  Examples of Normal Probability Plots. 

 J-5.4.3.  Directions for constructing a normal probability plot are presented in Para-
graph J-5.5, followed by an example in Paragraph J-5.6. 
 
 J-5.5.  Directions for Constructing a Normal Probability Plot.  Let x(1), x(2),..., x(n)  
represent the n data points ordered from least to greatest.  For each i, compute the fraction  
fi = (i – 0.5)/n and find the corresponding quantile for the standard normal distribution, Zp, in 
Table B-15 of Appendix B.  The normal probability plot is a plot of the pairs (Zp, x(i)).  If the 
data are normally distributed, the points will fall approximately on a straight line.  The slope 
of the line is an estimate the population standard deviation and the y-intercept (at Z = 0) is an 
estimate of the population mean, because X = σ Z + µ. 
 
 J-5.6.  Example for Constructing a Normal Probability Plot.  Again, consider the fol-
lowing results of benzene concentrations (in μg/L) in groundwater: 0.0292, 0.0300, 0.0300, 
0.0300, 0.0353, 0.0353, 0.0353, 0.0353, 0.0353, 0.0353, 0.0375, 0.0375, 0.0375, 0.0375, 
0.0375, 0.0375, 0.0375, 0.0375, 0.0375, 0.0401, 0.0401, 0.0401, 0.0401, 0.0401, 0.0401, 
0.0444, 0.0465, 0.0465, 0.0465, 0.0465, 0.0465, 0.0465, 0.0465, 0.0465, 0.0469, 0.0469, 
0.0469, 0.0480, 0.0504, 0.0504, 0.0504, 0.0548, 0.0585, 0.0605, 0.0605, 0.0605, 0.0641, 
0.0641, 0.0641, 0.0641, 0.0759, 0.0759, 0.0759, 0.0759, 0.0759, 0.0759, 0.0786, 0.0786, 
0.0855, 0.0970, 0.0971, 0.1430, 0.2220, 0.2350, 0.3080, 0.4840, 0.6350, 0.7590, 0.8130, 
1.1500, 1.7200, 1.7800, 1.8400, 1.8500, 1.9200, 2.0000, 2.0100, 2.1700, 2.1900, 2.3100, 
2.4600, 2.6800, 2.7500, 2.9500, 3.4200, 3.4500, 3.7900, 4.3000, 5.4700, 5.7700, 5.8700, 
6.1700, 6.9100, 7.2400, 7.5600, 8.3400, 8.6400, 9.3300, 11.0000, 11.1000, 12.2000, 
14.1000, 17.0000, 20.2000, 21.8000, 29.1000, 36.7000 and 44.5000. 
 
 J-5.6.1.  The data, ordered from smallest to largest, are shown below in the first column 
of the table (x(i)) and the ordered number for each observation (i) is shown in the second col-
umn.  The third column displays the values fi for each value of i, where fi = (i – 0.5)/n.  The 
fourth column displays the corresponding percentiles of the standard normal distribution, Zp 
(p = fi).  
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Table J-3.  Normal Probability Data 

)(ix
 

(Mg/L) 
i if  pZ  

0.0292 1 0.0046 –2.60 
0.0300 2 0.014 –2.20 
0.0300 3 0.023 –1.99 

. . . . 

. . . . 

. . . . 
29.100 106 0.9769 1.99 
36.700 107 0.9861 2.20 
44.500 108 0.9954 2.61 

 
 J-5.6.2.  The pairs (Zp, x(i)) are then plotted to yield the normal probability plot shown 
in Figure J-10.  Because this plot is clearly nonlinear, these data are unlikely to be from a 
normal distribution 
 

 
 

Figure J-10.  Example of a Normal Probability Plot. 
 
J-6.  Empirical Quantile-Quantile Plots.  An empirical quantile-quantile (q-q) plot involves 
plotting the quantiles of two data variables against each other.  This plot is used to compare 
distributions of two or more variables; for example, the analyst may wish to compare the dis-
tribution of lead and iron samples from a drinking water well.  This plot is similar in concept 
to the theoretical quantile-quantile plot and yields similar information, plotting the distribu-
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tion of two variables instead of the distribution of one variable in relation to a fixed distribu-
tion.  
 
 J-6.1.  Introduction.  If the distributions are roughly the same, the graph will be approx-
imately linear; the slope will be nearly one and the intercept will be nearly zero.  If the distri-
butions are not the same, then the graph will not necessarily be linear.  Even if the graph is 
not linear, the departures from linearity give important information about how the two data 
distributions differ.  For example, a q-q plot can be used to compare the tails of the two data 
distributions in the same manner a normal probability plot is used to compare the tails of the 
data to the tails of a normal distribution.  In addition, potential outliers (from the paired data) 
may be identified on this graph.  Directions for constructing an empirical q-q plot are pre-
sented in Paragraph J-6.2 followed by an example in Paragraph J-6.3. 
 
 J-6.2.  Directions for Constructing an Empirical q-q Plot.  Let x1, x2,..., xn represent n 
data points of one variable and let y1, y2,..., ym  represent a second variable of m data points.  
 
 J-6.2.1.  Let )(ix , for i = 1 to n, be the first sample listed in order from smallest to larg-
est so that: 
 
 )1(x  (i = 1) is the smallest 
 
 )2(x  (i = 2) is the second smallest 
 
 )(nx  (i = n) is the largest.  
 
 J-6.2.2  Let )(iy , for i = 1 to m, be the second sample listed in order from smallest to 
largest so that: 
 
 )1(y  (i = 1) is the smallest 
 
 )2(y  (i = 2) is the second smallest 
 
 )(my  (i = m) is the largest. 
 
 J-6.2.3.  If the two variables have the same number of observations, then an empirical 
q-q plot of the two variables is simply a plot of the ordered values of the variables.  Because 
n = m, replace m by n.  A plot of the following pairs is an empirical q-q plot: 
 
 ( )1()1( , yx ), ( )2()2( , yx ), ..., ( )()( , nn yx ) . 
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 J-6.2.4.  If the two variables have a different number of observations ( mn > ), then the 
empirical q-q plot will consist of m (the smaller number) pairs.  The empirical q-q plot will 
then be a plot of the ordered y values against interpolated x values.   
For i = 1, i = 2, ..., i = m, let:  
 
 5.0)5.0)(/( +−= imnv   
 
and separate the result into the integer part and the fractional part, i.e., let: 
 
 gjv +=  
 
where j is the integer part and g is the fraction part.  
 
 J-6.2.5.  If g = 0, plot the pair ( )()( , ii xy ).  Otherwise, plot the pair ( )( ))1(1, ++− jji xgxgy
.  A plot of these pairs is an empirical q-q plot.  
 
 J-6.3.  Example for Constructing an Empirical q-q Plot.  Consider the following arsenic 
concentrations in subsurface soil samples (mg/kg): 2.15, 2.26, 2.37, 2.18, 1.93, 2.06, 2.00, 
1.42, 1.31, 1.95, 2.88, 1.71, 1.92, 2.33, 1.55, 1.75, 2.09, 2.38, 2.11, 2.33, 1.98, 1.55, 1.76, 
1.31, 2.34, 1.22, 1.81, 1.91, 2.31, 2.10, 1.89, 1.91, 1.49, 1.79, 2.71, 1.70, 1.93, 1.64, 1.94, 
3.15, 2.32, 1.31, 1.97 and 1.48.  And the following chromium concentrations in subsurface 
soil samples (mg/kg) are: 4.60, 5.29, 4.26, 5.28, 4.53, 5.74, 5.86, 3.84, 2.95, 5.17, 4.80, 4.53, 
4.01, 5.91, 3.96, 4.81, 5.27, 5.99, 4.60, 5.51, 4.72, 3.56, 4.22, 3.91, 5.81, 4.48, 5.10 ,4.94, 
4.76, 4.62, 4.72, 4.73, 3.21, 4.14, 4.85, 4.25, 5.09, 3.68, 5.12, 6.60, 6.19, 3.15, 4.11 and 2.80. 
 
 J-6.3.1.  An empirical q-q plot will be used to compare the distributions of these two 
analytes.  As there are 44 observations of arsenic and 44 observations of chromium, the case 
for m = n will be used.  Therefore, for i = 1, 2, ..., 44, compute: 
 
 ( )1()1( , yx ), ( )2()2( , yx ), ... ( )44()44( , yx ) . 
 
 J-6.3.2.  These pairs are plotted below, along with the best fitting regression line, as 
shown in Figure J-11. 

J-7.  Plots for Temporal Data. 
 
 J-7.1.  Introduction.  Data collected over specific time intervals (such as monthly, bi-
weekly, or hourly) have a temporal component.  For example, air monitoring  
measurements of a pollutant may be collected once a minute or once a day; water quality 
monitoring measurements of a contaminant level may be collected weekly or monthly.  An 
analyst examining temporal data may be interested in the trends over time, correlation among 
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time periods, or cyclical patterns, or all three.  Some graphical representations specific to 
temporal data are the time plot, correlogram, and variogram.  
 

 
Figure J-11.  Empirical q-q Plot. 

 
 J-7.1.1.  Time Plot.  This is a plot of time versus some variable (e.g., concentration). 
 
 J-7.1.2.  Time Series Plot.  This is a time plot in which measurements of a variable are 
taken at regular, fixed intervals over time. 
 
 J-7.1.3.  Correlogram.  This is a plot that displays serial correlation when the data are 
collected at equally spaced time (or distance) intervals. 
 
 J-7.1.4.  Variogram.  This is a plot that displays the same information as a correlogram 
except that the data may be based on unequally spaced time (or distance) intervals.  Further 
discussion of the variogram is contained in Appendix R. 
 
 J-7.2.  Discussion.  Data collected at regular time intervals are called time series.  The 
graphical representations presented in this Paragraph are recommended for all data that have 
a temporal component regardless of whether formal statistical time series analysis will be 
used to analyze the data.  If the analyst uses a time series methodology or trend analyses such 
as those described in Appendix Q, the graphical representations presented below will play an 
important role in this analysis.  If the analyst decides not to use time series methodologies, 
these representations will help identify temporal patterns that need to be accounted for in the 
analysis of the data. 
 
 J-7.2.1.  The analyst examining temporal environmental data may be interested in cy-
clic trends, directional trends, serial correlation, and stationarity.  

 

CHROMIUM

A
R

S
E

N
IC

3 4 5 6

1.
5

2.
0

2.
5

3.
0

       



 
 
 
 
EM 200-1-16 
31 May 13 

 

J-18 
 

 
 J-7.2.1.1.  Cyclic Trend.  This is a pattern in the data (e.g., attributable to seasonal 
changes) that repeats over time. 
 
 J-7.2.1.2.  Directional Trend.  This is a downward or upward trend in the data. 
 
 J-7.2.1.3.  Serial Correlation.  This is a measure of the extent to which successive ob-
servations are related. 
 
 J-7.2.1.4.  Stationarity.  This describes the situation when the data looks the same over 
all time periods. 
 
 J-7.2.2.  Cyclic trends repeat over time; the data rise and fall regularly over one or more 
time periods.  These trends may be large scale, such as a yearly trend where the data show 
the same pattern of rising and falling over each year, or the trends may be small scale, such 
as a daily trend where the data show the same pattern for each day.  Directional trends are 
downward or upward trends in the data, of importance to environmental applications where 
contaminant levels may be increasing or decreasing.  Serial correlation is a measure of the 
extent to which successive observations are related.  If they are related, statistical quantities 
calculated without accounting for it may be biased.  
 
 J-7.2.3.  Another issue for temporal data is stationarity.  Stationary data look the same 
over all time periods.  Directional or cyclical trends and increasing (or decreasing) variability 
among the data imply that the data are not stationary.  Temporal data are sometimes used in 
environmental projects along with a statistical hypothesis test to determine if contaminant 
levels have changed over time.  If the hypothesis test does not account for temporal trends or 
seasonal variations, the data must achieve a steady state before the hypothesis may be tested.  
The data must be essentially the same for comparable periods of time both before and after 
the hypothesized time of change.  
 
 J-7.2.4.  Sometimes multiple observations are taken in each time period.  For example, 
the sampling design may specify selecting five samples every Monday for 3 months.  If this 
is the case, the time plot may be used to display the data, display the mean weekly level, dis-
play a confidence interval for each mean, or display a confidence interval for each mean with 
the individual data values.  A time plot of all the data can be used to determine if the variabil-
ity for the different time periods changes.  A time plot of the means can be used to determine 
if the means are changing between time periods.  In addition, each time period may be treat-
ed as a distinct variable and the methods for plots for two or more variables may be applied. 
 
 J-7.3.  Time Plots.  One of the simplest plots to generate that provides a large amount of 
information is a time plot.  This is a plot of the data that makes it easy to identify large- and 
small-scale trends over time.  Small-scale trends show up on a time plot as fluctuations in 
smaller (or shorter) time periods.  For example, ozone levels over the course of one day typi-
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cally rise until the afternoon, then decrease, and this process is repeated every day.  Larger 
scale trends, such as seasonal fluctuations, appear as regular rises and drops in the graph.  
For example, ozone levels tend to be higher in the summer than in the winter, so ozone data 
tend to show both a daily trend and a seasonal trend.  A time plot can show directional trends 
and increased variability over time.  Possible outliers may also be easily identified using a 
time plot.  Figure J-12 displays two examples of time plots.  Figure J-12a demonstrates an 
upward trend, while Figure J-12b shows a downward trend superimposed with cyclical be-
havior. 
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Figure J-12.  Examples of Time Plots. 
 
 J-7.3.1.  Discussion.  A time plot is constructed by numbering the observations in order 
by time.  The time ordering is plotted on the horizontal axis and the corresponding observa-
tion is plotted on the vertical axis.  Although the points plotted on a time plot may be joined 
by lines, it is recommended that the plotted points not be connected to avoid creating a false 
sense of continuity.  The scaling of the vertical axis of a time plot is of some importance.  A 
wider scale tends to emphasize large-scale trends, whereas a smaller scale tends to emphasize 
small-scale trends.  Using the ozone example above, a wide scale would emphasize the sea-
sonal component of the data, whereas a smaller scale would tend to emphasize the daily fluc-
tuations.  Directions for constructing a time plot are contained in Paragraph J-7.3.2 along 
with an example. 
 
 J-7.3.2.  Directions for Generating a Time Plot.  Let x1, x2,..., xn represent n data points 
listed in order by time, i.e., the subscript represents the ordered time interval.  A plot of the 
pairs (i, xi) is a time plot of this data. 
 
 J-7.3.2.1.  Consider the following 15 benzene concentrations (μg/L) measured in 
groundwater (listed in order by day): 12.200, 3.790, 3.420, 5.470, 0.813, 1.840, 7.560, 4.300, 
2.680, 6.170, 0.635, 2.190, 1.720, 1.150 and 0.484. 
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 J-7.3.2.2.  By labeling day 1 as 1, day 2 as 2, and so on, a time plot is constructed by 
plotting the pairs (i, xi) where: i = the number of the day, and xi = the concentration level.  
 
 J-7.3.2.3.  A time plot of these data is shown in Figure J-13. 
 
 J-7.4.  Plot of the Autocorrelation Function (Correlogram). 
 
 J-7.4.1.  Discussion.  Serial correlation is a measure of the extent to which successive 
observations are related.  If successive observations are related, either the data must be trans-
formed or this relationship must be accounted for in the analysis of the data.  The 
correlogram is a plot that is used to display serial correlation when the data are collected at 
equally spaced time intervals.  The autocorrelation function is a summary of the serial corre-
lations of data.  The first autocorrelation coefficient (r1) is the correlation between all points 
that are one time unit (k1) apart; the second autocorrelation coefficient (r2) is the correlation 
between points that are two time units (k2) apart; and so on.  A correlogram (Figure J-14) is a 
plot of the sample autocorrelation coefficients in which the values of k versus the values of rk  
are displayed.  
 
 J-7.4.1.1.  The correlogram is used for modeling time series data and helps to determine 
if serial correlation is large enough to create problems in the analysis of temporal data using 
other methodologies.  A quick method for determining if serial correlation is large is to place 
horizontal lines at ±2/n, where n is the number of samples on the correlogram (shown as hor-
izontal lines on Figure J-14).  Autocorrelation coefficients that exceed this value require fur-
ther investigation. 
 
 J-7.4.1.2.  In application, the correlogram is only useful for data at equally spaced in-
tervals.  To relax this restriction, a variogram may be used instead.  The variogram displays 
the same information as a correlogram except that the data may be based on unequally 
spaced time (or distance) intervals.  For more information on the construction and uses of the 
variogram, consult a statistician.  
 
 J-7.4.1.3.  Directions for constructing a correlogram are contained in Paragraph J-7.4.2, 
followed by example calculations in Paragraph J-7.4.3.  
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Figure J-13.  Example Time Plot. 

 

 
• Figure J-14.  Correlogram for Data in Paragraph J-7.4.3. 

 
 J-7.4.2.  Directions for Constructing a Correlogram.  Let x1, x2,..., xn represent the data 
points ordered by time for equally spaced time points, i.e., x1 was collected at time 1, x2 was 
collected at time 2, and so on.  
 
 J-7.4.2.1.  To construct a correlogram, first compute the sample autocorrelation coeffi-
cients.  So for k = 0,1, ….., compute rk where 
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 J-7.4.2.2.  Once kr  has been computed, a correlogram is the graph ),( krk  for k = 0, 1, …  
 
 J-7.4.2.3.  Compute up to approximately k = n/6.  
 
 J-7.4.2.4.  Also, note that 10 =r .  
 
 J-7.4.2.5.  Finally, place horizontal lines at 
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 J-7.4.3.  Example for Constructing a Correlogram.  A correlogram will be constructed 
using the following three benzene concentrations in groundwater, collected monthly—month 
1: 11.10 ppb, month 2: 2.46 ppb, month 3: 5.77 ppb.  Although a correlogram would not typ-
ically be constructed when only three data points are available, only three data points are 
used here so that all computations may be shown.  The rules that up to n/6 autocorrelation 
coefficients should be computed will be broken for illustrative purposes.  The first step to 
constructing a correlogram is to compute the sample mean (Appendix D), which is 6.44 for 
the three points.  Then, 
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Remember, r0 = 1.  Thus, the correlogram of these data is a plot of (0, 1) (1, –0.418) and  
(2, –0.082) with two horizontal lines at (±1.15).  This graph is shown in Figure J-14.  In this 
case, it appears that the observations are not serially correlated because all of the correlogram 
points are within the bounds of (±1.15).  
 
 J-7.4.4.  Multiple Observations Per Time Period.  In environmental data collection, 
multiple observations are sometimes taken for each time period.  For example, the data col-
lection design may specify collecting and analyzing five samples from a drinking well every 
Wednesday for 3 months.  If this is the case, a time plot may be used to display the data, dis-
play the mean weekly level, display a confidence interval for each mean, or display a confi-
dence interval for each mean with the individual data values.  A time plot of all the data will  
allow the analyst to determine if the variability for the different collection periods changes.  
A time plot of the means will allow the analyst to determine if they are changing between the 
collection periods.  In addition, each collection period may be treated as a distinct variable 
and the methods applied as described in the section on plots for two or more variables (Para-
graph J-9). 
 
J-8. Plots for Spatial Data. 
 
 J-8.1.  Introduction.  The graphical representations of the preceding Paragraphs may al-
so be useful for exploring spatial data.  An analyst examining spatial data may be interested 
in locating  extreme values, overall spatial trends, and the degree of continuity among neigh-
boring locations.  Graphical representations for spatial data include postings, symbol plots, 
and correlograms (the correlograms would be generated by collecting samples at equally 
spaced sampling locations).  The graphical representations presented below are recommend-
ed for all spatial data regardless of whether or not geostatistical methods will be used to ana-
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lyze it.  They will help identify spatial patterns that need to be accounted for in the analysis 
of the data.  If geostatistical methods such as kriging are used to analyze the data, these 
methods will play an important role. 
 
 J-8.2.  Posting Plots.  A posting plot (Figure J-15) is a map of data locations along with 
corresponding data values.  Data posting may reveal obvious errors in data location and iden-
tify data values that may be in error.  The graph of the sampling locations gives the analyst 
an idea of how the data were collected (i.e., the sampling design), areas that may have been 
inaccessible, and areas of special interest to the decision-maker, which may have been heavi-
ly sampled.  It is often useful to mark the highest and lowest values of the data to see if there 
are any obvious trends.  If all of the highest concentrations fall in one region of the plot, the 
analyst may consider some method such as post-stratifying the data (stratification after the 
data are collected and analyzed) to account for this fact in the analysis.  Directions for gener-
ating a posting of the data (a posting plot) are contained in Paragraph J-8.4. 
 
 J-8.3.  Symbol Plots.  For large amounts of data, a posting plot may not be feasible and 
a symbol plot (Figure J-16) may be used.  A symbol plot is the same as a posting plot of the 
data, except that instead of posting individual data values, symbols are posted for ranges of 
the data values.  For example, the symbol '0' could represent all concentration levels less than 
100 ppm, the symbol '1' could represent all concentration levels between 100 ppm and 200 
ppm, etc.  Directions for generating a symbol plot are contained in Paragraph J-8.4. 
 
 J-8.4.  Directions for Generating a Posting Plot and Symbol Plot with an Example. 
 
 J-8.4.1.  Directions.  On a map of the site, plot the location of each sample.  At each lo-
cation, either indicate the value of the data point (a posting plot) or indicate by an appropriate 
symbol (a symbol plot) the data range within which the value of the data point falls for that 
location, using one unique symbol per data range.  The Posting plot and the Symbol plot are 
displayed as Figures J-15 and J-16. 
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Figure J-15.  Posting Plot. 

 
 J-8.4.2.  Example.  The spatial data displayed in Table J-4 contains both a location 
(northing and easting) and a concentration level C.  The data range from 4.0 to 35.5 so units 
of 5 were chosen to group the data.  
 
 

 
Figure J-16.  Symbol Plot. 
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Table J-4.  Spatial Data 
Range Symbol Range Symbol 
0.0–9.9 A 40.0–49.9 E 
9.9–19.9 B 50.0–59.9 F 
20.0–29.9 C 60.0–69.9 G 
30.0–39.9 D 70.0–79.9 H 

 
Northing Easting C Symbol Northing Easting C Symbol 

25.0 0.0 2.53 A 15.0 15.0 2.57 A 
25.0 5.0 1.81 A     
25.0 10.0 3.36 A     
25.0 15.0 1.55 A     
20.0 0.0 1.66 A     
20.0 5.0 1.52 A     
20.0 10.0 20.60 C     
20.0 15.0 70.10 H     
15.0 0.0 5.28 A     
15.0 5.0 8.67 A     
15.0 10.0 1.72 A     

 
 J-8.5.  Other Spatial Graphical Representations.  The two plots discussed above, posting 
and symbol, provide information on the location of extreme values and spatial trends.  The 
graphs below provide another item of interest to the data analyst, continuity of the spatial da-
ta.  The graphical representations are not described in detail because they are mostly used for 
preliminary geostatistical analysis.  These graphs can be difficult to develop and interpret.  
For more information on these, consult a statistician. 
 
 J-8.5.1.  An h scatter plot is a plot of all possible pairs of data whose locations are sepa-
rated by a fixed distance in a fixed direction (indexed by h).  For example, an h scatter plot 
could be based on all the pairs whose locations are 1 meter apart in a southerly direction.  An 
h scatter plot is similar in appearance to a scatter plot.  The shape of the spread of the data in 
an h scatter plot indicates the degree of continuity among data values a certain distance apart 
in a particular direction.  If all the plotted values fall close to a fixed line, then the data values 
at locations separated by a fixed distance in a fixed location are very similar.  As data values 
become less and less similar, the spread of the data around the fixed line increases outward.  
The data analyst may construct several h scatter plots with different distances to evaluate the 
change in continuity in a fixed direction. 
 
 J-8.5.2.  A correlogram is a plot of the correlations of the h scatter plots.  Because the 
plot only displays the correlation between the pairs of data whose locations are separated by 
a fixed distance in a fixed direction, it is useful to have a graph of how these correlations 
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change for different separation distances in a fixed direction.  The correlogram is such a plot 
and allows the analyst to evaluate the change in correlation in a fixed direction as a function 
of the distance between two points.  A spatial correlogram is similar in appearance to a tem-
poral one.  It spans opposite directions so that the correlogram with a fixed distance of due 
north is identical to the correlogram with a fixed distance of due south.  Correlograms for 
spatial data are related to the semivariograms discussed in Appendix R. 
 
 J-8.5.3.  Contour plots are used to reveal overall spatial trends in the data by interpolat-
ing data values between sample locations.  Most contour procedures depend on the density of 
the grid covering the sampling area (higher density grids usually provide more information 
than lower densities).  A contour plot gives one of the best overall pictures of the important 
spatial features.  However, contouring often requires that the actual fluctuations in the data 
values be smoothed, so that many spatial features of the data may not be visible.  The con-
tour map should be used with other graphical representations of the data and requires expert 
judgment to adequately interpret the findings. 
 
J-9.  Visualizing Higher Dimensional Data: Plots for Two or More Variables. 
 
 J-9.1.  Introduction.  To compare and contrast several variables, collections of the sin-
gle variable displays described previously are useful.  For example, the analyst may generate 
side-by-side box-and-whiskers plots or histograms for each variable using the same axis for 
all of the variables.  
 
 J-9.1.1.  Figure J-17 illustrates side-by-side box-and-whiskers plots for naphthalene 
concentrations at various groundwater-monitoring wells at a given site.  
 
 J-9.1.2.  In addition, the number of detected observations over the total number of ob-
servations has been placed towards the top of the graph.  Separate plots for each variable 
may be overlaid on one graph, such as overlaying quantile plots for each variable on one 
graph.  Another useful technique for comparing two variables is to place the histograms back 
to back.  In addition, some special plots have been developed to display two or more varia-
bles; these allow comparison and contrast of individual data points of all the variables.  The-
se plots are described below. 
 
 J-9.2.  Plots for Individual Data Points.   
 
 J-9.2.1.  As it is difficult to visualize data in more than two or three dimensions, most of 
the plots developed to display multiple variables for individual data points involve represent-
ing each variable as a distinct piece of a two-dimensional figure.  Such plots include Profiles, 
Glyphs, and Stars (Figure J-18).  These graphical representations start with a specific symbol 
to represent each data point, then modify the various features of the symbol in proportion to 
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the magnitude of each variable.  The proportion of the magnitude is determined by letting the 
minimum value for each variable be of length zero, the maximum be of length one.  The  
remaining values of each variable are then proportioned, based on the magnitude of each 
value in relation to the minimum and maximum. 
 

 
Figure J-17.  Concentrations of Naphthalene at Site A Wells. 

 
 J-9.2.2.  A profile plot starts with a line segment of a fixed length.  Then, lines spaced 
an equal distance apart and extended perpendicular to the line segment represent each varia-
ble.  A glyph plot uses a circle of fixed radius.  From the perimeter, parallel rays whose sizes 
are proportional to the magnitude of the variable extend from the top half of the circle.  A 
star plot starts with a point where rays spaced evenly around the circle represent each varia-
ble and a polygon is then drawn around the outside edge of the rays. 
 

 
Figure J-18.  Graphical Representations of Multiple Variables. 
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 J-9.3.  Scatter Plot.  For data sets consisting of paired observations where two or more 
continuous variables are measured for each sampling point, a scatter plot is one of the most 
powerful tools for analyzing the relationship between two or more variables.  Scatter plots 
are easy to construct for two variables (Figure J-19) and many computer graphics packages 
can construct three-dimensional scatter plots.  Directions for constructing a scatter plot for 
two variables are given in Paragraph J-9.4 along with an example in Paragraph J-9.5. 
 
 J-9.3.1.  A scatter plot clearly shows the relationship between two variables.  Both po-
tential outliers from a single variable and potential outliers from the paired variables may be 
identified on this plot.  A scatter plot also displays the correlation between the two variables.  
Scatter plots of highly linearly correlated variables cluster compactly around a straight line.  
In addition, nonlinear patterns may be obvious on a scatter plot.  For example, consider two 
variables where one is approximately equal to the square of the other.  A scatter plot of these 
data would display a U-shaped (parabolic) curve.  Another important feature that can be de-
tected using a scatter plot is any clustering effect among the data. 
 
 J-9.3.2.  Additional information can be placed in a scatter plot.  Labels can be placed on 
each value in the scatter plot to identify the sample location of a value.  Different colors or 
symbols may be used to identify unique groupings of the data.  For example, the scatter plot 
data may contain concentrations from multiple sampling events, with a unique symbol used 
to identify each event.  This will show trends in concentrations as well as distinguishing 
sampling events. 
 
 J-9.4.  Directions for Generating a Scatter Plot.  Let x1, x2,..., xn represent one variable 
of n data points and let y1, y2,..., yn represent a second variable of the same n data points.  The 
paired data can be written as (xi, yi) for i = 1,..., n.  To construct a scatter plot, plot the first 
variable along the horizontal axis and the second variable along the vertical axis.  It does not 
matter which variable is placed on which axis. 
 
 J-9.5.  Example of a Scatter Plot.  A scatter plot is prepared for arsenic and chromium 
concentrations in subsurface soil at Site A, using the data in Table J-5.  Arsenic values are 
shown on the horizontal axis and chromium values are displayed on the vertical axis of  
Figure J-19. 
 
 J-9.6.  Extensions of the Scatter Plot.  It is easy to construct a two-dimensional scatter 
plot manually.  Many software packages can construct useful two- and three-dimensional 
scatter plots.  However, it is difficult to construct and interpret a scatter plot for more than 
three variables, so several graphical representations have been developed that extend the idea 
of a scatter plot to data consisting of two or more variables. 
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Figure J-19.  Example of a Scatter Plot. 

 
 J-9.7.  Scatter Plot Matrix.  A scatter plot matrix is a useful method for extending scat-
ter plots to higher dimensions.  In this case, a scatter plot is developed for all possible pairs 
of the variables that are then displayed in a matrix format.  This method is easy to use and is 
a concise method of displaying the individual scatter plots.  However, this method does not 
contain information on three-way or higher interactions between variables.  An example of a 
scatter plot matrix is contained in Figure J-20. 
 
 J-9.8.  Side-by-Side Scatter Plot.  A form of scatter plot, called a side-by-side scatter 
plot, is designed in a manner similar to the side-by-side box-and-whiskers plots presented 
earlier.  Such scatter plots are developed using the horizontal axis as a label for each variable 
and using the vertical axis as the range of values for the variables.  Figure J-21 illustrates a 
side by side scatter plots for the same data presented in Figure J-5.  In Figure J-21, the y-axis 
is the range of concentrations for naphthalene and the x-axis represents the wells that were 
sampled during the site investigation.  Because the wells were sampled over several years, 
different symbols are used to represent each year—triangles represent 1998, squares repre-
sent 1999, and circles represent 2000.  In addition, because there are detected and non-
detected results in the data, open symbols were used for non-detected values and closed 
symbols were used for detected values.  At the top of the graph, a ratio is shown that states 
the number of detected observations over the total number of observations for each well 
sampled.  A side-by-side scatter plot can be a useful tool in comparing and contrasting con-
centrations of a specific chemical at various data points (e.g., different wells at a particular 
site). 
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Table J-5. 
Arsenic and Chromium Concentrations in Subsurface Soil at Site A 
 

Sample ID 
Arsenic 
(mg/kg) 

Chromium 
(mg/kg) 

  
Sample ID 

Arsenic 
(mg/kg) 

Chromium 
(mg/kg) 

APA-EPC-SB01-030 1.31 2.95  APA-EPC-SB07-030 1.81 5.1 
APA-EPC-SB01-040 1.95 5.17  APA-EPC-SB07-040 1.91 4.94 
APA-EPC-SB01-050 2.88 4.8  APA-EPC-SB07-050 2.31 4.76 
APA-EPC-SB02-030 1.71 4.53  APA-EPC-SB08-030 2.1 4.62 
APA-EPC-SB02-040 1.92 4.01  APA-EPC-SB08-040 1.89 4.72 
APA-EPC-SB02-050 2.33 5.91  APA-EPC-SB08-050 1.91 4.73 
APA-EPC-SB03-030 1.55 3.96  APA-EPC-SB09-030 1.49 3.21 
APA-EPC-SB03-040 1.75 4.81  APA-EPC-SB09-040 1.79 4.14 
APA-EPC-SB03-050 2.09 5.27  APA-EPC-SB09-050 2.71 4.85 
APA-EPC-SB04-030 2.38 5.99  APA-EPC-SB10-030 1.7 4.25 
APA-EPC-SB04-040 2.11 4.6  APA-EPC-SB10-040 1.93 5.09 
APA-EPC-SB04-050 2.33 5.51  APA-EPC-SB10-050 1.64 3.68 
APA-EPC-SB05-030 1.98 4.72  APA-EPC-SB11-030 1.94 5.12 
APA-EPC-SB05-040 1.55 3.56  APA-EPC-SB11-040 3.15 6.6 
APA-EPC-SB05-050 1.76 4.22  APA-EPC-SB11-050 2.32 6.19 
APA-EPC-SB06-030 1.31 3.91  APA-EPC-SB12-030 1.31 3.15 
APA-EPC-SB06-040 2.34 5.81  APA-EPC-SB12-040 1.97 4.11 
APA-EPC-SB06-050 1.22 4.48  APA-EPC-SB12-050 1.48 2.8 
 
 J-9.9.  Parallel Coordinate Plot.  A parallel coordinate plot also extends the idea of a 
scatter plot to higher dimensions.  The parallel coordinates method employs a scheme where 
coordinate axes are drawn in parallel (instead of perpendicular).  Consider a set of m-
dimensional sample points xi = (x1i, x2i, x3i,..., xmi), where i = 1, 2, 3…n.  For the ith m-
dimensional point, the variable X1 = x1i, X2 = x2i and so forth.  A parallel coordinate plot is 
constructed by first placing an axis (Xi) for each of the m variables parallel to each other.  
Each point xi is graphically represented by plotting x1i on the X1 axis, x2i on the X2 axis and so 
forth, and then joining the set of m plotted values with a broken line.  This method contains 
all of the information available on a scatter plot in addition to information on three-way and 
higher interactions (i.e., clustering among three variables).  However, for m variables one 
must construct m(m – 1)/2 parallel coordinate plots in order to display all possible pairs of 
variables.  For an example of a parallel coordinate plot see EPA/240/B-026/003, QA/G-9S. 
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Figure J-20.  Scatter Plot Matrix. 

 
J-10.  Contouring Data.  Contouring site data helps in visualizing site conditions and present-
ing results.  The results could be groundwater elevations and flow directions or locations and 
volumes of contamination.  Contaminant concentrations are typically plotted by contouring 
the data over a site map.  Contours or isopleths are lines of equal value (e.g., concentration).  
Lines or areas can be color coded or defined by a concentration range rather than a single 
value.  Contour lines may not cross each other although they may form loops.  The spacing 
of contour lines represents the gradient of the variable.  

 J-10.1.  A topographic elevation map is a common contour map.  Environmental data 
such as water table drawdown or chemical concentrations in water and air readily lend them-
selves to contouring.  Contour maps are useful in data analysis because changes over dis-
tance, gradients, hot-spots, and the location of contaminants relative to site features, such as 
buildings and site boundaries, are apparent. 
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Figure J-21.  Naphthalene Concentrations at Site A Wells: Side-by-side Scatter Plots. 

 
 J-10.2.  Contours must be interpolated because data coverage at a site is partial.  For in-
stance, water levels are measured only in monitoring wells even though the water table exists 
between wells.  Interpolation estimates values within the existing data set while extrapolation 
estimates values outside the existing data set.  Objects or values that are discontinuous spa-
tially do not lend themselves to interpolation, for example, the presence of unexploded muni-
tions at a test range. 

 J-10.3.  There are numerous interpolation techniques available and selecting which to 
use depends on the media (soil, water, or air) and site-specific circumstances.  Interpolation 
methods must be evaluated for their applicability, artifacts, and accuracy based on the ana-
lyst’s site knowledge and technical expertise.  Small data sets and software default values 
can result in contour maps that do not reflect actual site conditions.  Software will often at-
tempt to extrapolate beyond the data coverage unless a boundary is established or settings are 
carefully selected.  It is good practice to contour data by hand and then compare results to 
computer-generated output.  This allows the analyst to incorporate site-specific knowledge 
and intuition. 

 J-10.4.  Currently available contouring software facilitates data interpretation and rein-
terpretation.  Because data may be stored electronically, they may be readily revised and 
sorted.  Numerous interpolation methods can be experimented with quickly.  Pertinent in-
formation (such as sample depth, soil type, concentration) for a sampling point can be 
viewed by placing the cursor over it.  High-end two-dimensional (2-D) and three-
dimensional (3-D) color graphic images plus animation can be generated. 
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 J-10.5.  3-D contouring, which is typically done with the aid of computers, is important 
to consider as an analysis tool.  3-D iso-surfaces are generated in lieu of 2-D contour lines.  
The failure to view contamination in natural systems in three dimensions, excluding the ver-
tical or depth components, can adversely affect decision-making.  It can give rise to misin-
terpretations of contamination sources (responsible parties) and transport, particularly when 
the geology is not laterally homogeneous or contaminants have densities different from the 
transport medium (solvents denser than water). 

 J-10.6.  For field data to be adequately characterized, the manner in which the data will 
be analyzed should be considered when designing the sampling plan.  The study area or area 
of concern should be well within the sample grid.  This helps establish a boundary and en-
sure that measurements will be taken where they are most needed.  The spacing of sampling 
locations affects the manner in which data will be analyzed and what can be learned from the 
data set.  Poorly sized sampling grids can miss hot-spots or make the site appear more con-
taminated than it actually is.  Poorly distributed data will lead to software drawing concentric 
contours around known values.  It is often the case that vertical sample spacing is closer than 
the horizontal spacing.  This situation can cause the vertical samples to unduly override the 
horizontal characteristics of the subsurface.  Scaling features can be used to compensate for 
biased data sets. 

 J-10.7.  No single interpolation method will be universally appropriate.  In addition to 
trying more than one interpolation method, it is advisable to examine the computation used 
by the software.  Some methods are better suited for certain data sets, such as those where 
values go from one extreme to another quickly or those where the changes are gradual and 
smooth.  The mathematical function can also limit the interpolated value to a value not nec-
essarily representative of site conditions.  For example, simple inverse distance weighting 
(IDW) interpolates using the mean of two known values.  The result is that the interpolated 
value lies between both known values and minimum and maximum values are not derived.  It 
is also possible to interpolate negative values.  Understanding the mathematical functions al-
lows the input variables to be adjusted for individual circumstances.  For instance, truncating 
a data set by setting a minimum and maximum concentration can alleviate some problems.  
The weight an interpolated point receives is directly related to its proximity to a known point.  
An interpolation’s accuracy can be checked by randomly removing data points and then 
comparing the new interpolated value to the value that was removed. 

 J-10.8.  Interpolation methods include the following. 

 J-10.8.1.  Linear Interpolation.  This is the mathematically simplest interpolation tech-
nique.  This technique is referred to as manual or hand interpolation or contouring.  A 
straight line drawn between two known values is subdivided into equal segments.  The loca-
tion of the estimated value is calculated using proportions. 
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 J-10.8.2.  IDW Interpolation.  This gives more weight to an estimated point the closer it 
is to a known data point.  IDW is often used for groundwater level data.  A power value of 
two typically yields smooth contours. 

 J-10.8.3.  “Natural Neighbor” Interpolation.  This uses the same mathematical equation 
as IDW but the weighting technique is different.  In addition, a polygon network is employed 
rather than a triangle network.  The natural neighbor method may work well with clustered 
data.  

 J-10.8.4.  Triangular Irregular Network (TIN) Interpolation.  This connects the data 
points with a gridwork of triangles.  TIN is used with linear interpolation to estimate values 
from the three vertices of each triangle. 

 J-10.8.5.  Spline Method.  This uses a polynomial function to fit a curve through the 
known points.  It works well for data that change gradually.  Splining is often applied to 
dense, regularly spaced data.  

 J-10.8.6.  Kriging.  This uses spatial variance to interpolate data.  Kriging assumes, as 
IDW does, that distance and weight are related, but it also accounts for the spatial variance 
(spread) as a function of distance.  Variograms, used in kriging, are graphs of a mathematical 
function that show spatial dependence in relation to distance and direction.  Kriging has an 
intermediate step of matching the experimental variogram curve to a model variogram.  
Kriging handles steep gradients well, and is a good place to start for analyzing geological  
data because it was originally developed to predict ore locations for the mining industry.  
Variograms can provide insight into data sets even when kriging is not being performed. 

 J-10.9.  Figure J-22 shows a groundwater elevation contour plot drawn by linear inter-
polation.  Figure J-23 shows the same groundwater elevation data, factoring in the analyst’s 
site knowledge.  Figure J-24 shows the groundwater elevation data plot drawn by modeling 
software using IDW. 

 J-10.10.  By using contouring with groundwater modeling software, otherwise static 
contour maps can be run forward or backward in time.  This predictive modeling can be used 
to estimate the date at which some historical contaminant was released or plume migration at 
some future time.  Groundwater modeling, GIS, statistics, and mapping software can perform 
various interpolation methods. 
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Figure J-22.  Contour Plot Drawn by Linear Interpolation. 
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Figure J-23.  Contour Plot Drawn by Linear Interpretation Incorporating Site Knowledge. 
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Figure J-24.  Contour Plot Drawn by Modeling Software Using IDW. 
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APPENDIX K 
Intervals and Limits 

 
K-1.  Introduction.  Statistics can be divided into two categories: estimation theory (descrip-
tive statistics) and hypothesis testing (inferential statistics).  Estimation theory includes  
calculating confidence intervals as estimates for population parameters, while hypothesis 
testing focuses on the use of statistical tests to accept or reject hypotheses concerning these 
parameters.  
 
K-2.  Types of Statistical Intervals.  Three types of statistical intervals are often constructed 
on data: confidence intervals, tolerance intervals, and prediction intervals.  A confidence in-
terval is designed to contain the specified population parameter, such as the mean, with a 
specified level of confidence.  A confidence interval for the mean, for example, gives infor-
mation about the average concentration level but offers little information about the highest or 
most extreme sample concentrations that are likely to be observed.  In such cases, tolerance 
or prediction intervals are more appropriate.  A confidence interval contains a parameter of 
interest, while a tolerance interval contains a proportion of the population, and a prediction 
interval contains one or more future observations.  Statistical intervals are dependent upon 
distributional assumptions.  Parametric and nonparametric methods for deriving intervals are 
also available.  However, some nonparametric intervals, such as the tolerance interval, re-
quire a large number of observations to provide a reasonable coverage and confidence level.  
More information about statistical intervals can be found in Hahn and Meeker (1991).  It 
should also be noted that the statistical software package ProUCL (Version 4.1) can be used 
to readily calculate most of parametric and non-parametric confidence, prediction and toler-
ance limits described in this Appendix.  ProUCL can also be used to process data sets that 
contain non-detects.  EPA freely distributes the software with a User’s Guide, which can be 
downloaded from the website:  http://www.epa.gov/osp/hstl/tsc/software.htm 

 
 K-2.1.  Confidence Interval.  It is often desirable to express or quantify the degree of 
uncertainty for some estimate of an unknown population parameter.  The most common type 
of interval estimate is a confidence interval.  A confidence interval is essentially an estimate 
for an unknown population parameter expressed as a range of values with some specified 
level of confidence.  The level of confidence describes the probability that the “interval will 
capture the true parameter in repeated samples” (Moore, 1999). 
 
 K-2.1.1.  The values at each end of the interval are called confidence limits.  The lower 
value is the lower confidence limit (LCL) and the upper value is the upper confidence limit 
(UCL).  The calculation of a confidence limit depends on the sampling distribution.  Confi-
dence limits are readily calculated for normally distributed data.  A two-sided confidence  
interval for some population parameter, Θ , will be a closed interval of the form ba ≤Θ≤ , 
where a is the lower limit and b is the upper limit.  An upper one-sided confidence interval 
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will be of the form b≤Θ and a lower one-sided confidence interval will be of the form 
a≥Θ . 

 
 K-2.1.2.  For environmental work, it is often desirable to estimate the mean concentra-
tion of a contaminant in some environmental population (for example, the mean concentra-
tion of arsenic in a shallow groundwater aquifer).  The population mean ( µ ) is often 
estimated by calculating the sample mean ( x ) for a set of n measurements.  The uncertainty 
associated with the sample mean (as an estimate of the population mean) would be addressed 
by constructing a confidence interval for the population mean.  A note on terminology: one 
calculates a confidence interval for a population parameter, such as the population mean, and 
not for the corresponding sample statistic, such as the sample mean (though a statistic such as 
the sample mean may be used to calculate the confidence interval for the population parame-
ter). 
 
 K-2.1.3.  The upper bound of the confidence interval of the population mean, the UCL, 
is most frequently encountered.  For example, risk assessments require the 95% UCL for use 
as the reasonable maximum exposure concentration.  The UCL of the (population) mean is 
used for the exposure point concentration (EPC) in risk assessments because of the uncer-
tainty associated with estimating the population or “true” mean concentration at a site (EPA 
OB92-963373).  Recent EPA guidance directs risk assessors in the possible methods used to 
calculate an upper confidence limit on the population mean (EPA OSWER 9285.6-10). 
 
 K-2.1.4.  The phrase “95% confidence interval” means that “if one repeatedly calcu-
lates such intervals from many sets of independent random samples,” 95% of the intervals, 
“in the long run, correctly contain the parameter of interest” (Hahn and Meeker, 1991).  In 
other words, if a very large number of 95% confidence limits are calculated for the popula-
tion mean, approximately 95% of the intervals (95 intervals out of 100) will contain the pop-
ulation mean.  “More commonly, but less precisely, a two-sided confidence interval is 
described by a statement such as ‘we are 95% confident that the interval contains the pa-
rameter of interest.’  In fact, either the observed interval contains the parameter or it does 
not.  Thus the 95% refers to the procedure for constructing a statistical interval, and not to 
the observed interval itself” (Hahn and Meeker, 1991).  Because not all data sets fit a normal 
distribution, formulas for calculating a lognormal and nonparametric confidence limit are  
also available.  
 
 K-2.1.5.  The EPA recently published OSWER 9285.6-10.  According to this latest 
guidance, calculating a UCL should take into consideration outliers, censored data, and  
distribution testing (as described in Appendices I, H, and F).  Once the distribution is  
determined, the calculation of an UCL should proceed according to the procedures for distri-
butional methods.  If, however, the site data do not follow a known distribution, then  
determining a good estimate of the UCL is left to the discretion of the risk assessor.  Table 
K-1 presents the methods recommended in EPA guidance (OSWER 9285.6-10).  Research in 
the area of UCL calculation is ongoing and recommendations may change in the future.  
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 K-2.2.  Tolerance Interval.  A tolerance interval is designed to contain a specified pro-
portion of the population (or percentile), such as 95% of all possible sample measurements 
(i.e., the 95th percentile).  Tolerance intervals are essentially confidence intervals around a 
specified percentile.  It is rare that a quantile for the population is known; instead, it is esti-
mated using a sample data set, and a confidence interval for the population quantile is calcu-
lated using the sample quantile (e.g., just as a confidence interval for the population mean is 
calculated using the sample mean).  Tolerance intervals are usually designed to cover all but 
a small percentage of the population measurements, so observations should rarely exceed a 
tolerance interval if the observations come from a similar distribution.  
 
 K-2.2.1.  A tolerance interval is characterized by two quantities (probabilities): the cov-
erage (the proportion of the population that the interval is supposed to contain), and the con-
fidence level (the degree of confidence with which the interval reaches the specified 
coverage).  As the interval is constructed from sample information, it is also a random inter-
val.  Because of sample fluctuations, a tolerance interval can contain the specified proportion 
of the population only with a certain confidence level.  For example, “the (1 – α)100% toler-
ance interval with p100% coverage” refers to a tolerance interval constructed to contain at 
least 100p% of the distribution with (1 – α)100% level of confidence. 
 
 K-2.2.2.  Upper tolerance limits (UTLs) (UCLs for percentiles) are often calculated for 
environmental work.  For example, it may be desirable to compare contaminant concentra-
tions in a study area to the UTL of the compound in a background area.  If the concentrations 
of many site samples exceed the background UTL, site-related contamination probably  
exists.  It is most common for environmental scientists to calculate the “95 UTL” (95% upper  
tolerance limit with 95% coverage). 
 
 K-2.2.3.  The method for calculating a tolerance interval depends on the nature of the 
underlying population distribution.  Tolerance intervals can be constructed assuming that the 
data or the transformed data are normally distributed.  It is also possible to construct nonpar-
ametric tolerance intervals using only the assumption that the data come from some continu-
ous population.  However, nonparametric tolerance intervals often require a large number of 
observations to provide a reasonable coverage and are impractical to construct for small sets 
of data.  The data set with which tolerance intervals are calculated should be inspected for 
outliers and tested for normality before selecting the tolerance interval approach. 
 
 K-2.3.  Prediction Interval.  A prediction interval is a statistical interval calculated to 
include one or more future observations from the same population with a specified confi-
dence.  A prediction interval calculated from some set of sample data is such that all of cer-
tain number of future measurements (k) from the same population will fall within the interval 
with some specified level of confidence.  In other words, each k future observation is com-
pared to the prediction interval.  The interval is constructed to contain all k future observa-
tions with the stated confidence.  If any future observation exceeds the prediction interval, 
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this is statistically significant evidence of a change in conditions.  The number of future ob-
servations to be collected, k, must be specified (i.e., known before calculating the prediction 
interval).  It is desirable to calculate prediction intervals periodically, using the most recent 
data.  (The EPA recommends at least yearly for groundwater analyses.)  Concentrations of 
site contaminants are sometimes compared to background concentrations using prediction in-
tervals.  An upper prediction limit is calculated for the next k future observations using the 
background data set and the k site measurements are then compared to the upper prediction 
limit.  If any of the k site measurements exceed the prediction limit, this suggests that the site 
concentrations are elevated with respect to background. 
 
Table K-1. 
UCL Method Flow Chart 

 
Are data normal? 

 
Yes  → 

 
Use Student’s t 

 
No ↓ 

  

 
Are data lognormal? 

 
Yes  → 

 
Use Land, Chebyshev (MVUE), or Student’s t 
(with small variance and skewness) 

No ↓   
 
Is another distribution appro-
priate? 

 
Yes  → 

 
Use distribution-specific method (if available) 
 

No ↓   
 

Is sample size large? 
 
Yes  → 

 
Use Central Limit Theorem-Adjusted (with small 
variance and mild skewness) or Chebyshev 

No ↓ 
 

→ 

  
 
Use Chebyshev, Bootstrap Resampling, or Jack-
knife 
 

 
 K-2.3.1.  Prediction intervals are used to achieve some desired tolerance for Type I  
error (i.e., false rejection of H0) when the same statistical test is performed multiple times 
(e.g., k times).  (Neither prediction nor tolerance intervals address Type II error.)  For  
example, assume that the Type I error rate is α for falsely rejecting the null hypothesis, H0, 
for some statistical test or comparison.  Assume that k independent statistical tests or com-
parisons are performed, where α denotes the probability of a false rejection (Type I error 
rate) for each individual test or comparison.  The Type I error for the set of k independent 
comparisons, α*, is the following:  
 
 .)1(1* kαα −−=  
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 K-2.3.2.  Consider a single statistical test comparing populations 1 and 2, where H0 is 
rejected at a level of significance α = 0.05.  Now, suppose that three, rather than two, popula-
tions are to be compared to each other using the same α for each comparison; that is, popula-
tions 1 and 2, 2 and 3, and 1 and 3, are compared, where α = 0.05 for each of the k = 3 
comparisons.  Assume that the three populations are identical and all the measurements are 
independent of one another.  The probability of rejecting H0 for at least one of the three pop-
ulations (i.e., the false rejection rate for the set of three comparisons) is  
 
 .14.0)95.0(1)1(1* 33 =−=−−= αα  
 
 K-2.3.3.  Even though the false rejection rate for a single comparison is 0.05, the false 
rejection rate for the set of three comparisons is higher, 0.14.  A larger false positive rate will 
be obtained when more than three different populations are being compared.  Therefore, if a 
total false rejection rate of α = 0.05 is desired, the false rejection rate for each comparison 
must be less than 0.05.  In fact, it can be shown that if a total false rejection rate (also called 
the experiment wise error rate) of α is desired, then the false rejection rate, α*, for each 
comparison should be approximately α/k: 
 
 kk k)/1(1*)1(1 ααα −−≈−−=  . 
 
This is called the Bonferroni approximation.  For example, if 05.0=α and k = 3, then the 
Type I error for each individual comparison ( *α ) must be approximately 0.05/3 = 0.0167.  
Note that  
 
 .05.0049.0)3/05.0(1)/1(1 3 ≈=−=−− kkα  
 
 K-2.3.4.  Thus, a prediction interval for the next k measurements for the (1 – α)100% 
level of confidence that uses the Bonferroni approximation will entail the use of individual 
comparison with Type I error of α/k.  For example, for normally distributed data, the  
prediction interval for (1 – α)100% confidence for the next k observations is obtained from 
the quantile of the Student’s t-distribution t1–α/k (e.g., rather than t1–α). 
 
 K-2.3.5.  It should be noted that, in general, prediction and tolerance intervals are not 
the same thing.  The difference between a tolerance and prediction limit is one of interpreta-
tion and probability.  Given n measurements and a desired confidence level, a tolerance  
interval will have a certain coverage percentage.  A tolerance interval is designed so that, 
with some level of confidence, a proportion p of future measurements will fall within the  
interval.  Thus, a small proportion 1 – p of the measures may fall outside the tolerance inter-
val.  A prediction limit, on the other hand, is designed so that, with some level of confidence, 
all future measurements fall within the interval.  In this sense, the prediction limit may be 
thought of as a 100% coverage tolerance limit for the next k future observations.  Thus, upper 
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prediction intervals are constructed when all future measurements must fall below some 
threshold value and tolerance intervals are typically constructed when only a large proportion 
of future measurements are required to exceed a threshold value. 
 
K-3.  Statistical Intervals Based on Normal Distribution. 
 
 K-3.1.  Confidence Interval for the Mean.  For a normal distribution, the one-sided  
(1 – α)100% UCL for the population mean is computed using the sample mean and standard 
deviation, and the (1 – α) quantile of Student’s t-distribution with n – 1 degrees of freedom: 
 
 ( )1 1 , 1UCL /nx t s nα α− − −= +  . 
 
Quantiles of the Student’s t-distribution for various degrees of freedom are provided in Ap-
pendix B, Table B-23.  Student’s t can also be obtained in Microsoft Excel with the formula 

)1,2( −nTINV α , for a one-sided (upper) ( ) %1001 α− UCL for 1−n degrees of freedom.  
When data are normally distributed, or if there are more than 30 samples available, a normal 
two-sided or one-sided confidence interval for the population mean (µ) with %100)1( α−  
level of confidence can be computed as directed in the Paragraph K-3.2.  An example is  
provided in Paragraph K-3.3.  
 
 K-3.2.  Directions for the Confidence Interval for the Mean (Normal Distribution) 
When the Population Standard Deviation is Unknown.  Let nxxx ,,, 21   represent the n data 
points from a normal distribution.  These could be either n individual samples or n composite 
samples consisting of k aliquots each. 
 
 K-3.2.1.  Verify that data come from a normal distribution using tests presented in Ap-
pendices F and J such as the Shapiro-Wilk test (Paragraph F-3) and a normal probability plot 
(Paragraph J-5.5). 
 
 K-3.2.2.  Calculate the sample mean, x , and the standard deviation, s (Appendix D). 
 
 K-3.2.3.  Use Table B-23 of Appendix B to find the critical value such that %100)1( α−  
of the t-distribution with 1−= nv  degrees of freedom (df) is below this value.  For a one-
sided confidence interval (when just a LCL or an UCL is to be calculated), the critical value 
is the percentile vt ,1 α− .  For a two-sided confidence interval (when both a LCL and UCL are 
to be calculated), the critical value is vt ,2/1 α− .  
 
 K-3.2.4.  For example, if a two-sided 95% confidence interval is estimated, where 

05.0=α and 16=n , then 151161 =−=−= nv  and 131.215,975.015),2/05.0(1 ==− tt .  If a one-sided 
95% confidence interval is estimated, where 05.0=α and 16=n , then 151161 =−=−= nv  
and .753.115,95.015,05.01 ==− tt  
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 K-3.2.5.  For one-side confidence intervals for the population mean ( µ ), the equations 
for estimating the upper confidence limit (UCL) and lower confidence limit (LCL) are as  
follows: 
 
 ( )1 ,UCL  x  t s/ nα ν−= +  
 
 ( )1 ,LCL  x  t s/ nα ν−= − . 
 
 K-3.2.6.  The corresponding one-sided confidence intervals for are as follows:  
 
 ( )( )ns/t x να ,1, −+∞−  
 
 ( )( )∞+− − ,,1 ns/t x να . 
 
 K-3.2.7.  The two-sided confidence interval for the population mean is as follows: 
 
 ( )ns/t  x να ,2/1−± . 
 
 K-3.3.  Example of a Confidence Interval for the Mean (Normal Distribution).  Suppose 
a one-sided 95% lower confidence interval is desired for the mean concentration of (total) 
chromium in subsurface (below 5 feet from ground surface) soil at Site A.  
 
 K-3.3.1.  These are the same data used in Paragraph L-6.1.3 as an example of a one-
sample t-test.  In that example there was evidence that the average was greater than 2 and 
not less than 2.  A similar conclusion can also be reached when confidence intervals are con-
structed and compared to the regulatory threshold of 2, as illustrated in this example.  
 
 K-3.3.2.  The first step is to verify that the data follow a normal distribution.  The 
Shapiro-Wilk test is performed with these data; this test shows evidence that the data follow 
a normal distribution because the test’s p value was 0.8489 and is greater than 0.05. 
 
 K-3.3.3.  The mean and standard deviation of the data were calculated:  
 
 619.4=x  
 
 8980.0=s . 
 
Note that:  
 
 05.0=α  (for the 95% level of confidence) 
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 36=n  
and  
 
 351361 =−=−= nv . 
 
Table K-2. 
Example Data 

Site A Sample 
Location 

Top 
Depth 

of 
Sample 

(ft) 

Bottom 
Depth of 
Sample 

Chromium 
(Total) Con-

centration 
(mg/kg) 

(ft) 

Site A  
Sample  

Location 

Top 
Depth of 
Sample 

(ft) 

Bottom 
Depth of 
Sample 

(ft) 

Chromium 
(Total) 

Concentra-
tion 

(mg/kg) 
EPC-SB01  9 10 2.95 EPC-SB07  9 10 5.1 
EPC-SB01  14 15 5.17 EPC-SB07  14 15 4.94 
EPC-SB01  19 20 4.8 EPC-SB07  19 20 4.76 
EPC-SB02  9 10 4.53 EPC-SB08  9 10 4.62 
EPC-SB02  14 15 4.01 EPC-SB08  14 15 4.72 
EPC-SB02  19 20 5.91 EPC-SB08  19 20 4.73 
EPC-SB03  9 10 3.96 EPC-SB09  9 10 3.21 
EPC-SB03  14 15 4.81 EPC-SB09  14 15 4.14 
EPC-SB03  19 20 5.27 EPC-SB09  19 20 4.85 
EPC-SB04  9 10 5.99 EPC-SB10  9 10 4.25 
EPC-SB04  14 15 4.6 EPC-SB10  14 15 5.09 
EPC-SB04  19 20 5.51 EPC-SB10  19 20 3.68 
EPC-SB05  9 10 4.72 EPC-SB11  9 10 5.12 
EPC-SB05  14 15 3.56 EPC-SB11  14 15 6.6 
EPC-SB05  19 20 4.22 EPC-SB11  19 20 6.19 
EPC-SB06  9 10 3.91 EPC-SB12  9 10 3.15 
EPC-SB06  14 15 5.81 EPC-SB12  14 15 4.11 
EPC-SB06  19 20 4.48 EPC-SB12  19 20 2.8 

 
 K-3.3.4. Using Table B-23 of Appendix B and linear interpolation, we find the critical 
value to be 1.691.  
 
 691.12/)684.1697.1(35,95.0,1 =+==− tt vα . 
 
The confidence interval is  
 
 ( ){ }( ) ( )4.619 1.691 0.8980 / 36 , 4.37 ,− ∞ = ∞  . 
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 K-3.3.5.  The confidence interval does not contain 2 (the lower confidence limit  
exceeds 2); therefore, this is evidence that the average is greater than 2, the regulatory 
threshold. 
 
 K-3.4.  Tolerance Interval (Normal Distribution).  A one-sided tolerance limit is an  
upper or a lower confidence limit of a percentile (or proportion).  A one-sided upper  
tolerance limit (UTL) that is greater than at least p100% of the population with probability  
(1 – α)100% is the (1 – α)100% upper confidence limit for the p100th percentile of the popu-
lation (Hahn, 1970).  Similarly, a one-sided lower tolerance limit (LTL) that is less than at 
least p100% of the population with probability (1 – α)100% is the (1 – α)100% lower confi-
dence limit for the p100th percentile of the population.  However, two-sided tolerance inter-
vals are not equivalent to two-sided confidence intervals of percentiles.  “Tolerance limits 
differ from confidence intervals in that tolerance limits provide an interval within which at 
least a proportion q of the population lies, within probability 1 – α or more that the stated in-
terval does indeed ‘contain’ the proportion q of the population” (Conover, 1999).  “Two-
sided tolerance intervals are rarely used in environmental studies, perhaps because there are 
few applications that attempt to determine the location of a central proportion of data, with 
allowable exceedances at both high and low ends” (Helsel, 2005). 
 
 K-3.4.1.  Directions for a Tolerance Interval  (Normal Distribution).  Let nxxx ,,, 21   
represent the n data points from a normal distribution.  These could be either n individual 
samples or n composite samples consisting of k aliquots each.  A two-sided (1 – α)100% tol-
erance interval to contain at least p100% of a normal distribution is denoted as ( )UL xx , , 
where xL is the lower tolerance limit and xU is the upper tolerance limit. 
 
 K-3.4.1.1.  Verify data come from a normal distribution using tests presented in  
Appendices F and J, such as the Shapiro-Wilk test (Paragraph F-3) and a normal probability 
plot (Paragraph J-5.5). 
 
 K-3.4.1.2.  Calculate the sample mean, x , and the standard deviation, s (Appendix D).  

 
 K-3.4.1.3.  For a two-sided tolerance interval, ( )UL xx , : 
 
 npL gsxx ,,1 α−−=  
 
 npU gsxx ,,1 α−+=  . 

 
 K-3.4.1.4.  Use Table B-14 of Appendix B to find the critical value g.  

 
 K-3.4.1.5.  An approximation for g that may be useful (e.g., to find values of g that are 
not in Table B-13) is: 
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 ( ) 





 +









 −
≈

−
+− n

nZg
n

pnp 2
111

2/1

2
1,

2/1,,1
α

α χ
 . 

 
Percentiles of the chi-square distribution, 2

,νχ p , are listed in Table B-2.  Percentiles of the 
standard normal distribution, Zp, are listed in Table B-15.  Hahn states that the approximation 
“appears to be good for most practical purposes even for n as small as 5” (Hahn, 1970). 
 
 K-3.4.1.6.  For a one-sided lower tolerance limit, Lx : 
 
 npL gsxx ,,1 α−′−=  . 

 
 K-3.4.1.7.  For a one-sided upper tolerance limit, Ux : 
 
 npU gsxx ,,1 α−′+=  . 
 
 K-3.4.1.8.  Use Table B-13 of Appendix B to find the critical value g´ (for values of p > 
0.5).  
 
 K-3.4.1.9.  An approximation for g´ that may be useful is: 
 

 
( ) 2/12

,,1 a
abZZ

g pp
np

−+
≈′−α  

 

 ( )12
1

2
1

−
−= −

n
Za α  

 

 
n

ZZb p

2
12 α−−=  . 

 
However, Hahn states that this approximation “is poor for very small n, especially for large p 
and large 1- α, and is not advised for n < 8” –α (Hahn, 1970). 
 
 K-3.4.2.  Example of a Two-sided Tolerance Interval (Normal Distribution).  Suppose a 
two-sided 95% tolerance interval to contain at least 90% of the population is desired for 
chromium concentrations (total) in subsurface (below 5 feet from ground surface) soil at Site 
A, using the same data as Paragraph K-3.2. 
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 K-3.4.2.1.  The first step is to verify that the data follow a normal distribution.  The 
Shapiro-Wilk test is performed with these data.  This test shows evidence that the data follow 
a normal distribution because the test’s p value was 0.8489 and is greater than 0.05. 
 
 K-3.4.2.2. The mean and standard deviation of the data were calculated: 
 
 619.4=x  
 
 8980.0=s . 
 
Note that: 
 
 90.0=p  
 
 36=n  
 
 05.0=α . 
 
 K-3.4.2.3.  From Table B-14, 090.235,90.0,95.0 =g and 052.240,90.0,95.0 =g .  Therefore,  
 

 ( ) 082.2052.2090.2
3540
3536090.236,90.0,95.0 =−

−
−

−=g . 

 
 K-3.4.2.4.  The equation in Paragraph K-3.4.1.5 can also be used to calculate g: 
 

 ( ) 082.2014.1
46.22

35645.1
362

11136 2/12/1

2
35,05.0

2/90.01,,1 =×





×=








×
+









 −
≈ +− χα Zg np . 

 
 K-3.4.2.5.  The two-sided tolerance interval is: 
 
 8980.0082.2619.4 ×±  mg/kg 
 
 (2.749, 6.489) mg/kg. 
 
 K-3.4.3.  Example of a One-Sided Upper Tolerance Limit, UTL (Normal Distribution).  
Suppose a UTL for the 95th percentile and 95% confidence level (also called a 95 UTL) is 
desired for chromium concentrations (total) in subsurface (below 5 feet from ground surface) 
soil at Site A, using the same data in Paragraph K-3.3. 
 
 K-3.4.3.1.  As shown in the previous examples, the data seem to follow a normal distri-
bution.  For this example: 
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 95.0=p  
 
 36=n  
 
 05.0=α  
 
 95.01 =−α  
 
 619.4=x  
 
 8980.0=s . 
 
 K-3.4.3.2.  Using Table B-13 of Appendix B and linear interpolation, we find the criti-
cal value for the one-sided upper confidence limit to be  
 

 ( ) 159.2125.2167.2
3540
3536167.236,95.0,95.0,,1 =−

−
−

−=′=′− gg npα . 

 
 K-3.4.3.3.  The approximation for g´ in Paragraph K-3.4.1.9 may also be used to esti-
mate g´: 
 

 ( ) ( ) 9613.0
70
645.11

1362
1

12
1

22
95.0

2
1 =−=

−
−=

−
−= − Z

n
Za α  

 631.2
36
645.1645.1

36

2
2

2
95.02

95.0

2
12 =−=−=−= − ZZ
n

ZZb p
α  

 

 
( ) ( ) 149.2

9613.0
631.29613.0645.1645.1 2/122/12

,,1 =
×−+

=
−+

≈′− a
abZZ

g pp
npα . 

 
 K-3.4.3.4.  So, using the value for g´ from Table B-13, the UTL is: 
 
 558.6159.28980.0619.4UTL =×+=  mg/kg. 
 
 K-3.4.4.  Confidence Interval for the Variance or Standard Deviation (Normal Distribu-
tion).  To estimate the precision of variance estimates, a confidence interval for the variance 
or standard deviation can be constructed.  This information may be necessary for a sensitivity 
analysis of the statistical test or analysis method.  The method described below can be used 
to find a two-sided %100)1( α− confidence interval.  This confidence interval assumes that 
the data constitute a random sample from a normally distributed population and can be  
highly sensitive to outliers and to departures from normality.  Directions are presented in 
Paragraph K-3.4.4.1, followed by an example in Paragraph K-3.4.4.2. 
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 K-3.4.4.1.  Directions for a Confidence Interval for the Variance and Standard Devia-
tion (Normal Distribution).  Let nxxx ,,, 21  represent the n data points from a normal distri-
bution. 
 
 K-3.4.4.1.1.  Verify data come from a normal distribution using tests presented in  
Appendices F and J such as the Shapiro-Wilk test (Paragraph F-3) and a normal probability 
plot (Paragraph J-5.5). 
 
 K-3.4.4.1.2.  Calculate the sample variance, 2s  (Appendix D). 
 
 K-3.4.4.1.3.  For a %100)1( α− two-sided confidence interval, use Table B-2 of  
Appendix B to find the critical values 2

,2 vαχ and 2
,21 vαχ −  with degrees of freedom v = (n – 1). 

 
 K-3.4.4.1.4.  A %100)1( α− confidence interval for the true underlying variance is 

),( 22
UL ss : 

 

 2
,21

2
2 )1(

v
L

sns
αχ −

−
=  

 

 2
,2

2
2 )1(

v
U

sns
αχ
−

= . 

 
 K-3.4.4.1.5.  A %100)1( α− confidence interval for the true underlying standard devia-
tion is ),( UL ss : 
 

 2
,21

2)1(

v
L

sns
αχ −

−
=  

 

 2
,2

2)1(

v
U

sns
αχ
−

= . 

 
 K-3.4.4.2.  Example of Constructing a Confidence Interval for the Sample Variance and 
Standard Deviation (Normal Distribution).  Consider the following data, background subsur-
face chromium concentrations of 3.84, 4.26, 4.53, 4.60, 5.28, 5.29, 5.74, and 5.86 mg/kg.  
 
 K-3.4.4.2.1.  A confidence interval for the sample variance will be calculated based on 
a 95% level of confidence. 
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 K-3.4.4.2.2.  Testing the data for normality using the Shapiro-Wilk test indicated that 
the data were normal.  So, a confidence interval for the sample variance based on a normal 
distribution can be calculated. 
 
 K-3.4.4.2.3.  The sample variance, 526.02 =s .  The required critical values are  
obtained from Table B-2: 
 
 69.12

7,025.0
2

1,2/ ==− χχα n  
 
 01.162

7,975.0
2

1),2/1( ==−− χχ α n . 

 
 K-3.4.4.2.4.  A 95% confidence interval for the true underlying variance is  
(0.228, 2.18): 
 

 228.0
01.16

)526.0)(18()1(
2

1,21

2
2 =

−
=

−
=

−− n
L

sns
αχ

 

 

 18.2
69.1

)526.0)(18()1(
2

1,2

2
2 =

−
=

−
=

−n
U

sns
αχ

. 

 
 K-3.4.4.2.5.  A 95% confidence interval for the true underlying standard deviation is 
(0.479, 1.48): 
 

 
( )

479.0228.0)1(
2

1,2/1

2

==
−

=
−− n

L
sns

αχ
 

 

 48.118.2)1(
2

1,2

2

==
−

=
−n

U
sns

αχ
. 

 
 K-3.4.5.  Prediction Interval (Normal Distribution).  The prediction interval presented 
here is constructed assuming that the data follow a normal distribution with unknown mean 
and standard deviation.  Most evaluations with environmental data only need a one-sided 
prediction interval, so this discussion will focus on the one-sided, upper prediction limit.  To 
obtain a two-sided prediction interval, first replace α  by 2α .  Then use the equation for the 
upper limit as the lower limit after replacing the addition of the standard deviation term with 
subtraction.  The prediction interval must specify the overall level of confidence.  That 
means a prediction interval’s confidence level must account for the level of confidence of 
every future comparison.  This is accomplished by setting the confidence level for each of 
the k future comparisons to %100)/1( kα− .  Directions for calculating an upper prediction 
limit are presented in Paragraph K-3.4.5.1, followed by an example in Paragraph K-3.4.5.2. 



 
 
 
 

EM 200-1-16 
31 May 13 

 

K-15 
 

 K-3.4.5.1.  Directions for Calculating an Upper Prediction Limit for k Future Compari-
sons of the Mean Calculated from m Observations (Normal Distribution).  Verify the as-
sumptions of normality. 
 
 K-3.4.5.1.1.  The population mean and standard deviation are unknown.  Specify k and 
m for the interval, where the mean of m observations is taken k times in the future (i.e., k 
samples are analyzed and the result reported for each sample is the mean of m replicate 
measurements).  
 
 K-3.4.5.1.2.  Specify the level of confidence for the upper prediction limit 
as %100)1( α− . 
 
 K-3.4.5.1.3.  Calculate the upper prediction limit  
 

 
nm

tsx nk
11

1,1 ++ −−α  

where x  is the mean of the original data, s is the standard deviation, and n is the total num-
ber of observations (measurements of the original data set).  
 
 K-3.4.5.1.4.  Table B-23 of Appendix B provides values for 1,1 −− nkt α .  
 
 K-3.4.5.1.5.  If the future observations are found to be in the prediction interval, this is 
evidence that there has been no change in the sample values.  If a future observation falls 
outside of the prediction interval, this is statistical evidence that the new observation does not 
come from the same distribution. 
 
 K-3.4.5.1.6.  When replicate sample analyses are not done (i.e., a signal measurement 
or analysis is performed for each sample), set m = 1.  For a single future observation (i.e., 
one sample analyzed once), set 1=m  and 1=k . 
 
 K-3.4.5.2.  Example of Calculating a Normal Upper Prediction Limit for k Future 
Comparisons of the Mean from m Observations (Normal Distribution).  A prediction  
interval is calculated for a set of “background well” measurements to determine if a set of 
“compliance well” measurements are “elevated” relative to background levels.  The back-
ground well data set was tested for normality using the Shapiro-Wilk test.  Because the data 
set was not normally distributed, the data set was normalized by taking the natural logarithm 
of each result.   
 
 K-3.4.5.2.1.  For the compliance well data set, m = 4 replicate measurements are made 
for k = 1 sample.  Let α = 0.01 for the prediction interval.  For the background data set,  
n = 8. 
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 79.3
8
1

4
1)998.2(2832.0317.411

1,1 −=++−=++ −− nm
tsx nkα  

 
 998.27,99.018,

1
01.011,1 ===

−−
−− ttt nkα   

using Table B-23 of Appendix B. 
 
Table K-3. 
Example Compliance Well Data 

Background 
Well 

Sample 
Date Result Log  

Result 
Compliance 

Well 
Sample 

Date Result Log  
Result 

69-2-07 2001 0.0137  –4.290 69-2-08 2002 0.563 –0.574 
69-2-07 2001 0.019  –3.963 69-2-08 2002 0.512 –0.669 
69-2-07 2001 0.0163  –4.117 69-2-08 2002 0.475 –0.744 
69-2-07 2001 0.0195  –3.937 69-2-08 2002 0.546 –0.605 
69-2-07 2001 0.0112  –4.492     
69-2-07 2001 0.0112  –4.492     
69-2-07 2001 0.0102  –4.585     
69-2-07 2001 0.00946  –4.661     
Mean - 0.01382 –4.317   0.524 –

0.6484 
Std. Dev. - 0.00398 0.2832   0.0389 0.0753 

 
 K-3.4.5.2.2.  Because the data set was transformed by taking the natural logarithm pri-
or to calculating the upper prediction limit, to express the calculated limit in terms of the 
original units, it is necessary to perform the inverse transformation (i.e., to take the exponent 
of the calculated limit): exp(–3.79) = 0.0226.  Therefore, the prediction interval is (0, 
0.0226).  Now we can compare the mean of the compliance well observations (0.524) with 
the upper limit of the prediction interval (0.022) calculated from the background well data.  
As 0.524 > 0.0226, there is significant evidence that the compliance well observations do not 
come from the same distribution as the background well.  
 
K-4.  Statistical Intervals Based on Lognormal Distribution. 
 
 K-4.1.  Confidence Interval for the Mean.   
 
 K-4.1.1.  When data are truly lognormal, it is not recommended that confidence  
intervals be calculated using the natural-log transformed data and the normal confidence in-
tervals.  One reason is that the units as well as the confidence intervals would be in log scale.  
The confidence intervals cannot be transformed back to the original scale and original units 
without a special adjustment. 
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 K-4.1.2.  For a lognormal distribution (the second alternative provided in the EPA UCL 
method flow chart), the EPA recommends calculating the UCL of the mean using one of sev-
eral options based on the sample size, n, and the standard deviation of the log-transformed 
data, sy.  Table K-4, which summarizes these recommendations, has been adapted from the 
ProUCL Version 3.0 User Guide (EPA 600/R-97/006).  However, it should be noted that the 
ProUCL Version 4.1 User Guide (EPA 600/R-07/041) is the most recent guidance.  ProUCL 
Version 4.1 differs from Version 3.0 with respect to how UCLs are calculated when data in-
clude non-detects.  ProUCL Version 4.1 uses non-parametric methods that appropriately treat 
non-detects as inequalities, while Version 3.0 allows only surrogate numerical values to be 
assigned to the non-detects (e.g., increasing the uncertainty of the UCL calculations).  (Refer 
to Appendix H for additional information.)  In addition to the computational methods listed 
below, the most current version of the software uses the gamma distribution to calculate 
UCLs.  The software calculates UCLs using a number of different computational methods 
and automatically selects the “best” method (e.g., using criteria similar to that presented in 
Table K-4).  However, it should be noted that these computational methods can result in  
relatively large UCLs (e.g., near the maximum detected values when the distributions are  
extremely skewed).  This problem can be potentially avoided or at least minimized by  
collecting composite rather than grab samples (when possible and consistent with data  
quality objectives), as this tends to normalize data (i.e., composite samples produced from  
a sufficiently large number of grabs tend to be normally distributed). 
 
 K-4.2.  Land Method.   
 
 K-4.2.1.  Introduction.  The Land method was touted in older EPA guidance, but it is no 
longer recommended in all cases because it is very sensitive to deviations from lognormality.  
Recall that distribution tests are primarily tests that the fit assumption cannot be rejected, ra-
ther than that the fit is perfect.  Consequently, it is possible to pass a test for lognormality 
even when there are deviations from that distribution.  This outcome is more likely for small 
data sets (< 30), which are quite common in environmental applications.  The UCL for the 
Land method is as follows: 
 

 
2 2

1
1UCL exp

2 1
y ys H s

y
n

α
α

−
−

 
= + +  − 

 . 

 
 K-4.2.1.1.  The value of the H statistic is available in some statistical texts, including 
Gilbert (1987) and in Table B-8 of Appendix B. 
 
 K-4.2.1.2.  Directions for constructing a confidence interval for the population mean of 
a lognormal distribution using the Land method are given in Paragraph K-4.2.2, followed by 
an example in Paragraph K-4.2.3 (EPA 600/R-97/006).  
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Table K-4. 
Recommended Methods for Computation of a 95% UCL for the Unknown Mean of a 
Lognormal Population 

Standard Deviation of 
Log-Transformed  

Data, ys  
Sample Size, n 

 
Recommended Method (Paragraph Reference) 

 

0.5ys <  For all n Student’s t (K-3.4.4) or 
Land (K-4.1) 

0.5 1.0ys≤ <  For all n Land (K-4.1) 

1.0 1.5ys≤ <  25<n  95% Chebyshev (MVUE) UCL (K-4.1) 
25≥n  Land (K-4.1) 

1.5 2.0ys≤ <  
20<n  99% Chebyshev (MVUE) UCL (K-4.1) 

5020 <≤ n  95% Chebyshev (MVUE) UCL (K-4.1) 
50≥n  Land (K-4.1) 

2.0 2.5ys≤ <  
20<n  99% Chebyshev (MVUE) UCL (K-4.1) 

5020 <≤ n  97.5% Chebyshev (MVUE) UCL (K-4.1) 
7050 <≤ n  95% Chebyshev (MVUE) UCL (K-4.1) 

70≥n  Land (K-4.1) 

2.5 3.0ys≤ <  
30<n  Larger of (99% Chebyshev (MVUE) UCL (K-

4.1) or 99% Chebyshev (Mean, Sd) (K-5) 
7030 <≤ n  97.5% Chebyshev (MVUE) UCL (K-4.1) 
10070 <≤ n  95% Chebyshev (MVUE) UCL (K-4.1) 

100≥n  Land (K-4.1) 

3.0 3.5ys≤ <  

15<n  Hall’s Bootstrap* (K-4.1) 

5015 <≤ n  Larger of (99% Chebyshev (MVUE) UCL (K-
4.1) or 99% Chebyshev (Mean, Sd) (K-5) 

10050 <≤ n  97.5% Chebyshev (MVUE) UCL (K-4.1) 
150100 <≤ n  95% Chebyshev (MVUE) UCL (K-4.1) 

150≥n  Land (K-4.1) 
3.5ys ≥  For all n Use non-parametric methods* (K-5) 

*In case Hall’s Bootstrap method yields an erratic unrealistically large UCL value, then the UCL 
of the mean may be computed based upon the Chebyshev inequality. 
 
 K-4.2.2.  Directions for a Confidence Interval for the Mean (Lognormal Distribution, 
Land Method).  Let nxxx ,,, 21   represent the n data points from a lognormal distribution. 
 
 K-4.2.2.1.  Verify that data come from a lognormal distribution using tests presented in 
Appendices F and J such as the Shapiro-Wilk test (Paragraph F-3) and a normal probability 
plot (Paragraph J-5.5). 
 
 K-4.2.2.2.  Using the log-transformed data, ( )ii xLny = , calculate the sample mean, y , 
and the standard deviation, ys . 



 
 
 
 

EM 200-1-16 
31 May 13 

 

K-19 
 

 K-4.2.2.3.  Use Table B-8 of Appendix B to find the critical value (also called the H 
statistic) for the given level of confidence, sample size, and standard deviation.  If a two-
sided confidence interval for the mean is desired (LCL, UCL), the critical values are 

ysnH ,,2/α and 
ysnH ,,2/1 α−  for the LCL and UCL, respectively.  If a one-sided confidence inter-

val for the mean is desired, the critical value for the LCL is
ysnH ,,α , or the critical value for an 

UCL is 
ysnH ,,1 α− .  To estimate H values not in the table, a four-point Lagrangian interpolation 

(cubic interpolation) should be implemented. 
 
 K-4.2.2.4.  For a two-sided confidence interval for the mean, the equations are 
as follows: 
 

 
2 2

/ 2 1 / 2LCL exp , UCL exp
2 21 1
y y y y as s H s s H

 = y  = y
n n

α −   
+ + + +      − −   

. 

 K-4.2.2.5.  For a one-sided confidence interval for the mean, LCL or UCL, the 
equation is as follows: 

 
2

LCL exp
2 1
y ys s H

 = y
n

α 
+ +  − 

 or 
2

1UCL exp
2 1
y y as s H

 = y
n

− 
+ +  − 

. 

 
 K-4.2.3.  Example of a Confidence Interval for the Mean (Lognormal Distribution), 
Land Method.  Suppose a one-sided 95% UCL is desired for concentrations of chromium  
(total) in background subsurface soil (5 feet below ground surface). 

 
Sample ID Result (mg/kg) Ln(Result) (Ln mg/kg) 

EPC-BG01-013 0.0196 –3.932 
  EPC-BG01-020 0.00605 –5.108 
  EPC-BG02-010 0.00485 –5.329 
  EPC-BG02-020 0.0101 –4.595 
  EPC-BG03-010 0.00756 –4.885 
  EPC-BG03-020 0.00596 –5.123 
  EPC-BG04-010 0.0143 –4.248 
  EPC-BG04-020 0.00499 –5.300 
  EPC-BG05-010 0.00997 –4.608 
  EPC-BG05-020 0.00464 –5.373 
  EPC-BG06-010 0.00813 –4.812 
  EPC-BG06-023 0.00313 –5.767 
  EPC-BG07-010 0.00834 –4.787 
  EPC-BG07-020 0.00579 –5.151 
  EPC-BG08-010 0.00638 –5.055 
  EPC-BG08-020 0.00517 –5.265 
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 K-4.2.3.  Example of a Confidence Interval for the Mean (Lognormal Distribution), 
Land Method.  Suppose a one-sided 95% UCL is desired for concentrations of chromium  
(total) in background subsurface soil (5 feet below ground surface). 

 K-4.2.3.1.  The first step is to verify that the data follow a lognormal distribution.  The 
Shapiro-Wilk test was performed with the log-transformed data.  This test shows evidence 
that the data follow a normal distribution because the test’s p value was 0.6570 and is greater 
than 0.05. 
 
 K-4.2.3.2.  Using the log-transformed data,  
 
 959.4−=y   
 
and 
 
 4574.0=ys . 
 
 K-4.2.3.3.  The critical value is 007.24574.0,16,95.0 =H .  A four-point Lagrangian interpo-
lation (cubic interpolation) was implemented to obtain this critical value.  K-4.2.4 shows how 
the critical value 4574.0,16,95.0H  was derived.  
 
 K-4.2.3.4.  For a one-sided upper confidence interval for the mean, UCL, the equation 
is: 
 

 
2 2

1 0.4574 0.4574(2.007)UCL exp exp 4.959 0.0099.
2 21 16 1
y y as s H

 = y
n

−   
+ + = − + + =    − −  

 

 
 K-4.2.4.  Lagrangian Interpolation (Cubic Interpolation) for the H Statistic.  The details 
of the Lagrangian (cubic) interpolation are provided to assist in the use of Table B-8 of Ap-
pendix B. 
 
 K-4.2.4.1.  Suppose the H statistic ( )

ysnH ,,2/1 α−  is desired for  
 
 95.02/1 =−α  
 
 16=n  
 
 4574.0=ys   
 
(from Paragraph K-4.2.3). 
 
 K-4.2.4.2.  A Lagrangian interpolation requires bounding the desired value by two  
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tabulated values lower and two tabulated values higher than the desired value.  Using the  
example above, we need a column of H statistics when 16=n  because there is no such col-
umn in Table B-8.  The tabulated columns n = 12, 15 (two values below 16) and n = 21, 31 
(two values above 16) are used to generate a column for 16=n .  Once the column of H  
statistics is generated for 16=n , Lagrangian interpolation can be used to get the H statistic 
for 4574.0=ys . 
 
 K-4.2.4.3.  So the columns associated with sy = 0.30, 0.40 (two values below 0.4574) 
and sy = 0.50, 0.60 (two values above 0.4574) are used to generate a column for sy = 0.4574. 
 
 K-4.2.4.4.  From Table B-8, the following H statistics,

ysnH ,,95.0 , are needed for these  
interpolations: 
 
 n 

ys  12 15 16 21 31 
0.30 1.927 1.882 30.0,16,95.0H  1.833 1.793 
0.40 2.026 1.968 40.0,16,95.0H  1.905 1.856 
0.4574 — — 4574.0,16,95.0H  — — 
0.50 2.141 2.068 50.0,16,95.0H  1.989 1.928 
0.60 2.271 2.181 60.0,16,95.0H  2.085 2.010 

 
 K-4.2.4.5.  The first part of the interpolation process is to generate a column of H statis-
tics for 16=n .  For each sy, the following equation is used: 
 

 
.

)2131)(1531)(1231(
)2116)(1516)(1216(

)3121)(1521)(1221(
)3116)(1516)(1216(

)3115)(2115)(1215(
)3116)(2116)(1216(

)3112)(2112)(1512(
)3116)(2116)(1516(

,31,95.0,21,95.0

,15,95.0,12,95.0,16,95.0

yy

yyy

ss

sss

HH

HHH

−−−
−−−

+
−−−
−−−

+
−−−
−−−

+
−−−
−−−

=
 

 
So, 

 .8702.10118.02037.0960.12817.0

)793.1(
)2131)(1531)(1231(
)2116)(1516)(1216()833.1(

)3121)(1521)(1221(
)3116)(1516)(1216(

)882.1(
)3115)(2115)(1215(
)3116)(2116)(1216()927.1(

)3112)(2112)(1512(
)3116)(2116)(1516(

30.0,16,95.0

=−++−=
−−−
−−−

+
−−−
−−−

+
−−−
−−−

+
−−−
−−−

=H

 

 
The same process was used to determine 40.0,16,95.0H , 50.0,16,95.0H , and 60.0,16,95.0H . 
 

 n 
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ys  12 15 16 21 31 
0.30 1.927 1.882 1.870 1.833 1.793 
0.40 2.026 1.968 1.953 1.905 1.856 
0.4574 — — 4574.0,16,95.0H  — — 
0.50 2.141 2.068 2.049 1.989 1.928 
0.60 2.271 2.181 2.158 2.085 2.010 

 
 K-4.2.4.6.  Next, the H statistic values for the various ys  at 16=n  are used to interpo-
late 4574.0,16,95.0H . 

 

.007.2
1384.0320.19337.01087.0

)158.2(
)50.060.0)(40.060.0)(30.060.0(

)50.04574.0)(40.04574.0)(30.04574.0(

)049.2(
)60.050.0)(40.050.0)(30.050.0(

)60.04574.0)(40.04574.0)(30.04574.0(

)953.1(
)60.040.0)(50.040.0)(30.040.0(

)60.04574.0)(50.04574.0)(30.04574.0(

)870.1(
)60.030.0)(50.030.0)(40.030.0(

)60.04574.0)(50.04574.0)(40.04574.0(
4574.0,16,95.0

=
−++−=

−−−
−−−

+

−−−
−−−

+

−−−
−−−

+

−−−
−−−

=H

 

 
Thus, the H statistic is 2.007. 
 
 K-4.3.  Chebyshev (MVUE) Method.   
 
 K-4.3.1.  Introduction.  For the Chebyshev (MVUE) method, first estimate the mean 
and variance using the minimum unbiased variance approach discussed in Appendix D.  
Then calculate the )%1(100 α− UCL of the mean using: 
 

 ( )2
1 1 1

1ˆ ˆUCL 1 sα µ µ
α−

 = + − 
 

 . 

 
The quantities 1µ̂  and ( )1

2 µ̂s are the MVUE estimates of the mean and standard deviation 
given in equations D-2 and D-3 in Appendix D.  An example of using this method follows in 
Paragraph K-4.3.2. 
 
 K-4.3.2.  Example of a Confidence Interval for the Mean (Lognormal Distribution), 
Chebyshev MVUE Method.  Suppose chromium concentrations (mg/kg) measured at a site 
are as follows: 
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0.378  1.411  1.089  0.918 
0.073  0.518  2.240  0.111 
1.246  2.251  1.967  1.894 
1.414  13.844  1.222  0.962 
0.094  0.247  0.371  0.056 

 
 K-4.3.2.1.  ProUCL was used to determine the 95% UCL for the population mean.  The 
data follow a lognormal distribution (Shapiro-Wilk p = 0.905 on the log-transformed data).  
The sample size is 20, and the standard deviation of the log-transformed values is 1.39.   
Table J-2 recommends using the 95% Chebyshev MVUE UCL as the 95% UCL for the  
population mean under these conditions. 
 
 K-4.3.2.2.  The MVUE estimate of the mean, 1µ̂ , is 1.66, and the standard deviation of 
the estimate of the mean, ( )1

2 µ̂s , is 0.607.  Therefore, 
 

 ( ) ( )22
0.95 1 1

1 1ˆ ˆUCL 1 1.66 1 0.607 4.30
0.05

sµ µ
α

   = + − = + − =   
   

. 

 K-4.4.  Hall’s Bootstrap Method.   
 
Although Hall’s Bootstrap is a nonparametric method related to the Bootstrap technique pre-
sented in Paragraph K-5, a limited presentation will be given here because EPA guidance 
(OSWER 9285.6-10) specifically recommends this technique for calculating the UCL of a 
lognormal population under certain situations described in Table K-4.  The method adjusts 
for bias and skewness in the data (OSWER 9285.6-10).  Directions for implementing Hall’s 
Bootstrap are given in Paragraph K-4.4.1 and results of Hall’s method from ProUCL Version 
3.0 are presented in Paragraph K-4.4.2.  The directions for performing the bootstrap method 
are presented for illustration only, as bootstrap methods require too many arithmetic calcula-
tions for manual calculations to be practical. 
 
 K-4.4.1.  Directions for Implementing Hall’s Bootstrap Method for a:  )%1(100 α−  
UCL.  Let nxxx ,,, 21   represent n randomly sampled concentrations. 
 
 K-4.4.1.1.  Compute the sample mean,  
 

 ∑
=

=
n

i
ix

n
x

1

1 . 

 
 K-4.4.1.2.  Compute the sample standard deviation,  
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 ( )∑
=

−=
n

i
i xx

n
s

1

21 . 

 
 K-4.4.1.3.  Compute the sample skewness,  
 

 ( )∑
=

−=
n

i
i xx

ns
k

1

3
3

1 . 

 
 K-4.4.1.4.  Do the following a large number of times: 
 
 K-4.4.1.4.1.  Generate a simple random sample of n values from nxxx ,,, 21   with re-
placement. 
 
 K-4.4.1.4.2.  Compute the sample mean, ix , standard deviation, is , and skewness, ik , 
of the sample found in K-4.4.1.4.1. 
 
 K-4.4.1.4.3.  Compute the Studentized mean,  
 

 ( )
i

i
i s

xx
W

−
= . 

 
 K-4.4.1.4.4.  Compute Hall’s statistic,  
 

 
n

kWkWk
WQ iiiii

ii 6273

322

+++= . 

 
 K-4.4.1.4.5.  Sort all the values, iQ , in ascending sequence and calculate the αth lower 
quantile, αQ . 
 
 K-4.4.1.4.6.  Calculate  
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The one-sided %100)1( α−  upper confidence limit is WsxUCL −=−α1 . 
 
 K-4.4.2.  Example of a Confidence Interval for the Mean (Lognormal Distribution) 
Hall’s Bootstrap.  Suppose chromium concentrations (mg/kg) measured at a site are as fol-
lows: 
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 0.331 0.104 
 68.977 0.022 
 0.908 2.044 
 140.605 0.093 
 157.359 0.213 
ProUCL was used to determine the 95% UCL for the population mean.  The data follow a 
lognormal distribution (Shapiro-Wilk p = 0.842 on the log-transformed data).  The sample 
size is 10, and the standard deviation of the log-transformed values is 3.27.  Table K-4 rec-
ommends using Hall’s Bootstrap to estimate the 95% UCL for the population mean under 
these conditions.  The Bootstrap algorithm was run with the result UCL0.95 = 71.4 mg/kg.  
Because this result is based on random sampling, it may change with repeated runs.  As a 
comparison, the Land method 95% UCL for this data is over 3,240,000 mg/kg (an unrealisti-
cally large value). 
 
 K-4.4.3.  Confidence Interval for a Percentile–Tolerance Interval (Lognormal Distribu-
tion).  A lognormal confidence interval for the p100th percentile of a lognormal distribution, 
Xp, with %100)1( α− confidence, can be derived by using the log-transformed data with the 
equations for the normal confidence interval.  When )(XLnY =  is normal (i.e., X is lognor-
mal), given a set of sample values y1, y2…yn with sample mean y  and standard deviation s , 
the exponent of y  is an estimate of the 50th percentile (median) of X (X0.5):  
 
 )exp(5.0 yx =  . 
 
 K-4.4.3.1.  The two-sided )%1(100 α− confidence interval for the median of X is: 
 

 













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


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


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
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st
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 K-4.4.3.2.  In general, if X is lognormal and ),(XLnY =  then an estimate xp of the 
p100th percentile of X (Xp) is obtained by first calculating an estimate of Yp (the p100th  
percentile of Y), 
 
 styy npp 1, −+=  
 
and then performing the inverse transformation (exponentiation) on this quantity.  The (max-
imum likelihood) estimate of the percentile Xp in terms of the original variable (X) is: 
 
 ( )styyx nppp 1,exp)exp( −+== . 
 
 K-4.4.3.3.  A one-sided upper confidence limit for the percentile Xp is calculated as 
follows: 
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 )exp( ,,1 sgy npα−′+  for p > 0.5 . 

 K-4.4.3.4.  The term in parentheses is simply a confidence limit for a normal percentile 
or tolerance limit as described in Paragraph K-3.4. 
 
 K-4.4.3.5.  A two-sided tolerance interval is calculated as follows: 
 
 ( )sgysgy npnp ,,1,,1 exp(),exp( αα −− +−  . 
 
 K-4.4.4.  Prediction Interval (Lognormal Distribution).  A lognormal prediction interval 
can be calculated using the log-transformed data with the process for developing normal pre-
diction intervals.  When X is lognormal and Y = Ln(X) with sample mean y  and standard  
deviation s, then the prediction interval for the next k observations in the original scale is: 
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K-5.  Distribution-Free Statistical Intervals. 
 
 K-5.1.  Introduction.  The one-sided Chebyshev inequality for a mean can be used  
when no distribution can be assumed to fit the data.  Regardless of the underlying probability 
distribution of some variable X, the following inequality will be satisfied for the  
(1 – α)100% UCL of the population mean µ: 
 

 1(1 )100% UCL 1x
n

σα
α

 − ≤ + −  
 

 . 

 
 K-5.1.1.  The right-hand side of the inequality serves as a conservative estimate of the 
UCL.  However, as the population standard deviation σ is typically unknown, the UCL is 
usually estimated as follows: 
 

 1(1 )100% UCL 1 sx
n

α
α

 − ≈ + −  
 

 . 

 
 K-5.1.2.  Unfortunately, because the sample standard deviation population (s) is being 
used to estimate the population standard deviation (σ), the population mean may not actually 
be less than this limit at the prescribed level of confidence when the variance or skewness is 
large, especially for small sample sizes.  See OSWER 9285.6-10 for more details. 
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 K-5.1.3.  This one-sided Chebyshev UCL, based on the mean and standard deviation, is 
recommended for use with the lognormal distribution under certain conditions described in 
Table K-4.  In that situation use the untransformed data to calculate x  and s. 
  
 K-5.2.  Confidence Interval for the Mean.  If data do not follow either a normal or 
lognormal distribution, EPA guidance (OSWER 9285.6-10) recommends using either the 
central limit theorem or Bootstrap resampling.  Several methods are available for estimating 
confidence limits of the mean when no distributional assumptions are made.  The Bootstrap 
and Jackknife procedures are nonparametric statistical techniques that can be used to con-
struct approximate confidence intervals for parameters such as the population mean.  These 
procedures are nonparametric or distribution-free because they do not require assumptions 
about the data’s distribution (such as normal or lognormal).  It should be noted that statistical 
methods that account for the data’s distribution, when used appropriately, are more efficient 
than the nonparametric methods.  Directions for the Bootstrap and Jackknife methods for es-
timating a nonparametric confidence interval for θ , the parameter of interest, are given in 
Paragraphs K-5.2.1 and K-5.2.2, respectively.  Examples are presented in Paragraphs K-5.2.3 
and K-5.2.4.  It should be noted that the both the Bootstrap and Jackknife methods are usual-
ly performed using statistical software owing to the large number of manual calculations that 
would be required.  The Paragraphs below illustrate how the calculations are done. 
 

 K-5.2.1.  Directions for a Bootstrap Estimate of the Confidence Interval for θ .   
Let nxxx ,,, 21  be a random sample of size n.  
 
 K-5.2.1.1.  The parameter of interest is θ  and a reasonable estimate of θ  is θ̂ .  For ex-
ample, θ  is the mean and θ̂  is the minimum variance unbiased estimator (MVUE) of the 
mean (Appendix D). 
 
 K-5.2.1.2.  Take n samples with replacement from the original set of random samples of 
size n, and define this new set of data as nxxx 11211 ,,,  .  Note that the same result can be se-
lected more than once.  For this new data set, estimate θ̂  and denote it as 1̂θ . 
 
 K-5.2.1.3.  Perform the previous step N times, each time calculating an estimate of θ̂ .  
Denote all N estimates of θ̂  as Nθθθ ˆ,,ˆ,ˆ

21  .  N should be considerably larger, such as 1000 
or more.  It is much easier to perform this simulation using a computer. 
 
 K-5.2.1.4.  Estimate the Bootstrap estimate of θ , Bθ , from the N estimates of Iθ̂ , such 
that  
 

 ∑
=

=
N

I
IB N 1

ˆ1 θθ   

for Ni ,,2,1 = . 
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 K-5.2.1.5.  Derive the confidence interval for θ , with )%1(100 α− level of  
confidence, as ( )UL θθ ,  where th

L 100)2/(αθ = percentile from the set of N estimates and 
th

U 100)2/1( αθ −=  percentile from the set of N estimates (see Appendix G).  A one-sided 
UCL is simply the th100)1( α−  percentile from the set of N estimates. 
 
 K-5.2.2.  Example of the Bootstrap Method for Estimating a Nonparametric Confidence 
Interval for θ.  A confidence interval for the population mean (µ) will be calculated for 
chromium concentrations in subsurface soil at Site A with 95% level of confidence.  All 
chromium concentrations were detected so no proxy concentrations are needed to evaluate 
the data.  
 
 K-5.2.2.1.  The data are as follows: 2.95, 5.17, 4.80, 4.53, 4.01, 5.91, 3.96, 4.81, 5.27, 
5.99, 4.60, 5.51, 4.72, 3.56, 4.22, 3.91, 5.81, 4.48, 5.10, 4.94, 4.76, 4.62, 4.72, 4.73, 3.21, 
4.14, 4.85, 4.25, 5.09, 3.68, 5.12, 6.60, 6.19, 3.15, 4.11, and 2.80 mg/kg.  
 
 K-5.2.2.2. An example of 10 samples with replacement taken from the original set of 
random samples of size n = 36 is as follows: 2.95, 5.17, 5.91, 3.96, 4.80, 4.81, 4.53, 5.27, 
4.01, and 5.99 mg/kg.  (Note that although replacement was adhered to, no sample’s values 
were actually “picked” twice.) 
 
 K-5.2.2.3.  For this new data set, estimated mean is 74.41̂ =θ .  
 
 K-5.2.2.4.  Perform the previous step N times, and each time calculating an estimate of 
θ̂ .  Using a statistical software package, 
 

 626.4ˆ1
1

== ∑
=

N

I
IB N

θθ  

 
for Ni ,,2,1 = . 
 
 K-5.2.2.5.  The confidence interval for θ , with 95% level of confidence reached upon 
12 repetitions, is 4.323 to 4.93. 
 
 K-5.2.3.  Directions for a Jackknife Estimate of the Confidence Interval for θ .   
Estimateθ̂  with all n samples from the data set. 
 
 K-5.2.3.1.  Estimate )(̂iθ by removing the ith sample (for ni ,,2,1 = ) from the original 
data set and use the same equation as was used to estimateθ̂ . 
 
 K-5.2.3.2.  Estimate the arithmetic mean,θ~ , from the n estimates of )(̂iθ , such that  
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 ∑
=

=
n

i
in 1
)(̂

1~ θθ   

 
for ni ,,2,1 = .  Note that the ith “pseudo-value” is defined as )(̂)1(ˆ

ii nnJ θθ −−= . 
 
 K-5.2.3.3.  Calculate the Jackknife estimator of θ  (the average of the iJ  values), 
 

( ) θθθ ~)1(ˆ1ˆ
1

−−== ∑
=

nnJ
n

J
n

i
i . 

 
 K-5.2.3.4.  Estimate the standard error of the Jackknife estimate, ( )θ̂J , by  
 

( ) ( )( )∑
=

−
−

=
n

i
iJ JJ

nn 1

2
ˆ

ˆ
)1(

1ˆ θσ
θ

. 

 
 K-5.2.3.5.  Derive the confidence interval as 
 
 ( ) ( ) ( ) ( )( )

θαθα σθσθ ˆ1),2/(1ˆ1),2/(1 ˆˆ,ˆˆ
JnJn tJtJ −−−− +−  

 
with )%1(100 α−  level of confidence; 1, −npt is the critical value from the Student’s t-
distribution for the p100th percentile and n – 1 degrees of freedom.  If only a one-sided  
confidence interval is needed, then 1,11, −−− = nnp tt α . 
 
 K-5.2.4.  Example of the Jackknife Method for Estimating a Nonparametric Confidence 
Interval for θ.  Using the same data set as for the Bootstrap example (Paragraph K-5.2.1), we 
will calculate a confidence interval for the mean (µ) using the Jackknife estimate with a 95% 
level of confidence.  
 
 K-5.2.4.1.  Estimate 62.4ˆ =θ  with all 36 samples from the data set. 
 
 K-5.2.4.2.  Estimate )(̂iθ  for i = 1, 2 … n = 36.  The results are listed in Table K-5.  
 
 K-5.2.4.3.  Estimate the arithmetic mean, 
 

 75.4ˆ1~
1

)( == ∑
=

n

i
in

θθ . 

 K-5.2.4.4.  Calculate the Jackknife estimator of θ  (the average of the iJ  values),  
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 ( ) 62.4~)1(ˆ1ˆ
1

=−−== ∑
=

θθθ nnJ
n

J
n

i
i . 

 
 K-5.2.4.5.  Estimate the standard error of the Jackknife estimate, ( )θ̂J , by  
 

 ( ) ( )( ) 15.0ˆ
)1(

1ˆ
1

2
ˆ =−

−
= ∑

=

n

i
iJ JJ

nn
θσ

θ
.  

 
 K-5.2.4.6.  Derive the confidence interval,  
 
 ( ) ( )θα σθ ˆ1),2/(1 ˆˆ

JntJ −−±  
 
 ( ) ( ) 37.415.069.162.4ˆˆ

ˆ1),2/(1 =×−=− −− θα σθ JntJ   
 
 ( ) ( ) 87.415.069.162.4ˆˆ

ˆ1),2/(1 =×+=+ −− θα σθ JntJ .  
 
 K-5.2.4.7.  The critical value from the Student’s t-distribution was found using Table 
B-23 in Appendix B and linear interpolation. 
 
 K-5.3.  Tolerance and Prediction Intervals.  An approximate two-sided nonparametric 
prediction interval to contain the next single observation from the population with 
( ) %1001 α−  confidence can be estimated from the sample as ( ) ( )( )ul xx ,  where 
 

 ( )1
2

+= nl α  

 

 ( )1
2

1 +





 −= nu α  

 
and x(i) is the ith order statistic from the sample data (Helsel and Hirsch, 2003).  If l or u is not 
an integer, linearly interpolate between the values of the two surrounding order statistics.  
One-sided prediction limits can be calculated by replacing α/2 with α when calculating the 
order statistic to use.  An example calculation follows in Paragraph K-5.3.1. 
 
 K-5.3.1.  Example of a One-Sided Nonparametric Prediction Limit for the Next Single 
Observation.  A 95% upper prediction limit for arsenic concentration at a single point in the 
future is desired.  Arsenic concentrations at three background wells were measured once each 
month for 12 months to yield 36 observations.  Of the 36 observations, 19 were non-detects, 
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so a nonparametric prediction limit will be calculated.  The 95% upper prediction limit is 
calculated as: 
 

( ) [ ][ ]( ) [ ][ ]( ) ( )15.3513605.0111 xxxx nu === +−+−α  . 
 
Because 35.15 is not an integer, interpolate between the 35th and 36th order statistics.  Sup-
pose ( )35x =12 ppb and ( )36x =13 ppb.  Then the 95% upper prediction limit is estimated to be: 
 
 ( ) ( ) ( )( ) ( ) 15.12121315.01215.0 353635 =−+=−+ xxx ppb. 
 
If the result of the next observation were 8 ppb, we could conclude that arsenic concentration 
has not increased with 95% confidence. 
 
 K-5.3.2.  Discussion.  Exact confidence for using various order statistics from a sample 
to create nonparametric prediction intervals and limits can be calculated using the methods 
described in Hall et al. (1975).  Their calculations expand to cover prediction intervals to 
contain k of m future observations instead of just a single future observation. 
 
 K-5.3.2.1.  For small datasets, the method presented in Paragraph K-5.3.1 will require 
an order statistic that is smaller than the smallest observation in the dataset (for a minimum) 
or larger than the largest (for a maximum).  In this situation, a nonparametric UTL or UPL is 
typically constructed using the minimum or maximum value of the set of observations.  With 
high probability, the tolerance interval is designed to miss only a small percentage of the ob-
servations that arise from the same population as the data used to develop the tolerance limit.  
The coverage probability for the tolerance interval can be reported as either a minimum or an 
average value because, typically, we can only specify that the coverage probability of the in-
terval exceed some level of confidence.  We will use the average value.  Given n measure-
ments, using the maximum measurement as the UTL yields an average confidence of  
 

 %100
1+n

n .  

 K-5.3.2.3.  A prediction limit involves the confidence probability associated with pre-
dicting that the next single observation will fall below the upper prediction limit, and is the 
same as the expected (mean) coverage of a similarly constructed UTL.  Note that this is a 
special case for nonparametric prediction limits for the next single observation, not a general 
result.  Furthermore, it can be shown that the probability of having k future samples all fall 
below the upper nonparametric prediction limit is )/()1( knn +=−α  (i.e., the maximum  
value is the [ ] %100)/( knn +  upper prediction limit for k future measurements).  Table B-11 
in Appendix B lists these confidence levels for various choices of n and k.  The false positive 
rate associated with a single prediction limit can be computed as one minus the confidence 
level.  An example calculation follows in Paragraph K-5.3.3. 
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Table K-5. 
Estimate of )(̂iθ  for i = 1, 2 … n = 36 

i Mean θ̂  iJ  ˆ( )iJ J θ−  2ˆ( ( ))iJ J θ−  
1 4.67 2.8 –1.82 3.31 
2 4.67 2.95 –1.67 2.78 
3 4.66 3.15 –1.47 2.16 
4 4.66 3.21 –1.41 1.98 
5 4.65 3.56 –1.06 1.12 
6 4.65 3.68 –0.94 0.88 
7 4.64 3.91 –0.71 0.50 
8 4.64 3.96 –0.66 0.43 
9 4.64 4.01 –0.61 0.37 

10 4.63 4.11 –0.51 0.26 
11 4.63 4.14 –0.48 0.23 
12 4.63 4.22 –0.40 0.16 
13 4.63 4.25 –0.37 0.14 
14 4.62 4.48 –0.14 0.02 
15 4.62 4.53 –0.09 0.01 
16 4.62 4.6 –0.02 0.00 
17 4.62 4.62 0.00 0.00 
18 4.62 4.72 0.10 0.01 
19 4.62 4.72 0.10 0.01 
20 4.62 4.73 0.11 0.01 
21 4.61 4.76 0.14 0.02 
22 4.61 4.8 0.18 0.03 
23 4.61 4.81 0.19 0.04 
24 4.61 4.85 0.23 0.05 
25 4.61 4.94 0.32 0.10 
26 4.61 5.09 0.47 0.22 
27 4.60 5.1 0.48 0.23 
28 4.60 5.12 0.50 0.25 
29 4.60 5.17 0.55 0.30 
30 4.60 5.27 0.65 0.42 
31 4.59 5.51 0.89 0.79 
32 4.58 5.81 1.19 1.42 
33 4.58 5.91 1.29 1.67 
34 4.58 5.99 1.37 1.88 
35 4.57 6.19 1.57 2.47 
36 4.56 6.6 1.98 3.93 

 
 K-5.3.2.4.  Balancing the ease with which nonparametric upper prediction limits are 
constructed is the fact that, given fixed numbers of original samples and future sample values 
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to be predicted, the maximum confidence level associated with the prediction limit is also 
fixed.  To increase the level of confidence, the only choices are to: i) decrease the number of 
future values to be predicted at any testing period, or ii) increase the number of original sam-
ples used in the test.  Table B-11 of Appendix B can be used along these lines to plan an ap-
propriate sampling strategy so that the false positive rate can be minimized and the 
confidence probability maximized to a desired level. 
 
 K-5.3.3.  Example of a Nonparametric Prediction Limit for the Next k Observations.   
A prediction limit for arsenic concentration at k = 2 points in the future is desired.  Arsenic 
concentration at three background wells was measured once each month for 6 months to 
yield 18 observations.  As 9 of the 18 observations were non-detects, a nonparametric predic-
tion limit will be calculated.  The maximum detected result was 12 ppb, so this will be used 
as the upper prediction limit.  Because n = 18 and k = 2, the probability of both future obser-
vations falling below the upper prediction limit of 12 is  
 

 %90%
218

18100%100 =
+

=
+ kn
n .  

 
Thus 12 ppb is a 90% upper prediction limit for two future observations.  The results of the 
two future observations were 8 and 14 ppb.  As one of the new observations exceeds 12 ppb, 
we can conclude that arsenic concentration has increased with 90% confidence. 

 
 K-5.4.  Nonparametric Confidence Intervals for Percentiles.  A nonparametric confi-
dence interval is based on an actual sample result and does not rely on any distributional as-
sumptions.  The nonparametric confidence interval is generally wider and requires more data 
than the corresponding normal distribution interval, and so the parametric distribution inter-
vals should be used whenever it is appropriate.  When n ≤ 20, the nonparametric confidence 
interval is calculated using the binomial distribution.  

 K-5.4.1.  Given a set of measurements, x1, x2,...xn, to calculate a nonparametric confi-
dence interval for the quantile Xp, it is necessary to first order the values of xi so that  
x(1) < x(2) <...< x(n).  Therefore, the smallest value of the data set is x(1) and the largest is x(n).  
(Note the distinction between x1 and x(1); the former is the first measured value of the data set 
and the latter is the smallest value of the data set.)  A two-sided nonparametric confidence 
interval for a quantile Xp will be of the form: 
 
 )()( bpa xXx ≤≤  
 
where the probability that pX  lies in the above interval is α−1 : 
 

 α−=≤≤ 1)( )()( bpa xXxP  . 
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 K-5.4.2.  The ath largest value x(a) and bth largest value x(b) of the data set (i.e., the nu-
merical values of a and b that satisfy the above equation) are determined using the binomial 
distribution (as will be discussed below).  Unfortunately, because the values are selected 
from a finite set of n ordered values { x(i) }, confidence limits are essentially being construct-
ed for a discrete rather than a continuous variable.  In general it will not be possible to select 
a and b so that the above probability is exactly equal to α−1 .  Therefore, for the two-sided 

α−1  confidence interval, a and b are selected so that: 
 
 α−≥≤≤ 1)( )()( bpa xXxP . 
 
 K-5.4.3.  Similarly, for an upper one-sided confidence interval for a percentile Xp it is 
desirable to select b so that: 
 
 .1)( )( α−≥≤ bp xXP   
 
Find the lower bound )(ax  by selecting the value of a so that:  
 

2/),,1( α≤− pnaBin  and 2/),,( α>pnaBin   
 
where ),,( pnkBin denotes the probability for the cumulative binomial distribution—the 
probability that an event with probability p of occurrence will happen less than or equal to k 
times out of n trials: 
 

 
0

!( , , ) ( ) (1 )
!( )!

k
i n i

i

nBin k n p P K k p p
i n i

−

=

 
= ≤ = − − 

∑  . 

 
 K-5.4.4.  More information on the binomial distribution can be found in Appendix F.  
The values of n and p are known.  Table B-1 of Appendix B lists values of the cumulative 
binomial distribution and lists various values of k for fixed values of p and n.  Because p (the 
quantile) and n (the number of samples) are known, we can use Table B-1 to find the appro-
priate value of k.  For example, one could start with 0=k , then 1=k , and so forth until 

1−= ak  is the smallest value that satisfies the inequalities 2/),,1( α≤− pnaBin and 
2/),,( α>pnaBin .  The upper bound )(bx  is obtained by determining the smallest value of b 

that satisfies the relationship 
 
 α−≥−−− 1),,1(),,1( pnaBinpnbBin . 
 
 K-5.4.5.  For example, let us calculate the two-sided nonparametric confidence limit for 
the 75th percentile (p = 0.75) for the 90% level of confidence ( 1.0=α ) for 16=n  so that: 
 
 .9.0)( )(75.0)( ≥≤≤ ba xXxP  
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From Table B-1,  
 
 05.02/0271.0)75.0,16,8( =<= αBin  
 
and  
 
 05.02/0796.0)75.0,16,9( =>= αBin .  
 
Therefore, 9=a .  Because 
 
 9.019094.00271.09365.0)75.0,16,8()75.0,16,14( =−>=−=− αBinBin  
 
the value for 151141 =+=+= kb .  Therefore, the 90% confidence interval for the 75th per-
centile is )15(75.0)9( xXx ≤≤ .  
 
 K-5.4.6.  Similarly, find the one-sided )%1(100 α− upper confidence limit of pX , so 
that the smallest value of b satisfies the equation 
 
 α−≥−=≤ 1),,1()( )( pnbinBxXP bp . 
 
 K-5.4.7.  Once b  is found from Table B-1, the thb  largest value, x(b), establishes the  
upper %100)1( α− confidence limit of Xp.  For example, if ,5.0,20 == pn  and ,05.0=α  
 
 94.0)5.0,20,13( =Bin  and .98.0)5.0,20,14( =Bin  

 K-5.4.8.  Because .151141,95.0)5.0,20,14( =+=+=> kbBin  The 15th largest value of 
the data set, )15(x , is at least the 95% upper confidence limit of the 50th percentile: 

.95.0)( )15(5.0 ≥≤ xXP  
 
 K-5.4.9.  If 20>n , the two-sided )%1(100 α− confidence interval )()( bpa xXx ≤≤ can 
be calculated using a normality approximation so that .1)( )()( α−≈≤≤ bpa xXxP  
 
 K-5.4.10.  Calculate the following 
 
 )1(2/1 pnpZnpa −−= −α   
 
and 
 
 )1(2/1 pnpZnpb −+= −α  
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where the percentile pZ  is the thp  quantile for the standard normal distribution obtained from 
Table B-15 of Appendix B. Round a an b to the nearest whole numbers and find the corre-
sponding order values )(ax and .)(bx  
 
 K-5.4.11.  For the one-sided upper )%1(100 α−  confidence interval )(bp xX ≤ , where 

( ) α−≈≤ 1)(bp xXP , calculate 
 
 )1(1 pnpZnpb −+= −α . 
 
Round to the nearest whole number and find .)(bx  
 
 K-5.4.12.  Maximum detected values can be used to make inferences about percentiles.  
In particular, assume that a set of detected values are ranked from lowest to highest so that 
x(n) denotes the maximum value.  Also assume that the maximum detected value is less than 
some threshold concentration (i.e., a risk-based limit) C: x(n) < C.  It can be shown that, under 
these circumstances, if Xp is the p100th percentile of X, then  

 n
p pCXP −≥≤ 1)(  and n

p pCXP ≤> )(  . 
 

pX  is less than the threshold C with at least α−=− 11 np  confidence. 
 
 K-5.4.13.  To find the value of n needed to achieve the desired level of confi-
dence %100)1( α− , n must be such that 
 α≤np . 
 
Therefore, the p100th percentile, Xp, will be less the decision limit C with at least %100)1( α−  
confidence if the maximum detected value is less than C (i.e., Cx n <)( ) and  
 
 )(/)( pLnLnn α≥ . 
 
 K-5.4.14.  If, for example, 90.0=p  and 05.0=α , then 4.28≥n .  If 29 samples are col-
lected and the maximum value is less than C, then one can be at least 95% confident that the 
90th percentile is less than C. 
 
 K-5.4.15.  The maximum is a non-parametric one-sided upper tolerance limit.  Given a 
set of n observed measurements, there is (1 – α)100% = (1 – pn)100% confidence that at least 
p100% of future measurements will be less than the maximum.  A two-sided tolerance inter-
val to contain at least a proportion p of future measurements may be constructed using the 
minimum and maximum of a set of n observed measurements.  There is  
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 ( ) ( ) %100)1(1%1001 1−−−−=− nn ppnpα  
 
confidence that at least p100% of future measurements will fall between the minimum and 
maximum of set of n observed data points.  For example, if n =50 and p = 0.95, then there is 
72% confidence that at least 95% of future measurements will fall between the minimum and 
maximum. 
 
K-6.  Statistical Confidence Interval for Proportions.  Data from a binomial distribution are 
composed of only two responses—“pass” or “fail.”  The population proportion, P, is based 
on either the passing proportion or the failing proportion.  The following discussion will (ar-
bitrarily) define the proportion, p, as the proportion of failures.  An estimate of this propor-
tion can be derived by p = k/n where k is the number of failures out of n samples.  For 
example, in environmental applications p could represent the proportion of results from sam-
ples below some decision limit, C.  From this information we would like to estimate an inter-
val, (PL, PU), which contains the true proportion, P, of the distribution that is less (or greater) 
than C.  The binomial distribution is a discrete distribution and so statistical intervals are ap-
proximate and tend to be conservative (Hahn and Meeker, 1991).  The most frequent statisti-
cal interval calculated for a proportion is the confidence interval, so only it is presented here. 

 K-6.1.  Discussion.  The equation for a conservative two-sided 100(1 – α) % confi-
dence interval for a proportion is the following: 
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where Fγ,m,n is the γ100th percentile of the F distribution (Table B-7 of Appendix B) with  
m and n degrees of freedom.  The lower limit, PL, is defined to be 0 if k = 0, and the upper 
limit, PU, is defined to be 1 if k = n (Hahn and Meeker, 1991). 
 
 K-6.1.1.  Likewise, a one-sided %100)1( α− LCL for a proportion would be: 
 

 


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while a one-sided %100)1( α− UCL for a proportion would be: 
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 K-6.1.2.  If a large number of samples are available, these confidence intervals can be 
approximated.  However, two restrictions apply to the data set: first, np ≥ 5 and second,  
n(1 – p) ≥ 5.  This approximated confidence interval is based on the normal distribution be-
cause when these two restrictions apply, data are approximately normally distributed.  The 
equation for the approximated confidence interval is: 
 

 [ ]
n

ppZppp UL
)1(, 2/1

−
±= −α  

 
where 2/1 α−Z  is the th100)2/1( α−  percentile from a standard normal, n is the sample size, 
and p  is the sample proportion (Devore, 1987).  The one-sided upper confidence limit 
would be found by replacing 2/1 α−  with α−1  as follows: 
 

n
ppZppU

)1(
1

−
+= −α  . 

 
 K-6.2.  Example of a Confidence Limit for a Proportion.  Groundwater concentrations 
of gasoline at a site are compared to a regulatory threshold of 35 micrograms per liter (μg/L).  
Suppose out of 90 results, 11 of the samples have concentrations that exceed this regulatory 
threshold, so the proportion of samples with detected concentrations exceeding the threshold 
is 1222.090/11 ==p .  
 
 00.111222.090 =×=np  
 
 00.79)1222.01(90)1( =−×=− pn . 
 
As both np and n(1 – p) are greater than or equal to 5, the large sample normal approxima-
tion can be used 
 

 ( ) 078.0
90

1222.011222.0282.11222.0)1(
1 =

−
−=

−
−= − n

ppZppL α  

 
where Table B-15 of Appendix B is used to find the critical value 90.0Z =1.282.  Because Lp  
exceeds 0.05, we can accept that more than 5% of the concentrations of gasoline in ground-
water at the site exceed the regulatory threshold as we conclude also in Appendix L,  
Paragraph L-8.2. 
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K-7.  Statistical Intervals for the Poisson Distribution (Number of Occurrences).  Data from  
a Poisson distribution are composed of only two mutually exclusive responses—“pass” or 
“fail” s—when the probability of one of the responses is small.  Poisson distributions are 
common when counting the number of pass or fail occurrences over a time interval or the 
number of detections when a set of measured concentrations consists mostly of non-detects.  
The population rate of occurrence, µ, also called the mean rate of occurrence, is either based 
on the passing rate or the failing rate.  For this document, the rate of occurrence of the rare 
event is called the rate of “failure.”  The Poisson distribution is a discrete distribution and so 
statistical intervals are approximate and tend to be conservative (Hahn and Meeker, 1991).  
An estimate of this rate of occurrence can be derived by:  
 
 nk /ˆ =µ  
 
where k is the number of failures out of n samples. 
 
 K-7.1.  Confidence Interval for the Mean Occurrence Rate.  A two-sided %100)1( α−  
confidence interval for the mean occurrence rate is the following: 
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where 2

,νγχ is the γ 100th percentile of the chi-square distribution (Table B-2 of Appendix B) 
with v degrees of freedom.  
 
 K-7.1.1.  A one-sided lower or upper %100)1( α−  confidence limit can be obtained by 
replacing 2

2,2 kαχ  with 2
2, kαχ  for a lower confidence limit or replacing 2

22,21 +− kαχ  with 2
22,1 +− kαχ  

for an upper confidence limit (Hahn and Meeker, 1991). 
 
 K-7.1.2.  If a large number of samples is available (generally, if 20>n ), this confi-
dence interval can be approximated.  This approximated confidence interval is based on the 
normal distribution because, as the sample size increases, the data’s distribution tends to-
wards normality.  The equations for the approximated confidence interval are: 
 

 [ ]
n

ZUL
µµµµ α
ˆˆˆ,ˆ 2/1−±=   

 
where 2/1 α−Z  is the th100)2/1( α−  percentile from a standard normal, n is the sample size, and 
µ̂  is the mean sample rate of failure ( nk /ˆ =µ  when k is the number of failures in n samples) 
(Hahn and Meeker, 1991). 
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 K-7.2.  Upper Tolerance Limit.  A Poisson tolerance interval, with p100% coverage and 
%100)1( α−  confidence, is calculated based on the directions given in Paragraph K-6.2.1, 

followed by an example in Paragraph K-6.2.2. 
 
 K-7.2.1.  Directions for Calculating a Poisson Tolerance Interval with p100% Coverage 
and %100)1( α−   Confidence.  Compute the sum of the Poisson counts of n samples: 
 

 ∑
=

=′
n

i
ixT

1

 . 

 
This is the sum of the detected values and one-half the sum of all the non-detected values. 
 
 K-7.2.1.1.  Find the probable rate 
 

 2
22,12

1
+′−= Tn αχµ   

 
where 2

22,1 +′− Tαχ  is the th100)1( α−  percentile of the chi-squared distribution with 22 +′= Tν  
degrees of freedom.  Table B-2 of Appendix B contains a table of critical values for the chi-
square distribution.  
 
 K-7.2.1.2.  Compute the p100th percentile of the Poisson distribution with mean rate µ, 
by finding the least positive integer k such that 
 
 µχ 22

22,1 ≥+− kp .  
 
As above, the quantity 2k + 2 represents the degrees of freedom of the chi-squared distribu-
tion.  The quantity k itself is the upper tolerance limit (UTL) for the Poisson distribution.  In 
other words, for the smallest value of k for which  
 

 2
22,1

2
22,1

1
+′−+− ≥ Tkp n αχχ  

 
p100% of the measurements will be less than k with %100)1( α− confidence.  If any sample 
exceeds the UTL, k, then there is significant evidence that this sample is different from the 
samples used to develop the UTL. 
 
 K-7.2.2.  Example of Calculating a Poisson Tolerance Interval with p100% Coverage 
and %100)1( α−  Confidence.  A tolerance interval with 95% confidence (α = 0.05) and 95% 
coverage (p = 0.95) is desired for 1,1-dicholorethene in groundwater at Site B.  The back-
ground well values in Table K-6 were obtained.  These data have more than 90% non-detects 
and the number of samples n = 90. 
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 K-7.2.2.1.  Calculate the sum of the Poisson counts: Sum the detections and to this val-
ue add one half the sum of the non-detects (one half the detection limit is being used for each 
non-detect). 
 
 25.11)81.463.2138.0111.0()1236.7(5.0 =++++×=′T  
 
 22 +′= Tν = 2 (11.25) + 2 = 24.5 ≈ 25 
 

 209.0
902

1
2
1 2

25,95.0
2

22,1 =
×

== +′− χχµ α Tn
 

 
where 65.372

25,95.0
2

22,1 ==+− χχ α T  using Table B-2 of Appendix B. 
 
 K-7.2.2.2.  So, we need to find the smallest value of k such that µχ 22

22,1 ≥+− kp ; that is, 
the value of k such that 418.02

22,05.0 ≥+kχ .  Table B-2 of Appendix B shows that the smallest 
value number of degrees of freedom, v = 2k + 2, that satisfies the above equation is v = 4.  
Since 4 = 2k + 2, k = 1.0.   

 
k df 2

0.005χ  
0.5 3 0.3518 
1 4 0.7107 
1.5 5 1.145 

 
 K-7.2.2.3.  If any site groundwater sample exceeds the UTL of 1.0 μg/L derived from 
the background wells, then there is significant evidence that contamination at the site is ele-
vated with respect to background.  
 
 K-7.2.3.  Upper Prediction Limit.  To estimate a prediction limit using the Poisson 
model, the upper limit is estimated for an interval that will contain all of k future measure-
ments of an analyte with )%1(100 α− confidence, given n previous measurements.  The di-
rections to calculate such a prediction limit are provided in Paragraph K-6.2.3.1 and followed 
by an example in Paragraph K-6.2.3.2. 
 
 K-7.2.3.1.  Directions for Estimating a Prediction Limit Using the Poisson Model.   
Calculate T ′ , the sum of the Poisson counts of n samples (e.g., for the background data set), 
as defined in Paragraph K-6.2.1.  
 
 K-7.2.3.1.1.  Calculate *

kT , the greatest total Poisson count for the next k samples (e.g., 
for the study area data set) at some level of confidence, 1 – α using the following equation:   
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where 1,/1 −−= nktt α  is the upper %100)/1( kα− percentile of the Student’s t-distribution with  
n – 1 degrees of freedom, in Table B-23 of Appendix B.  
 
 K-7.2.3.1.2.  If the sum of Poisson counts for the next k samples is greater than the up-
per prediction limit *

kT , then there is significant evidence of a difference in the new samples, 
compared to previous samples. 
 
 K-7.2.3.2.  Example of Estimating a Prediction Limit Using the Poisson Model.  Sup-
pose a prediction limit for the next two observations with 99% confidence is desired for  
1,1-dicholorethene from Site B with the following background wells.  NOTE: These data 
have more than 90% non-detects.  (See data table in Paragraph K-6.2.2.) 
 
 K-7.2.3.2.1.  Calculate the sum of the Poisson counts:  
 
 25.11)81.463.2138.0111.0()1236.7(5.0 =++++×=′T  

 
( )

( )

2 2
*

2 2

1
2 4

11.25 (2.639) 2.639 (2.639)11.25 1 90 1.10
90 2(90) 90 4

k
T t t tT T n
n n n
′
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= + + + + =

 

 
where n = 90 and 639.289,995.0)190(,2)01.01(1,/1 === −−−− ttt nkα  using Table B-23 of Appendix B 
and linear interpolation. 
 
 K-7.2.3.2.2.  To test the upper prediction limit, if the sum of the Poisson counts for the 
next k samples (k = 2) is greater than *

kT  (1.10), then there is significant evidence the con-
tamination in the site wells is elevated relative to the background wells. 
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Table K-6. 
Background Wells 
Well Location Result (µg/L) DL (µg/L) Well Location Result (µg/L) DL (µg/L) 
Site B-MW01  0.0819 SiteB-MW02  0.144 
SiteB-MW01  0.102 SiteB-MW02  0.0715 
SiteB-MW01  0.102 SiteB-MW02  0.0715 
SiteB-MW01  0.0715 SiteB-MW02  0.145 
SiteB-MW01  0.0436 SiteB-MW03  0.144 
SiteB-MW01  0.0436 SiteB-MW03  0.0715 
SiteB-MW01  0.122 SiteB-MW03  0.0715 
SiteB-MW02  0.0819 SiteB-MW03  0.0715 
SiteB-MW02  0.102 SiteB-MW04  0.144 
SiteB-MW02  0.102 SiteB-MW04  0.0715 
SiteB-MW02  0.0715 SiteB-MW04  0.0715 
SiteB-MW02 0.111  SiteB-MW04  0.0715 
SiteB-MW02  0.0436 SiteB-MW05  0.144 
SiteB-MW02  0.122 SiteB-MW05  0.0715 
SiteB-MW03  0.0819 SiteB-MW05  0.0715 
SiteB-MW03  0.102 SiteB-MW05  0.0715 
SiteB-MW03  0.102 SiteB-MW06  0.0715 
SiteB-MW03  0.0715 SiteB-MW06  0.0715 
SiteB-MW03  0.0436 SiteB-MW06  0.0715 
SiteB-MW03  0.0436 SiteB-MW06  0.145 
SiteB-MW03  0.122 SiteB-MW01  0.116 
SiteB-MW04  0.0819 SiteB-MW01  0.116 
SiteB-MW04  0.102 SiteB-MW01  0.0492 
SiteB-MW04  0.102 SiteB-MW01  0.0492 
SiteB-MW04  0.0715 SiteB-MW02  0.116 
SiteB-MW04  0.0436 SiteB-MW02 0.138  
SiteB-MW04  0.0436 SiteB-MW02  0.0492 
SiteB-MW04  0.122 SiteB-MW02  0.0492 
SiteB-MW05  0.0819 SiteB-MW03  0.116 
SiteB-MW05  0.102 SiteB-MW03  0.116 
SiteB-MW05  0.102 SiteB-MW03  0.0492 
SiteB-MW05  0.0715 SiteB-MW03  0.0492 
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Well Location Result (µg/L) DL (µg/L) Well Location Result (µg/L) DL (µg/L) 
SiteB-MW05  0.0436 SiteB-MW04  0.116 
SiteB-MW05  0.0436 SiteB-MW04  0.116 
SiteB-MW05  0.122 SiteB-MW04  0.0492 
SiteB-MW06  0.0819 SiteB-MW04  0.0492 
SiteB-MW06  0.102 SiteB-MW05  0.116 
SiteB-MW06  0.102 SiteB-MW05  0.116 
SiteB-MW06  0.0715 SiteB-MW05 2.63  
SiteB-MW06  0.0436 SiteB-MW05  0.0492 
SiteB-MW06  0.0436 SiteB-MW06  0.116 
SiteB-MW06  0.122 SiteB-MW06  0.116 
SiteB-MW01  0.144 SiteB-MW06 4.81  
SiteB-MW01  0.0715 SiteB-MW06  0.0492 
SiteB-MW01  0.0715    
SiteB-MW01  0.0715    
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APPENDIX L 
Hypothesis Testing—Simple Cases 

 
L-1.  Introduction.  This Appendix provides an extensive discussion of the statement of  
hypotheses (null and alternative) and the consequences deriving from that choice.  Also, a 
general introduction of the basic types of hypothesis testing commonly employed in envi-
ronmental operations is provided.  Further reading on the foundations of hypothesis testing 
can be found in EPA 600/R-96/055, QA/G-4.  Additional reading on the one-sample hypoth-
esis tests presented below can be found in EPA/240/B/026/003, QA/G-9S. 
 
L-2.  Translating Objectives into Statistical Hypotheses.  A data user’s question, or a deci-
sion rule from the DQO process, must be translated into a precise statistical statement to be 
tested using environmental data.  Such a statement is called a hypothesis.  It includes a null 
hypothesis (H0) and an alternative hypothesis (HA).  The null hypothesis is a baseline condi-
tion presumed to be true in the absence of strong evidence to the contrary, and the alternative 
hypothesis is the opposite condition that bears the burden of proof.  In other words, unless it 
is demonstrated that the alternative hypothesis is correct based upon weight of evidence, the 
baseline condition is retained. 
 
 L-2.1.  A hypothesis test consists of the following elements. 
 
 L-2.1.1.  It has a quantitative population parameter of interest describing the feature of 
the environment that the data user is investigating, such as a mean, median, or proportion, 
 
 L-2.1.2.  It has a numerical value to which the parameter of interest will be compared, 
such as a regulatory or risk-based threshold or a similar parameter from another population 
(i.e., comparison to a reference site) or time (i.e., comparison to a prior time). 
 
 L-2.1.3.  It has a relation that specifies precisely how the parameter will be compared to 
the numerical value, such as “is equal to” or “is greater than.” 
 
 L-2.2.  If the data user is interested in drawing inferences about only one population, 
the null and alternative hypotheses are stated in terms that relate the true value of the  
parameter to some fixed threshold value.  A typical example of this one-sample problem in 
environmental studies is when the concentration of a contaminant is compared to a fixed reg-
ulatory limit or threshold value.  For example, a data user may wish to determine whether the 
true mean concentration (µ) of the herbicide atrazine in groundwater at a hazardous waste 
site is greater than a fixed threshold value C, determined from a human or ecological risk as-
sessment.  If the decision maker wishes to “prove” that the contamination is less than C, it is 
initially assumed that the true (population) mean concentration is greater than or equal to C.  
This assumption is known as the null hypothesis and is denoted as H0.  If the data provide 
compelling evidence that the null hypothesis is false, then the null hypothesis is rejected and 
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it would be concluded that the population mean concentration is less than C.  The opposite 
conclusion is known as the alternative hypothesis and is denoted as HA or H1.  For this  
example, the null and alternative hypotheses can be stated as follows: 
 
 CHCH A <≥ µµ :,:0  . 
 
 L-2.2.1.  The null hypothesis (H0) is the mean is greater than or equal to the threshold 
value C.  The alternative hypothesis (HA) is the opposite condition: the mean is less than the 
threshold value C. 
 
 L-2.2.2.  If the decision maker wishes to demonstrate that the true mean is greater than 
the threshold value, the data must provide compelling evidence to reject this presumption, 
and the hypotheses can be stated as follows: 
 
 CHCH A >≤ µµ :,:0  . 
 
 L-2.2.3.  Note that, thus far, two possible null hypotheses, µ ≤ C and µ ≥ C, have been 
discussed.  Depending upon the data quality objectives of the project, it is possible to legiti-
mately assign either alternative to the null hypothesis.  Because of this freedom or ambiguity, 
the most appropriate assignment must be determined from the project’s data quality objec-
tives. 
 
 L-2.2.4.  Lastly, it should be noted that the null and alternative hypotheses for the ex-
amples presented above would be used for a one-sample, one-tailed statistical test.  Typical-
ly, the sample mean of some set of measured concentrations would be statically compared to 
the threshold, C.  The test is one-sample in nature because one data set (from one population) 
is used to calculate the test statistic, the sample mean.  If, however, the statistical test entailed 
the use of two different data sets, in which each was potentially drawn from a separate popu-
lation, it would be described as a two-sample test.  The test is one-tailed in nature when the 
null hypothesis is an inequality.  Although less common for environmental applications, the 
null and alternative hypotheses for the corresponding one-sample two-tailed test are as fol-
lows: 

 CHCH A ≠= µµ :,:0   (i.e., µ > C or µ < C) . 
 
 L-2.2.5.  The null hypothesis is that the population means is equal to C and the alterna-
tive hypothesis is that the population mean is either greater than or less than C.  
 
 L-2.3.  If two populations are being compared, the null and alternative hypotheses are 
stated in terms that compare the true parameter value of one population to the corresponding 
true parameter value of the other population.  A common example of this two-sample prob-
lem is when a potentially contaminated waste site is compared to a reference area using  
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samples collected from the respective areas.  In this situation, the hypotheses often are stated 
in terms of the difference between the two parameters; for example, the difference between 
the mean site concentration and the mean background concentration: 
 
 0:,0:0 >−≤− BackgroundSiteABackgroundSite HH µµµµ  . 
 
 L-2.3.1.  The hypothesis above would be used for a two-sample, one-tailed statistical 
test.  As previously stated, the null and alternative hypotheses must be determined from pro-
ject data quality objectives.  Environmental regulations may specify particular null and alter-
native hypotheses.  For example, the null hypothesis for a RCRA facility groundwater 
monitoring program is as follows: The concentration in down-gradient groundwater is less 
than or equal to the background concentration.  When the null hypothesis is not specified by 
regulation, however, this determination should be made by carefully considering the conse-
quences of making decision errors and taking the wrong actions.  Selecting the null hypothe-
sis is extremely important to the outcome of the decision process.  The same set of sample 
data from a decision unit can lead to different decisions, depending on which possibility was 
selected as the null hypothesis.  
 
 L-2.3.2.  Typically, hypothesis tests are established to prove a desired hypothesis.  The 
condition or alternative that requires proof is selected as the alternative or research hypothe-
sis.  The alternative hypothesis is accepted (via burden of proof) when the null hypothesis is 
rejected (that is, disproved) based upon the weight of the evidence.  
 
 L-2.4.  EPA 600/R-96/055, QA/G-4 recommends that the null hypothesis be defined as 
the true condition associated with the “more severe decision error”; that is, the more undesir-
able outcome if a wrong decision were made.  For example, when the mean concentration of 
a contaminant is compared to a risk-based action level, C, the most severe decision error of-
ten consists of concluding µ < C when µ ≥ C is the true condition.  Therefore, as per EPA 
guidance, the null hypothesis is often µ ≥ C.  In other words, it would typically be assumed 
that the site is “dirty” (H0: µ ≥ C) until the weight of evidence demonstrates that the site is 
“clean” (HA: µ < C), the hypothesis that one wishes to demonstrate.  
 
 L-2.5.  Rather than defining the null hypothesis based on the most severe condition, a 
second approach consists of defining the null hypothesis based on the least probable condi-
tion (or, equivalently, the alternative hypothesis based on the most probable condition).   
According to this approach, if a large amount of existing information suggests that one hy-
pothesis is extremely likely, then this hypothesis would be defined as the alternative hypoth-
esis.  The advantage of this approach is that a large number of data may not be necessary to 
provide overwhelming evidence that the null hypothesis is false.  For example, if the waste 
from an incinerator was previously hazardous and the waste process has not changed, it may 
be more cost-effective to define the alternative hypothesis as “the waste is hazardous”  
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(HA: µ ≥ C) and the null hypothesis as “the waste is not hazardous” (H0: µ < C). This ap-
proach generally will not result in the same null hypothesis as the approach EPA recom-
mends.  The most protective alternative for H0 will not necessarily be the least probable 
alternative for H0 (i.e., the most probable alternative for HA). 
 
 L-2.6.  Table L-1 summarizes common environmental decision rules and the corre-
sponding hypotheses.  The population parameter of interest (e.g., µ) in this table is  
denoted by the symbol Θ and the difference between two population parameters is denoted 
as Θ1 – Θ2, where Θ1 represents the parameter of the first population (such as a constituent 
from a hazardous waste site) and Θ2 represents the parameter of the second population (such 
as a constituent from background).  The use of Θ is intended to avoid using the terms “popu-
lation mean” or “population median” repeatedly because the structure of the hypothesis test 
remains the same regardless of the population parameter.  The fixed threshold value is denot-
ed as C, and the difference between two parameters is denoted as δ0 (often the null hypothe-
sis is defined such that δ0 = 0). 

 L-2.7.  As previously discussed, hypothesis tests may be one-tailed or two-tailed, de-
pending on the specified null and alternative hypotheses.  The first, second, fourth, and fifth 
rows of Table L-1 are examples of one-tailed hypothesis tests.  The third and sixth rows are 
examples of two-tailed tests.  Most hypotheses connected with environmental monitoring are 
one-tailed because high pollutant levels can cause harm to humans or ecosystems, whereas 
lowered concentrations are of little, if any, concern. 
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Table L-1. 
Commonly Used Statements of Statistical Hypotheses 

 
Type of Decision 

 
Null Hypothesis 

Alternative  
Hypothesis 

Compare environmental conditions to a fixed 
threshold value, such as a regulatory standard or 
acceptable risk level; presume that the true 
condition is less than the threshold value. 

 
H0: Θ ≤ C 

 
HA: Θ > C 

Compare environmental conditions to a fixed 
threshold value; presume that the true condition is 
greater than the threshold value. 

 
H0: Θ ≥ C 

 
HA: Θ < C 

Compare environmental conditions to a fixed 
threshold value; presume that the true condition is 
equal to the threshold value and the data user is 
concerned whenever conditions vary significantly 
from this value. 

 
 

H0: Θ = C 

 
 

HA: Θ ≠ C 

Compare environmental conditions associated 
with two different populations to a fixed threshold 
value (δ0), such as a regulatory standard or 
acceptable risk level; presume that the true 
condition is less than the threshold value.  If it is 
presumed that conditions associated with the two 
populations are the same, the threshold value is 0. 

H0: Θ1 – Θ2 ≤ δ0 
 
If δ0 = 0, 
 
H0: Θ1 – Θ2 ≤ 0 
H0: Θ1 ≤ Θ2 

HA: Θ1 – Θ2 > δ0 
 
If δ0 = 0, 
 
HA: Θ1 – Θ2 > 0 
HA: Θ1 > Θ2 

Compare environmental conditions associated 
with two different populations to a fixed threshold 
value (δ0), such as a regulatory standard or 
acceptable risk level; presume that the true 
condition is greater than the threshold value.  If it 
is presumed that conditions associated with the 
two populations are the same, the threshold value 
is 0. 

H0: Θ1 – Θ2 ≥ δ0 
 
If δ0 = 0, 
 
H0: Θ1 – Θ2 ≥ 0 
H0: Θ1 ≥ Θ2 

HA: Θ1 – Θ2 < δ0 
 
If δ0 = 0, 
 
HA: Θ1 – Θ2 < 0 
HA: Θ1 < Θ2 

Compare environmental conditions associated 
with two different populations to a fixed threshold 
value (δ0), such as a regulatory standard or 
acceptable risk level; presume that the true 
condition is equal to the threshold value.  If it is 
presumed that conditions associated with the two 
populations are the same, the threshold value is 0. 

H0: Θ1 – Θ2 = δ0 
 
If δ0 = 0, 
 
H0: Θ1 – Θ2 = 0 
H0: Θ1 = Θ2 

HA: Θ1 – Θ2 ≠ δ0 
 
If δ0 = 0, 
 
HA: Θ1 – Θ2 ≠0 
HA: Θ1 ≠ Θ2 
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L-3.  Decision Errors Associated with Hypothesis Tests.  Table L-2 presents all of the possi-
ble scenarios that can result from a statistical hypothesis test.  Two correct decisions and two 
incorrect decisions are possible.  The probability of each event is presented in parenthesis. 
 
Table L-2. 
Conclusions Associated with Any Statistical Hypothesis Test 
 True Hypothesis (Actual site conditions) 

H0 True Ha True 
 
Decision 
 
(Conclusion from 
sample data) 

 
Do Not  
Reject H0 

Correct decision 
Confidence Level =  

(1 – α)100% 

Incorrect decision 
False Acceptance of H0 

Type II error tolerance = 
β 

 
Reject H0 

Incorrect decision 
False Rejection of H0 

Type I error tolerance = α 

Correct decision 
Power of test =  

(1 – β)100% 
 
 L-3.1.  The two incorrect answers for a hypothesis test are the following. 
 
 L-3.1.1.  False rejection of H0, or Type I error.  The null hypothesis is rejected when the 
null hypothesis is true.  The probability for a Type I error is defined as the level of signifi-
cance.  The maximum allowable probability for a Type I error is typically denoted by the 
symbol α. The level of confidence is defined as one minus the level of significance.  Thus, 
the minimum level of confidence for a correct decision is 1 – α. 
 
 L-3.1.2.  False acceptance or Type II error.  The null hypothesis is accepted (more ac-
curately, not rejected) when the null hypothesis is false.  The maximum allowable probability 
for a Type II error is denoted by the symbol β. The power of the test is defined as one minus 
the Type II error probability.  Therefore, the minimum power is 1 – β. 
 
 L-3.2.  A false rejection decision error occurs when it is concluded, from the observed 
data, that the null hypothesis is false when it is actually true.  (This is sometimes called a 
“false positive.”)  A false acceptance decision error occurs when it is concluded that the null 
hypothesis is true when it is really false.  (This is sometimes called a “false negative.”)  For 
example, suppose the null hypothesis states that the true value of the parameter of interest 
exceeds the action level.  If the null hypothesis is actually correct and the sample data, by 
chance, contained an abnormally large proportion of low values, it would be concluded that 
the true value did not exceed the action level; therefore, a false rejection decision error would 
occur. 
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 L-3.3.  Three different equivalent approaches can be used to perform hypothesis tests: 
“The confidence interval,” “p-value,” and “critical value” approaches.  Table L-3 illustrates 
the use of each of these three approaches for hypothesis testing. 
 
Table L-3. 
Relationship Between Hypothesis Tests and Confidence Intervals 

 
Hypotheses 

 
 

p-Value 
Approach 

Reject H0 when 

Critical Value Approach  
Reject H0 when 

Confidence Interval  
Approach 

Reject H0 when 

 
0 :H CΘ =  

:AH CΘ ≠  

 
p < α 

Test statistic less than or 
greater than critical values.  
Example: 2, 1nt tα −

<  or 

1 2, 1nt t α− −
>  

Two-sided 1 – α confidence 
interval for Θ does not  
contain C 

0 :H CΘ ≥  
:AH CΘ <  

 
p < α 

Test statistic less than “criti-
cal value. 
Example: , 1nt tα −

< . 

One-sided 1 – α upper  
confidence interval limit for 
Θ is less than C: UCL < C 

0 :H CΘ ≤  
:AH CΘ >  

 
p < α 

Test statistic exceeds “critical 
value.” 
Example: 1 , 1nt t α− −

> . 

One-sided 1 – α lower  
confidence limit for Θ is 
greater than C: LCL > C 

 
 L-3.4.  Table L-3 lists the possible null hypotheses for a one-sample statistical test.   
The objective is to determine if some population parameter of interest,Θ  (the value of which 
is typically known) equals, is less than, or is greater than some fixed threshold value C.  For 
the critical value approach for hypothesis testing, the decision to reject the null hypothesis is 
essentially determined by calculating some sample test statistic and comparing the value of 
the sample test statistic to a threshold or “critical value” for the sample statistic.  If the sam-
ple statistic is greater than or less than the “critical value” (depending upon the null hypothe-
sis selected), the null hypothesis is rejected. 
 
 L-3.5.  Confidence intervals are directly related to hypothesis tests.  Whenever a hy-
pothesis test can be used to evaluate a parameter of interest (such as the mean, variance,  
median, etc.), a confidence interval also can be estimated and used to evaluate the same  
parameter.  An equivalent approach consists of the following: Use the sample data to derive 
an estimate of the population parameter Θ̂ , construct a confidence interval for Θ using the 
estimate Θ̂ , and determine whether C falls within the confidence interval for Θ .  If C does 
not fall within the confidence interval forΘ , then the null hypothesis is rejected.  This is  
referred to as the “confidence interval approach for hypothesis testing.” 
 
 L-3.6.  A third approach for hypothesis testing is referred to as the “p-value approach 
for hypothesis testing.”  The “p-value” is the probability of obtaining the calculated sample 
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statistic if the null hypothesis is true.  If the p-value is sufficiently small, that is, if p < α, 
where α is the Type I error tolerance, then the null hypothesis is rejected.  All three  
approaches are illustrated below.  This document predominately uses the critical value  
approach for hypothesis tests. 
 
L-4.  Illustration of Hypothesis Testing.  To illustrate hypothesis testing, a one-population 
test to threshold value C is considered, with the following null and alternative hypotheses: 
 
 CHCH A <≥ µµ :,:0  . 
 
Assume that the variable X is normally distributed with an unknown population mean µ but a 
known standard deviation σ.  A single sample measurement x is compared to the threshold 
value, C, to determine whether or not to reject the null hypothesis, H0: µ ≥ C. Because the 
standard deviation of the population (σ) typically would not be known for environmental ap-
plications, the example is not realistic, but serves only to illustrate the concept of hypothesis 
testing.  Figure L-1 illustrates the decision errors for hypothesis testing. 
 
 L-4.1.  Type I Error Tolerance and the Rejection of the Null Hypothesis.  If the null hy-
pothesis is true with µ = C, a distribution of measured values of X would be obtained, as 
shown by the blue normal curve centered about µ = C.  The probability that a measurement, 
x, would be less than the critical value, Xα, is equal to α (refer to the region shaded in blue).  
The value of Xα depends upon the α value selected.  The value of α is determined from the 
project’s data quality objectives but is usually some acceptably small positive number (e.g., 
α = 0.01 or 0.05).  As the probability a measurement, x, will be less than Xα is acceptably 
small when µ = C, the null hypothesis (H0: µ ≥ C) is rejected when a measurement of  
x < Xα  is obtained.  (The null hypothesis is retained when x > Xα.)  The value α represents 
the tolerance for Type I error; that is, the maximum acceptable probability for rejecting H0 
when H0 is actually true.  When H0 is µ ≥ C, the Type I error can be roughly described as the 
probability of concluding that a “dirty” site is “clean.”  
 
 L-4.1.1.  When X is normal with known standard deviation, σ, it is convenient to 
“standardize” the variable X using the linear transformation: 
 

 
σ

µ−
=

XZ  . 

 
 L-4.1.2.  The variable Z is a standard normal variable.  If x < Xα, it follows that 
 

 
σ

µ
σ

µ α
α

−
=<

−
=

X
Zxz  . 
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 L-4.1.3.  The quantity Zα is the α100th percentile of the standard normal distribution.  
Thus, if the null hypothesis µ = C is true and x < Xα, then 
 

 ασ
ZCxz <

−
=  . 

 
 

X α 

β 

C* C 
 

Gray Region 
C  −  C* 

  =   (Z 1 -  α   
  +   Z 1 -  β )  σ  

α 

Hypothesis Test: H 0:  µ   ≥  C, 
       H A:  µ  < C 

Type I Error = 
P(x  <   X α   |  µ   =  C)  =   α 

Type II Error = 
P(x  ≥   X α   |  µ   =   C* )  =   β 

σ Ζ1−β

 

If  x < X α , reject H 0 
    

If  x  ≥  X α ,   accept   H 0 

Gray Region 

σ Ζ1−α

 

 
 

Figure L-1.  Decision Errors Associated with a Hypothesis Test. 
 
 L-4.1.4.  Because H0 is rejected when x < Xα, it may be also be rejected when the test 
statistic z < Zα.  In this context, the percentile Zα is called the “critical value.”  If the sample 
statistic z is less than the “critical value” Zα, it is often stated that the null hypothesis is re-
jected at the “α100% level of significance” or, equivalently, at the “(1 – α)100% level of 
confidence. ”  This is a convenient approach as the sample test statistic z can be calculated 
and compared to a desired percentile of the standard normal distribution (Zα), which is  
readily available from a statistical table.  The comparison of a sample statistic such as z to 
some percentile Zα to determine whether or not to reject H0 is referred to as the “critical  
value approach.” 
 
 L-4.1.5.  Statistical software provides an alternative to the critical value approach (for 
determining whether H0 should be rejected), referred to as the “p value approach.”  For this 
particular example, given that a measure x from a normal distribution with known standard 
deviation (σ) is taken, the software also initially assumes that the null hypothesis is true (i.e., 
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sets µ = C), and calculates z.  The calculated value is assumed to be equal to some percentile, 
Zp, of the standard normal distribution.  Rather than reporting the statistic z and comparing it 
to the percentile Zα, the software outputs the fraction of the normal probability distribution, 
p, that falls below the calculated value of z when µ = C.  This value is referred to as the  
“p value.”  The p value is the probability of obtaining a measured result of x (or a result dif-
ferent than the null hypothesis) when the null hypothesis is true (µ = C).  If p is sufficiently 
small relative to α  (i.e., p < α), the null hypothesis is rejected. 
 
 L-4.1.6.  The third approach is referred to as the “confidence interval approach for hy-
pothesis testing.”  It entails calculating a confidence interval for the population mean µ.  In 
this situation, the best estimate of µ is the single measurement x.  Because rejecting the null 
hypothesis requires 
 

 ασ
ZCx

<
−  

 
and Zα = –Z1–α, it follows that the null hypothesis would be rejected if: 
 
 1UCL x Z Cα σ−= + <  . 
 
 L-4.1.7.  The left side of the inequality is the one-sided (1 – α)100% upper confidence 
limit for µ for a normal distribution with known standard deviation σ.  Therefore, the null 
hypothesis is rejected if the UCL for µ is less than C.  More information on confidence limits 
is contained in Appendix N. 
 
 L-4.1.8.  The strategies discussed above are generally applicable for hypothesis tests, 
but the critical value approach is predominately used in this document.  
 
 L-4.2.  Type II Error and Power.  The discussion above focused on the criteria for re-
jecting the null hypothesis.  The alternative hypothesis is discussed here.  When the alterna-
tive hypothesis is true with µ = C* < C (when the mean [µ] is equal to some value C* < C), a 
normal distribution of measurements centered about µ = C* will be obtained (refer to the red 
normal curve).  When µ = C*, the probability x > Xα equals β (refer to the red shaded re-
gion).  Because the null hypothesis is retained when x > Xα, β is equal to the probability of 
retaining the null hypothesis (H0: µ ≥ C) when the null hypothesis is false (i.e., when  
µ = C* < C).  The value of β determined from project data quality objectives represents the 
maximum tolerance for Type II error; that is, the maximum tolerable probability for errone-
ously retaining the null hypotheses.  In terms of an environmental investigation, the Type II 
error can be roughly described as the probability of concluding that a clean site is dirty.  The 
power of the hypothesis test is defined as 1 – β and is equal to the probability of accepting 
the alternative hypothesis (µ = C* < C) when the alternative hypothesis is true (the probabil-
ity of concluding that a clean site is clean). 
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 L-4.2.1.  Note that, to calculate the Type II error or the power of a test, the Type I error 
must first be specified.  Also, note that, in this example, the Type II error tolerance and pow-
er is for some pre-specified value C* < C. Paragraph L-5.2 illustrates how to calculate the 
power once α and C* are specified for a normally distributed variable X with a known popu-
lation standard deviation.  
 
 L-4.2.2.  When the mean (µ) is equal to some value greater than C (when it falls some-
where to the right of C), the probability that the null hypothesis will be rejected is acceptably 
small, less than α.  The probability that the null hypothesis will be retained will be greater 
than 1 – α.  In terms of an environmental study, when µ > C, the probability that a dirty site 
will be identified as dirty will be acceptably high.  Similarly, when the mean (µ) is equal to 
some value less than C*, the probability of retaining the null hypothesis (H0: µ ≥ C) will be 
less than β.  The probability of correctly rejecting the null hypothesis (and accepting  
HA: µ < C) will be greater than 1 – β.  When µ < C*, the probability that a clean site will be 
identified as clean will be acceptably high.  However, when µ lies between C and C*, the 
probability of making a correct decision will be low (the Type II error will be higher than β).  
This range of values, C – C*, is called the “gray region” or the “minimum detectable differ-
ence.”  Because reliable decisions cannot be made for differences smaller than C – C*, the 
difference C – C* may be viewed as the “resolution” of the statistical design. 
 
 L-4.2.3.  Statistical tests cannot control both types of error simultaneously.  Generally, a 
hypothesis test is set up in a manner that committing false rejection (Type I) is considered the 
more serious error and is controlled by the test, and committing false acceptance (Type II) is 
considered not as serious an error and is not controlled by the test.  The data user specifies 
the probability limit, α, by the data user’s tolerance for committing false rejection (Type I).  
Determining how large a risk the project team is willing to tolerate for Type I errors must be 
done before the fact, especially when the consequences of making such an error are very se-
rious (Milton and Arnold, 1990).  If the null hypothesis is not rejected after the test is per-
formed, then the Type II error or the power (one minus the Type II error) is calculated.  If the 
Type II error is not sufficiently small (or equivalently, the power is not sufficiently large), 
additional sampling would be considered.  In general, increasing the sample size simultane-
ously reduces both Type I and Type II errors.  
 
 L-4.2.4.  If the sample mean, x , for a set of n measurements, rather than a single meas-
urement, were compared to the threshold, C, to determine whether or not to reject the null 
hypothesis (H0: µ ≥ C), then the minimum detectable difference would be given by: 

 ( )( )βασ −− +=− 11/* ZZnCC  . 
 
 L-4.2.5.  The number of random samples that must be collected can be solved from the 
above equation: 
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( )

( )2

22
11

*CC
ZZ

n
−

+
= −− σβα  . 

 
 L-4.2.6.  Hence, the number of samples is dependent upon α, β, σ, and C – C*.  The 
number of samples increases as the tolerance of Type I and Type II error, α and β, decreases 
(as Z1–α and Z1–β increase as α and β decrease).  The number of samples also increases as the 
variance (σ2) increases and C – C* decreases.  This is reasonable because the variance is a 
measure of the variability of the underlying environmental population and C – C* is a meas-
ure of the resolution of the statistical design.  The number of samples increases as variability 
or heterogeneity of the underlying populations increases.  As the probability of making a cor-
rect decision when the true mean lies in the gray area is low, the quantity C – C* essentially 
represents the smallest difference between the mean contaminant concentration and the 
threshold level that can be tolerated or that is deemed to be important for the overall statisti-
cal design.  The sample size increases when smaller differences become significant for the 
statistical design. 
 
L-5.  Statistical Power Associated with Hypothesis Tests.  As previously stated, the power  
of a statistical hypothesis test is defined as the likelihood that the null hypothesis is correctly 
rejected at a fixed level of significance, α, when the alternative hypothesis is truly correct.  
Power is related to Type II errors, or false rejection.  The power of a statistical test is  
1 – β where β is the probability of a false acceptance or Type II error.  Therefore, as the 
power of a statistical test increases, the probability of a false acceptance decreases.  
 
 L-5.1.  Introduction.  To calculate the power of a statistical test, first determine the 
event that the test rejects the null hypothesis, H0, in a form that does not contain any un-
known parameters.  There must be a predetermined level of significance, α, so there is a set 
criterion for rejecting the null hypothesis.  The power is the calculated probability for reject-
ing the null hypothesis when the alternative hypothesis is assumed to be true.  Unfortunately, 
the specific algorithm for calculating power is highly dependent upon the nature of the  
statistical test and power calculations are often complex.  Paragraph L-5.2 presents directions 
for calculating the power for a hypothesis test of the form: 
 
 CHCH A >≤ µµ :,:0  . 
 
(Refer to Figure L-1.)  The variable of interest is assumed to be normally distributed and the 
population standard deviation is known.  The assumption that the population standard  
deviation (σ) is known severely limits the utility of the approach.  However, it constitutes, 
perhaps, the simplest method to estimate power.  In practice, an estimate of σ could be used 
to estimate the power if the uncertainty associated with the estimate was sufficiently small.  
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 L-5.2.  Example for Calculating the Power of a One-Tailed Test (from Mason et al., 
1989).  This procedure is strictly applicable only when the variable X is normally distributed 
with a known standard deviation.  The procedure could potentially be used (to estimate the 
power) when the (population) standard deviation is not known and the sample is mean is  
calculated from a large number of samples (e.g., n > 100). 
 
 L-5.2.1.  Suppose 
 
 10:,10:0 >≤ µµ AHH  . 
 
Assume a known standard deviation of σ = 2 for a normally distributed population.  Let the 
Type I error tolerance for rejecting the null hypothesis 05.0=α  and the sample size 25=n .  
Note that the threshold value C = 10.  Let C* = 11 in this example.  Thus the “resolution” for 
the test, C* – C = 1.  Under the null hypothesis, the largest mean µ0 = 10.  It follows that the 
power of the test is as follows: 
 

( ) 0
1

10 11 11 101 10 | 11 1.645 1.645
/ 2 / 25 2 / 25 2 / 25

( 0.855) 1 ( 0.855) 0.804 .

x x xP x P Z P P
n

P Z P Z

α
µ

β µ
σ −

− − − −     − = > = = > = > = > −     
     

= > − = − ≤ − =

 

 

α−1Z  is the (1 – α)100th percentile of the standard normal distribution, which is provided in 
Table B-15 of Appendix B. 
 
 L-5.2.2. More generally, when comparing the sample mean (of a normally distributed 
variable with standard deviation σ) to some decision limit µ0 using the null hypothe-
sis, CH =≤ 00 : µµ , the power at *1 C== µµ  is as follows: 
 

 ( )















 −
−≤−==>=− − n

ZZPxP
/

1|1 01
110

σ

µµ
µµµβ α  . 

 
 L-5.2.3.  For this particular example, the experiment has a probability of 0.804 of cor-
rectly rejecting the null hypothesis when the true population mean is 11=µ .  If this power is 
not acceptably large, the sample size must be increased to maintain the same significance 
level.  For example, a sample size 50=n would produce the following power:  
 

 
1 0

1
11 101 1 1 1.645

/ 2 / 50
1 ( 1.891) 0.971 .

P Z Z P Z
n

P Z

α
µ µβ
σ−
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L-6.  Tests for the Mean. 
 
 L-6.1.  One-Sample t-test (Simple Random, Systematic Random, or Composite Sam-
pling).  Given a random sample of size n (or a composite sample of size n, each composite 
consisting of k aliquots), the one-sample t-test is parametric test that can be used to test hy-
potheses involving the mean (µ) of the population from which the sample was selected.  The 
t-test is used when the population standard deviation is unknown but normality can be as-
sumed.  
 
 L-6.1.1.  Introduction.   
 
 L-6.1.1.1.  The primary assumptions required for validity of the one-sample t-test are 
that the sample is random (data values are independent) and that the sample mean ( x ) has an 
approximately normal distribution.  Note that, according to the Central Limit Theorem, the 
sample mean will be approximately normally distributed for a large n. Unfortunately, the 
value of n that is sufficiently large enough to normalize the sample mean is seldom known.  
For environmental data, normality is not typically assumed for the sample mean unless n is 
very large (e.g., n > 100).  Small sample sizes are common for environmental studies.  As the 
sample mean is normal if X is normal, in practice, a data set consisting of n values of X is 
tested for normality and the t-test is used if the assumption of normality is not rejected. 
 
 L-6.1.1.2.  Because the sample mean and standard deviation are very sensitive to  
outliers, the t-test should be preceded by a test for outliers (Appendix E).  The t-test is also 
adversely affected by censored results.  Directions for a one-sample t-test are presented in 
Paragraph L-6.1.2, followed by an example in Paragraph L-6.1.3. 
 
 L-6.1.2.  Directions for a One-Sample t-test.  The steps for a one-sample t-test are pre-
sented for Case 1: CH ≤µ:0 , CH A >µ: ; and Case 2: CH ≥µ:0 , CH A <µ: .  The steps for 
Case 2 are given in braces {}.  Let nxxx ,,, 21   represent the n data points from a normal  
distribution.  These could be either n individual samples or n composite samples consisting 
of k aliquots each.  
 
 L-6.1.2.1.  Verify that the data come from a normal distribution using tests presented in 
Appendices F and J, such as the Shapiro-Wilk test (Paragraph F-3.2) and a normal probabil-
ity plot (Paragraph J-5.5). 

 L-6.1.2.2.  Calculate the sample mean, x , and the standard deviation, s (Appendix D). 
 
 L-6.1.2.3.  Use Table B-23 of Appendix B to find the critical value, να ,1−t , such that 
100(1 – α)% of the t distribution with 1−= nν  degrees of freedom is below this value.  For 
example, if α = 0.05 and n = 16, then n – 1 = 15 and 15,95.0t  = 1.753. 
 



 
 
 
 

EM 200-1-16 
31 May 13 

 

L-15 
 

 L-6.1.2.4.  Calculate the test statistic t for the data set: 
 

ns
Cxt −

= . 

 
 L-6.1.2.5.  Compare the calculated test statistic t with the critical value να ,1−t   
(from Table B-23): 
 
 L-6.1.2.5.1.  If t > να ,1−t  {t < να ,1−− t }, 0H  may be rejected.  Go to L-6.1.2.7. 
 
 L-6.1.2.5.2.  If t ≤  να ,1−t  {t ≥  να ,1−− t }, there is not enough evidence to reject 0H  and 
the false acceptance error rate should be verified.  Go to L-6.1.2.6. 
 
 L-6.1.2.6.  If H0 is not rejected, calculate either the power of the test or the sample size 
necessary to achieve the false rejection and false acceptance error rates.  The power of the 
test can be estimated using Paragraph L-5.2, assuming the true values for the mean and 
standard deviation are those obtained in the sample.  A power curve of the test can be gener-
ated using software packages such as the Decision Error Feasibility Trial (DEFT) software 
(EPA QA/G-4D). 
 
 L-6.1.2.6.1.  If only one false acceptance error rate (β) has been specified (at µ1), it is 
possible to approximately calculate the sample size that achieves the DQOs, assuming the 
true mean and standard deviation are equal to the values estimated from the sample, instead 
of calculating the power of the test.  A derivation of the following formula is provided in 
Appendix A of EPA QA/G-4D. 
 
 L-6.1.2.6.2.  Calculate: 
 

 2
12

1

2
11

2

)5.0(
)(

)(
α

βα

µ −
−− +

−

+
= Z

C
ZZs

m  

 
where Zp is the p100th percentile of the standard normal distribution (Table B-15, Appendix 
B).  
 
 L-6.1.2.6.3.  Round m up to the next integer.  If nm ≤ , the false acceptance error rate 
has been satisfied.  If nm > , the false acceptance error rate has not been satisfied.  
 
 L-6.1.2.7.  Summary of results for one-sample t-test: 
 
 L-6.1.2.7.1.  0H  is rejected.  One concludes CH A >µ: { CH A <µ: }. 
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 L-6.1.2.7.2.  0H  is not rejected and the false acceptance error rate is satisfied.  One 
concludes CH A ≤µ:  { CH A ≥µ: }; or 
 
 L-6.1.2.7.3.  0H  is not rejected but the false acceptance error rate is not satisfied.  The 
null hypothesis must be retained but the conclusions are uncertain since the sample size is 
too small. 
 
 L-6.1.2.8.  Report the results of the test, sample size, sample mean, standard deviation, 
and t and να ,1−t .  Note that the calculations for the t-test are the same for both simple random 
or composite random sampling.  The use of compositing usually results in a smaller value of 
s than simple random sampling. 
 
 L-6.1.3.  Example of One-Sample t-Test for Simple and Systematic Random Samples 
with or without Compositing.  Suppose total chromium in subsurface soil (below 5 feet from 
ground surface) at Site A is to be compared to a regulatory threshold of C = 2.0 mg/kg using 
the following test with 95% level of confidence: 
 
 2:0 ≥µH ,  2: <µAH  . 
 
 L-6.1.3.1.  Table L-4 presents the data.  All chromium concentrations were detected, so 
no proxy concentrations are needed to evaluate the data. 
 
 L-6.1.3.2.  Verify that the data follow a normal distribution.  The Shapiro-Wilk test for 
normality shows evidence that the data follow a normal distribution because the test’s p 
value was 0.8489 and is > 0.05. 
 
 L-6.1.3.3.  Calculate the mean and standard deviation: 619.4=x  and 8980.0=s . 
 
 L-6.1.3.4.  Because we want a 95% level of confidence, 05.0=α .  Also, because 

36=n , 351361 =−=−= nν . 
 
 L-6.1.3.5.  Using Table B-23 of Appendix B and linear interpolation, the critical value 
is 1.6905. 
 
 6905.12/)684.1697.1(35,95.0,1 =+==− tt να . 

 
 L-6.1.3.6.  The test statistic is 
 

 50.17
36/8980.0
0.2619.4

/
=

−
=

−
=

ns
Cxt . 
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 L-6.1.3.7.  Comparing the calculated test statistic, t, with the critical value, να ,1−t , we 
see that dftt ,1 α−−≥ (17.5 ≥ –1.6905) and so we cannot reject 0H and we must check that the 
false acceptance rate has been achieved. 
 
Table L-4. 
Example L-6.1.3 Data 

Site A 
sample  
location 

Top 
depth of 
sample 

(ft) 

Bottom 
depth of 
sample 

(ft) 

Chromium 
(total)  

concentration 
(mg/kg)  

Site A 
sample  
location 

Top 
depth of 
sample 

(ft) 

Bottom 
depth of 
sample 

(ft) 

Chromium 
(total)  

concentration 
(mg/kg) 

EPC-SB01 9 10 2.95  EPC-SB07  9 10 5.1 
EPC-SB01 14 15 5.17  EPC-SB07  14 15 4.94 
EPC-SB01 19 20 4.8  EPC-SB07  19 20 4.76 
EPC-SB02 9 10 4.53  EPC-SB08  9 10 4.62 
EPC-SB02 14 15 4.01  EPC-SB08  14 15 4.72 
EPC-SB02 19 20 5.91  EPC-SB08  19 20 4.73 
EPC-SB03 9 10 3.96  EPC-SB09  9 10 3.21 
EPC-SB03 14 15 4.81  EPC-SB09  14 15 4.14 
EPC-SB03 19 20 5.27  EPC-SB09  19 20 4.85 
EPC-SB04 9 10 5.99  EPC-SB10  9 10 4.25 
EPC-SB04 14 15 4.6  EPC-SB10  14 15 5.09 
EPC-SB04 19 20 5.51  EPC-SB10  19 20 3.68 
EPC-SB05 9 10 4.72  EPC-SB11  9 10 5.12 
EPC-SB05 14 15 3.56  EPC-SB11  14 15 6.6 
EPC-SB05 19 20 4.22  EPC-SB11  19 20 6.19 
EPC-SB06 9 10 3.91  EPC-SB12  9 10 3.15 
EPC-SB06 14 15 5.81  EPC-SB12  14 15 4.11 
EPC-SB06 19 20 4.48  EPC-SB12  19 20 2.8 
 
 L-6.1.3.8.  Suppose the false acceptance rate is .20.0=β  
 
 L-6.1.3.9.  The power of this test is verified by assuming that the true values for the 
mean and standard deviation are those obtained in the sample.  A power curve of the test was 
generated using DEFT software, as shown in the figure below.  The probability of accepting 
the null hypothesis is plotted for a range of assumed true mean concentrations.  For the regu-
latory threshold concentration of 2.0, a 95% (i.e., α  = 0.05) chance of accepting the null hy-
pothesis is requested.  A 20% (β) probability of accepting the null hypothesis when the true 
concentration is µ1 = 1.0 is also requested (80% power).  A sample size of seven is suggested 
for this request.  For the sample mean, this plot shows the probability of deciding that the 
true mean is higher than the regulatory threshold is nearly 100%, which means the test has 
strong power. 
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 L-6.1.3.10.  The sample size needed to achieve the false rejection rate of 0.20 when 
11 =µ  is:  

 

 ( )
( )

34.6645.1)5.0(
21

8417.0645.18980.0)5.0(
)(

)( 2
2

22
2

12
1

2
11

2

=+
−

+
=+

−

+
= −

−−
α

βα

µ
Z

C
ZZs

m . 

 
Rounding up to the next integer, m = 7 (the reported value for “Sample Size” in Figure L-2). 

 L-6.1.3.11.  Because more than seven samples have been collected (in fact, 36 samples 
have been collected), the false acceptance error rate has been satisfied.  Therefore, we have 
evidence to suggest the true mean for chromium in Site A subsurface soil is greater than the 
regulatory threshold of 2.0 mg/kg on average. 
 

 
Figure L-2.  Power Curve for the One-sample t-Test for Simple Random Sampling. 

 L-6.2.  One Sample t-Test for the Mean (Stratified Random Sampling).  Directions for a 
one-sample t-test for a stratified random sample followed by an example are presented in 
Paragraphs L-6.2.1 and L-6.2.2, respectively. 
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 L-6.2.1.  Directions for a One-Sample t-Test for a Stratified Random Sample.  The 
steps for a one-sample t-test are presented for: Case 1: CH ≤µ:0 , CH A >µ: ; and Case 2: 

CH ≥µ:0 , CH A <µ: .  The steps for Case 2 are given in braces {}. 
 
 L-6.2.1.1.  Let h = 1, 2, 3,…L represent the L strata and hn  represent the sample size 
of stratum h.  The ith sample from stratum h is presented by ihx , . 
 
 L-6.2.1.2.  Verify that the data come from a normal distribution using tests presented 
in Appendices F and J, such as the Shapiro-Wilk test (Paragraph F-3.2) and a normal prob-
ability plot (Paragraph J-5.5). 
 
 L-6.2.1.3.  Calculate the stratum weights hw  using the proportion of the volume in 
stratum h, 
 

 
∑
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h
h

v

v
w

1  
 
where hv  is the surface area (or volume) of stratum h divided by the total surface area (or 
volume) over all strata. 
 
 L-6.2.1.4.  For each stratum, calculate the sample stratum mean 
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and the sample stratum standard error 
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 L-6.2.1.5.  Calculate overall mean and variance:  
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 L-6.2.1.6.  Calculate the degrees of freedom 
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 L-6.2.1.7.  Use Table B-23 of Appendix B to find the critical value, να ,1−t , so that  
(1 – α)100% of the t-distribution with the above degrees of freedom (rounded to the next 
highest integer) is below να ,1−t . 
 
 L-6.2.1.8.  Calculate the sample value (statistic):  
 

 
2
ST

ST

s
Cxt −

=  . 

 
 L-6.2.1.9.  Compare the calculated test statistic, t, to the critical value να ,1−t ,.  If  
t > να ,1−t  {t < να ,1−− t ,} H0 may be rejected.  If t ≤ να ,1−t  { ≥  να ,1−− t }, there is not enough 
evidence to reject H0 and the false acceptance error rate should be verified.  
 
 L-6.2.1.10.  If H0 was not rejected, calculate either the power of the test or the sample 
size necessary to achieve the false rejection and false acceptance error rates.  The results of 
the test could be: 
 
 L-6.2.1.10.1.  H0 was rejected so it seems that the true mean is less than C  
{greater than C}. 
 
 L-6.2.1.10.2.  H0 was not rejected and the false acceptance error rate was satisfied and it 
appears that the true mean is greater than C {less than C}; or, 
 
 L-6.2.1.10.3.  H0 was not rejected and the false acceptance error rate was not satisfied 
and it appears that the true mean is greater than C {less than C} but conclusions are uncertain 
since the sample size was too small. 
 

L-6.2.1.10.4.  If H0 is not rejected, determine whether the power is adequate.   
Statistical software such as DEFT can be used for this purpose.  DEFT uses the following 
approximation to calculate the number of samples required for each stratum to achieve a 
power of 1 – β  at some desired value µ1: 
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The value hn′ is rounded up to a whole number.  The power is adequate if the calculated  
sample size is less than or equal to the actual sample size for each stratum:  

hh nn ≤′ for h = 1,…, L. 
 
 L-6.2.2.  Example of a One-Sample t-Test for a Stratified Random Sample.  Suppose 
the total chromium in subsurface soil data used in the previous example (Paragraph L-6.2.1) 
came from a stratified sampling effort.  Two strata were sampled, stratum A and stratum B, 
where stratum B makes up one-third of the area to be investigated.  The objective is to com-
pare the chromium concentration at Site A to a regulatory threshold of 2.0 mg/kg, based on a 
95% level of confidence. 
 
 2:0 ≥µH ,  2: <µAH  . 
 
 L-6.2.2.1.  Table L-5 presents the data.  All chromium concentrations were detected 
so no proxy concentrations are needed to evaluate the data. 
 
 2=L        24=An        12=Bn        wA = 0.75       25.0=Bw  
 
 L-6.2.2.2.  Verify that the data follow a normal distribution for each stratum.  The 
Shapiro-Wilk test was performed for each stratum and results indicated that the data for 
each follow a normal distribution because the tests’ p values were greater than 0.05. 
 
 L-6.2.2.3.  The mean and standard deviation of the data were calculated per stratum; 

05.0=α  because we want a 95% level of confidence: 
 
 24,027.1,674.4 === AAA nsx  

 12,5827.0,508.4 === BBB nsx  
 
 L-6.2.2.4.  The overall mean and variance are: 
 
 633.4)508.425.0()674.475.0( =×+×=x  
 

 2649.0001768.002472.0
12

5827.025.0
24
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2
2

2
22 =+=




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 L-6.2.2.5.  The degrees of freedom are (rounded to the next highest integer): 
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Table L-5. 
Data for Example L-6.2.2 

Stratum
 

Site A 
sample  
location 

Top 
depth of 
sample 

(ft) 

Bottom 
depth of 
sample 

(ft) 

Chromium 
(total)  

concentration 
(mg/kg) 

Stratum
 

Site A 
sample  
location 

Top 
depth of 
sample 

(ft) 

Bottom 
depth of 
sample 

(ft) 

Chromium 
(total)  

concentration 
(mg/kg) 

A EPC-SB01  9 10 2.95 B EPC-SB07  9 10 5.1 
A EPC-SB01  14 15 5.17 B EPC-SB07  14 15 4.94 
A EPC-SB01  19 20 4.8 B EPC-SB07  19 20 4.76 
A EPC-SB02  9 10 4.53 B EPC-SB08  9 10 4.62 
A EPC-SB02  14 15 4.01 B EPC-SB08  14 15 4.72 
A EPC-SB02  19 20 5.91 B EPC-SB08  19 20 4.73 
A EPC-SB03  9 10 3.96 B EPC-SB09  9 10 3.21 
A EPC-SB03  14 15 4.81 B EPC-SB09  14 15 4.14 
A EPC-SB03  19 20 5.27 B EPC-SB09  19 20 4.85 
A EPC-SB04  9 10 5.99 B EPC-SB10  9 10 4.25 
A EPC-SB04  14 15 4.6 B EPC-SB10  14 15 5.09 
A EPC-SB04  19 20 5.51 B EPC-SB10  19 20 3.68 
A EPC-SB05  9 10 4.72 A EPC-SB11  9 10 5.12 
A EPC-SB05  14 15 3.56 A EPC-SB11  14 15 6.6 
A EPC-SB05  19 20 4.22 A EPC-SB11  19 20 6.19 
A EPC-SB06  9 10 3.91 A EPC-SB12  9 10 3.15 
A EPC-SB06  14 15 5.81 A EPC-SB12  14 15 4.11 
A EPC-SB06  19 20 4.48 A EPC-SB12  19 20 2.8 
 

 L-6.2.2.6.  Table B-23 of Appendix B gives the critical value να ,1−t = 1.703.  
 
 L-6.2.2.7.  The test statistic is 
 

 
02649.0

0.2633.4 −
=

−
=

s
Cxt . 

 
 L-6.2.2.8.  Compare the calculated test statistic t with the critical value να ,1−t .  Because t 

να ,1−−≥ t (16.18 ≤/ –1.703), we cannot reject 0H and must check that the false acceptance rate 
has been achieved. 
 
 L-6.2.2.9.  As in Paragraph L-6.1.3.9, a 20% (β) probability of accepting the null hy-
pothesis when the true concentration is 1.0 is also requested (80% power).  A power curve of 
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the test was generated using DEFT software in Figure L-3 (by entering the sample standard 
deviation si and the weight wi for each stratum).  The required sample size for stratum A is 
equal to 5 and that for stratum B is equal to 2 (a total sample size of 7).  The required power 
is achieved as actual the sample sizes for strata A and B are 24 and 12, respectively (a total 
of 36 samples). 
 
 L-6.3.  The Chen Test.  Environmental data such as concentration measurements are of-
ten confined to positive values and appear to follow a distribution with most of the data val-
ues relatively small or near zero, but with a few relatively large values.  Underlying such data 
is a distribution that is not symmetrical (like a normal distribution) but is skewed to the right 
(like a lognormal distribution).  Given a random sample of size n from a right-skewed distri-
bution, the Chen test can be used to compare the mean (µ) of the distribution with a threshold 
level or regulatory value.  This test assumes that the data arise from a right-skewed distribu-
tion and a random sample has been employed.  Chen’s test is a generalization of the t-test, 
with slightly more complicated calculations involving the sample mean, standard deviation, 
and skewness.  Directions for conducting the Chen test are presented in Paragraph L-6.3.1, 
followed by an example in Paragraph L-6.3.2. 
 
 L-6.3.1.  Directions for Conducting the Chen Test.  Let nxxx ,,, 21   represent the n data 
points.  Let C denote the threshold level of interest.  The null hypothesis is CH ≤µ:0  and 
the alternative is CH A >µ: ; the level of significance is α. 
 
 L-6.3.1.1.  If, at most, 15% of the data points are below the detection limit and C is 
much larger than the DL, then replace values (< DL) with a proxy value (Appendix C). 
 
 L-6.3.1.2.  Visually check the assumption of right-skewness by inspecting a histogram 
or frequency plot for the data.  
 
 L-6.3.1.3.  Calculate the sample mean, x , and the standard deviation, s (Appendix D). 
 
 L-6.3.1.4.  Calculate the sample skewness  
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the statistic  
 

 
n

s
Cxt )( −

=  

 
and then compute:  
 
 )2(4)21( 323 ttatatz ++++= . 
 
The skewness, b, should be greater than 1 to confirm that the data are skewed to the right. 
 
 L-6.3.1.5.  Use Table B-15 in Appendix B to find the critical value, α−1Z , such that 

%100)1( α−  of the standard normal distribution is below α−1Z , which is also the thp100  per-
centile of the standard normal distribution.  For example, if 05.0=α  then 645.11 =−αZ . 
 
 L-6.3.1.6.  Compare z with α−1Z : 
 
 L-6.3.1.6.1.  If α−> 1Zz , 0H  may be rejected and it appears that the true mean is greater 
than C.  
 
 L-6.3.1.6.2.  If α−≤ 1Zz , there is not enough evidence to reject 0H  so it appears that the 
true mean is less than C.  
 
 L-6.3.2.  Example of the Chen Test.  Suppose surface soil samples (from 0 to 5 feet be-
low ground surface) have been collected at Site B to evaluate arsenic concentrations on site 
against a regulatory threshold value of 5 mg/kg using a 90% level of confidence ( 10.0=α ) 
and the following hypothesis test: 
 
 5:0 ≤µH ,  5: >µAH  
 
Table L-6 presents the analytical results from samples collected at the site.  All arsenic con-
centrations were detected so no proxy concentrations are needed to evaluate the data. 
 
 L-6.4.  The Wilcoxon Signed Rank (One-Sample) Test.  Given a random sample of size 
n (or composite sample size n, each composite consisting of k aliquots), the Wilcoxon signed 
rank test is a nonparametric test can be used to test hypotheses regarding the mean or median 
of the population from which the sample was selected.  The mean is used as the parameter of 
interest in this Appendix, although the median could be used equivalently.  The Wilcoxon 
signed rank test assumes that the data constitute a random sample from a symmetrical, con-
tinuous population.  (Symmetrical means the underlying population frequency curve is sym-
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metrical about its mean or median.)  If the data are not symmetrical, it may be possible to 
transform them (using a transformation such as a log or square root transformation) so that 
this assumption is satisfied. 
 

 
Figure L-3.  Power Curve for the One-sample t-Test for Stratified Sampling. 

 
L-6.4.1.  Introduction.  The Wilcoxon signed rank test is more robust to outliers.  The t-test is 
not robust to outliers because the sample mean and standard deviation are strongly influ-
enced by outliers.  Although it is less powerful than the t-test when the data are normally dis-
tributed, it is usually more powerful when the data are not normally distributed.  The 
Wilcoxon signed rank test is more likely than the t-test to identify differences for positively 
skewed distributions.  In addition, compared to tests based on ranks, the t-test has difficulty 
accommodating censored values (values below the detection limit). 
 
 L-6.4.1.1.  Directions for the Wilcoxon signed rank test for a simple random sample 
and a systematical simple random sample are given below in Paragraph L-6.4.2; Paragraph 
L-6.4.3 is an example for sample sizes smaller than 20.  
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 L-6.4.1.2.  For sample sizes greater than 20, the large sample approximation to the Wil-
coxon signed rank test should be used.  Directions for this test are given in Paragraph L-6.4.4 
followed by an example in Paragraph L-6.4.5. 
 
 L-6.4.1.3.  Paragraph L-6.4.6 presents sample size calculations for the Wilcoxon signed 
rank test to achieve a certain power when the sample size is large.  An example follows in 
Paragraph L-6.4.7. 
 
Table L-6. 
Analytical Results From Samples Collected at the Site in Example L-6.3.2 

Site B sample location 
Top depth of 

sample 
(ft) 

Bottom 
depth of 
sample 

(ft) 

Arsenic 
Concentration 

(mg/kg), ix  
3( )ix x−  

EPC-BG01 1 2 4.84 –0.0024604 
EPC-BG01 4 5 4.15 –0.5615156 
EPC-BG02 1 2 4.53 –0.0881211 
EPC-BG02 4 5 4.72 –0.0165814 
EPC-BG03 1 2 4.76 –0.0099384 
EPC-BG03 4 5 4.93 –9.112×10–5 
EPC-BG04 1 2 4.34 –0.2560479 
EPC-BG04 4 5 4.51 –0.1005446 
EPC-BG05 1 2 5.01 4.288×10–5 
EPC-BG05 4 5 3.83 –1.5011236 
EPC-BG06 1 2 4.8 –0.0053594 
EPC-BG06 4 5 4.07 –0.7412176 
EPC-BG07 0.5 1 7.43 14.796346 
EPC-BG07 2 2.5 4.6 –0.0527344 
EPC-BG08 1 2 8.12 31.107274 
EPC-BG08 4 5 4.96 –3.375×10–6 

 

 L-6.4.2.  Directions for the Wilcoxon Signed Rank Test for a Simple Random Sample 
and a Systematic Simple Random Sample.  The following describes the steps for applying 
the Wilcoxon signed rank test for a sample size (n) less than 20 for: Case 1 
( CH ≤µ:0 , CH A >µ: ); and Case 2 ( CH ≥µ:0 , CH A <µ: ).  Modifications for Case 2 are 
given in braces {}.  
 
 L-6.4.2.1.  Let nxxx ,,, 21   represent the n observations. 
 
 L-6.4.2.2.  If possible, assign values to any measurements below the detection limit 
with procedures described in Appendix H.  
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 L-6.4.2.3.  Subtract C from each observation ix  to obtain the difference Cxd ii −= .  If 
any of the differences are zero, delete them and correspondingly reduce the sample size (n).  
 

 L-6.4.2.4.  Assign ranks from 1 to n based on ordering the absolute differences id  (i.e., 
the magnitude of differences ignoring the sign) from smallest to largest.  The rank 1 is as-
signed to the smallest value, the rank 2 to the second smallest value, and so forth.  If there are 
ties, assign the average of the ranks that otherwise would have been assigned to the tied ob-
servations (e.g., if two equal values occur after rank 5, then assign them each a rank of  
6.5 = (6 + 7)/2). 
 
 L-6.4.2.5.  Assign the sign for each observation to create the signed rank.  The sign is 
positive if the deviation id  is positive; the sign is negative if the deviation id  is negative. 
 
 L-6.4.2.6.  Calculate R, the sum of the ranks with a positive sign. 
 
 L-6.4.2.7.  Use Table B-24 of Appendix B to find the critical value nw ,α . 
 
 L-6.4.2.8.  Compare the calculated test statistic, R, to the critical value.  
 
 L-6.4.2.8.1.  If ( ) nwnnR ,2/1 α−+>  { }nwR ,α< , 0H may be rejected.  
 
 L-6.4.2.8.2.  If ( ) nwnnR ,2/1 α−+≤  { }nwR ,α≥ , there is not enough evidence to  
reject 0H . 
 
 L-6.4.2.9.  The results of the test may be:  
 
 L-6.4.2.9.1.  0H is rejected; C>µ  { C<µ }. 
 
 L-6.4.2.9.2.  0H is not rejected C≤µ { C≥µ }. 
 
 L-6.4.3.  Example of the Wilcoxon Signed Rank Test for Simple and Systematical Ran-
dom Samples.  Suppose 14=n  surface soil samples (from 0 to 5 feet below ground surface) 
were collected at Site B to evaluate cadmium concentrations on site against a regulatory 
threshold value of 0.75 using a 95% level of confidence ( 05.0=α ) and the following  
hypothesis test. 
 
 75.0:0 ≥µH ,  75.0: <µAH  . 
 
 L-6.4.3.1.  Table L-7 presents the analytical results from samples collected at the site.  
Three of the cadmium concentrations were non-detects, so proxy concentrations are defined 
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as the detection limit and are presented in parentheses. 

 L-6.4.3.2.  Steps 1, 2, and 3 are contained in the three right-hand columns, in order. 

 L-6.4.3.3.  Step 4: From the six cases where the sign of id  is positive,  

 6220211125.135.13 =+++++=R  . 

 L-6.4.3.4.  Step 5: Table B-24 of Appendix B gives a critical value of 2614,05.0 =w . 

Table L-7. 
Analytical Results from Samples Collected at the Site in Example L-6.4.3 

Site B 
sample 
location 

Top 
depth of 
sample 

(ft) 

Bottom 
depth of 
sample 

(ft) 

Flag  
(ND = not 
detected) 

Cadmium 
Concentration 

(mg/kg), ix  
i id x C= −  

Rank 
associated 
with id  

Sign of 

id  

EPC-BB01 1 2  1.6 0.85 13.5 + 
EPC-BB01 4 5  1.6 0.85 13.5 + 
EPC-BB02 1 2  1.55 0.8 12 + 
EPC-BB02 4 5 ND (0.242) –0.508 9 – 
EPC-BB03 1 2  0.624 –0.126 1 – 
EPC-BB03 4 5  0.276 –0.474 7 – 
EPC-BB04 1 2  1.5 0.75 11 + 
EPC-BB04 4 5  0.301 –0.449 6 – 
EPC-BB05 1 2  0.588 –0.162 3 – 
EPC-BB05 4 5  0.264 –0.486 8 – 
EPC-BB06 0.5 1  0.899 0.149 2 + 
EPC-BB06 2 2.5  0.332 –0.418 4 – 
EPC-BB07 1 2  1.42 0.67 10 + 
EPC-BB07 4 5  0.326 –0.424 5 – 

 

 L-6.4.4.  Directions for the Large Sample Approximation to the Wilcoxon Signed Rank 
Test.  The following describes the steps for applying the large sample approximation of the 
Wilcoxon signed rank test for: Case 1 ( CH ≤µ:0 , CH A >µ: ); and Case 2 
( CH ≥µ:0 , CH A <µ: ).  Modifications for Case 2 are given in braces {}.  
 

 L-6.4.4.1.  Let nxxx ,,, 21   represent the n data points where n is greater than or equal 
to 20.  If possible, assign values to any measurements below the detection limit with proce-
dures described in Appendix H. 
 

 L-6.4.4.2.  Subtract C from each observation, ix , to obtain the differences Cxd ii −= .  
If any of the differences are zero delete them and correspondingly reduce the sample size (n). 

 L-6.4.4.3.  Assign ranks from 1 to n based on ordering the absolute deviations id  (i.e., 
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magnitude of differences ignoring the sign) from smallest to largest.  Rank 1 is assigned to 
the smallest value, rank 2 to the second smallest value, and so forth.  If there are ties, assign 
the average of the ranks that would otherwise have been assigned to the tied observations. 
 L-6.4.4.4.  Assign the sign for each observation to create the signed rank.  The sign is 
positive if the deviation, id , is positive; the sign is negative if the deviation, id , is negative. 
 
 L-6.4.4.5.  Calculate the test statistic R, the sum of the ranks with a positive sign. 
 
 L-6.4.4.6.  Calculate the critical value  
 

 ( ) ( )( ) 2412141 ++++= nnnZnnw pp   
 
where }{1 αα =−= pp and pZ is the thp100  percentile of the standard normal distribution 
(Table B-15 of Appendix B). 
 
 L-6.4.4.7.  Compare the test statistic to the critical value.  If { }pp wRwR <> , 0H  may 
be rejected.  Otherwise, there is not enough evidence to reject 0H .  
 
 L-6.4.4.8.  The results of the test may be: 
 
 L-6.4.4.8.1  0H  is rejected; C>µ { C<µ }. 
 
 L-6.4.4.8.2  0H  is not rejected; C≤µ { C≥µ }. 
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Figure L-4.  Histogram Plot of Wilcoxon Signed Rank Test for Random Samples. 
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 L-6.4.5.  Example for the Large Sample Approximation to the Wilcoxon Signed Rank 
Test for Simple and Systematic Random Samples.  Suppose additional surface soil samples 
(from 0 to 5 feet below ground surface) were collected at Site B to further delineate contami-
nation.  Additional samples were analyzed for cadmium and so the test performed earlier (see 
Paragraph L-6.4.3) for cadmium must be redone.  The test was set up to compare cadmium 
concentrations on site to a regulatory threshold value of 0.75 using a 95% level of confidence 
( 05.0=α ) and the following hypothesis test. 
 

 75.0:0 ≥µH ,  75.0: <µAH  . 
 
 L-6.4.5.1.  Table L-8 presents all analytical results from samples collected from both 
sampling events.  Non-detected cadmium concentrations were present in the data set; there-
fore, proxy concentrations are defined as the detection limit and are presented in parenthe-
ses. 
 
 L-6.4.5.2.  Steps 1, 2, and 3 are contained in the three right-hand columns, in order. 

 
 L-6.4.5.3.  Step 4: The test statistic, which is the sum of the ranks associated with the 
positive signs, is equal to  
 
 152161151817319205.215.21 =+++++++++=R  . 
 
 L-6.4.5.4.  Step 5: The critical value is 
 
 ( ) ( )( ) 83.7524122212222645.1412222 =+×+−+=pw  
 
where 22=n and by linear interpolation .645.12/)65.164.1(05.0 −=−−=Z  
 
 L-6.4.5.5.  Step 6: Comparing the test statistic to the critical value, 

( )pwR >> ,83.75152 , so 0H  is not rejected.  
 
 L-6.4.5.6.  Therefore, there is no evidence to suggest that the true mean for cadmium in 
Site B surface soil is less than the regulatory threshold of 0.75 mg/kg. 
 
 L-6.4.5.7.  A histogram was created to check the symmetry of the data.  The data appear 
symmetrical, as indicated in Figure L-3. 
 
 L-6.4.6.  Directions for Calculating Sample Size for the Wilcoxon Signed Rank Test to 
Achieve a Specified Power.  Noether (1987) discusses determining an adequate sample size 
based on a defined level of power to apply the Wilcoxon signed rank test for the following 
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hypothesis test: Case 1 ( CH ≤µ:0 , CH A >µ: ); and Case 2 ( CH ≥µ:0 , CH A <µ: ).  
Modifications for Case 2 are given in braces {}.  

 L-6.4.6.1.  If the null hypothesis is not rejected, and the number of samples n′ required 
to achieve some desired power 1 – β could be calculated, the power would be adequate if 

nn ′≥ .  If n ≥ 20 samples are collected, a conservative estimate of the sample size required 
for a power of 1 – β is:  
 

 
( )

( )2

2
11

5.03 −′

+
=′ −−

p
ZZ

n βα  

 
where qZ  is the q quantile of the standard normal distribution (from Table B-15), α  is the 
significance level of the test, 1 – β is the desired power for the test, and p′  is the true proba-
bility that the average of any two independent observations 
 

 
2

ji xx +
 

where i ≠ j, exceeds {is less than} C. 
 

Table L-8. 
All Analytical Results from Samples Collected from Both Sampling Events 

Site B 
sample  
location 

Top 
depth of 
sample 

(ft) 

Bottom 
depth of 
sample 

(ft) 

Flag  
ND = not 
detected 

Cadmium  
concentration 

(mg/kg), xi  
i id x C= −  

Rank  
associated with 

id  

Sign of 
id  

EPC-BB01 1 2  1.6 0.85 21.5 + 
EPC-BB01 4 5  1.6 0.85 21.5 + 
EPC-BB02 1 2  1.55 0.8 20 + 
EPC-BB02 4 5 ND (0.242) –0.508 14 – 
EPC-BB03 1 2  0.624 –0.126 2 – 
EPC-BB03 4 5  0.276 –0.474 12 – 
EPC-BB04 1 2  1.5 0.75 19 + 
EPC-BB04 4 5  0.301 –0.449 10 – 
EPC-BB05 1 2  0.588 –0.162 4 – 
EPC-BB05 4 5  0.264 –0.486 13 – 
EPC-BB06 0.5 1  0.899 0.149 3 + 
EPC-BB06 2 2.5  0.332 –0.418 5 – 
EPC-BB07 1 2  1.42 0.67 17 + 
EPC-BB07 4 5  0.326 –0.424 8 – 
EPC-BG08 1 2  1.48 0.73 18 + 
EPC-BG08 4 5  0.302 –0.448 9 – 
EPC-BG09 1 2  1.39 0.64 15 + 
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Site B 
sample  
location 

Top 
depth of 
sample 

(ft) 

Bottom 
depth of 
sample 

(ft) 

Flag  
ND = not 
detected 

Cadmium  
concentration 

(mg/kg), xi  
i id x C= −  

Rank  
associated with 

id  

Sign of 
id  

EPC-BG09 4 5  0.33 –0.42 6 – 
EPC-BG10 0.5 1  0.812 0.062 1 + 
EPC-BG10 2 2.5  0.287 –0.463 11 – 
EPC-BG11 1 2  1.41 0.66 16 + 
EPC-BG11 4 5  0.327 –0.423 7 – 
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Figure L-5.  Histogram Plot of Wilcoxon Signed Rank Test for Large Random Samples. 

 
 L-6.4.6.2.  The equation for n′  assumes that n is large enough for the test statistic R to 
be normally distributed (which is generally valid if the sample size exceeds 20).  If the sug-
gested sample size does not exceed 20, consult a statistician. 
 
 L-6.4.6.3.  The value of p′  can be determined from past information, a pilot sample, or 
chosen to represent a meaningful shift in the data (Noether, 1987).  On the basis of what is 
considered to be a meaningful shift, one would assign p′  equal to some probability greater 
than 0.5.  
 
 L-6.4.7.  Example of Calculating Sample Size for the Wilcoxon Signed Rank Test to 
Achieve a Specified Power.  Let us calculate the power for the hypothesis test performed in 
Paragraph L-6.4.5.  In this example, n = 22 samples were collected to evaluate cadmium 
concentrations against a regulatory threshold value of 0.75 mg/kg at the 95% level of confi-
dence ( 05.0=α ) using the hypothesis test. 
 75.0:0 ≥µH , 75.0: <µAH  . 
 
The null hypothesis was not rejected.  We wish to ensure that n is large enough to find a 
meaningful decrease in the mean with 80% probability (power).  
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 L-6.4.7.1.  The objective is to ensure that the sample size is large enough to find a 
meaningful decrease in the mean with 80% probability.  Let us assume that seven samples 
had been collected for a prior “pilot” study.  Table L-9 presents the analytical results from 
samples collected for the pilot study in the left-most column and along the top.  The inde-
pendent pair wise averages are calculated in the body of the table.  Averages that fall below 
the regulatory threshold of 0.75 mg/kg are shaded. 

 
 

Table L-9. 
Analytical Results from Samples Collected for the Pilot Study and Independent Pair Wise 
Averages  

Cadmium 
concentration 

(mg/kg) 
1.220 0.301 0.624 0.276 0.588 0.264 0.332 

1.220 — 0.761 0.922 0.748 0.904 0.742 0.776 
0.301 — — 0.463 0.289 0.445 0.283 0.317 
0.624 — — — 0.450 0.606 0.444 0.478 
0.276 — — — — 0.432 0.270 0.304 
0.588 — — — — — 0.426 0.460 
0.264 — — — — — — 0.298 
0.332 — — — — — — — 

 
 L-6.4.7.2.  Of the initial 7 results, 17 of the 21 independent averages are less than 0.75.  
The observed probability that the average of any two observed observations is less than C is 
17/21 = 0.8095.  Therefore, on the basis of this estimated (pilot study) probability, assume 
that it was determined that a power of 80% is required for 809.0=′p . 
 
 L-6.4.7.3.  The required sample size to meet the power requirement is: 
 

 
( ) ( )

( )
5.21

5.08095.03
842.0645.1
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 L-6.4.7.4.  The required sample size is rounded up to 22.  Because 'nn ≥ , the required 
power of 80% was achieved. 
 
L-7.  Tests for a Median.  A population median ( µ~ ) is another measure of the center of the 
population distribution.  This population parameter is less sensitive than the sample mean to 
extreme values and non-detected results.  Therefore, this parameter sometimes is used in-
stead of the mean when the data contain a large number of non-detects or extreme values. 
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 L-7.1.  The Binomial Sign Test for the Median.  Given a random sample of size n of 
continuous or discrete samples, the sign test may be used to test hypotheses regarding a pop-
ulation median for a distribution from which the data were drawn.  The only assumption re-
quired for the sign test is that it be a random sample.  The procedures are also robust to 
outliers, as long as they do not represent data errors.  Directions for the sign test are given be-
low in Paragraph L-7.2, followed by an example in Paragraph L-7.3. 
 
 L-7.2.  Directions for the Sign Test for the Median.  The following describes the steps 
for applying the sign test for a sample size (n). 
 

Case 1 ( CH x ≤µ~:0  versus CH xA >µ~: ); and  
 

Case 2 ( CH x ≥µ~:0  versus CH xA <µ~: ).  
 
Modifications for Case 2 are given in braces {}.  C is the hypothesized median or critical 
threshold value and xµ~  is the median for the variable X.  The level of significance is α . 
 
 L-7.2.1.  Note that µ~  can also be defined as the median value for the variable D, where 

CXD −=  and so the hypotheses tests are written in terms of the difference.  
 

Case 1 ( 0~:0 ≤DH µ  versus 0~: >DAH µ ); and  
 
Case 2 ( 0~:0 ≥DH µ  versus 0~: <DAH µ ). 

 
 L-7.2.2  The hypotheses can also be written in terms of the probability of exceeding 0. 
 
 Case 1 ( ( ) 5.00:0 ≥≤DPH  versus ( ) 5.00: <≤DPH A ); and 
 
 Case 2 ( ( ) 5.00:0 ≥≥DPH  versus ( ) 5.00: <≥DPH A ).  
 
Equivalently, 
 

Case 1 ( ( ) 5.00:0 ≤>DPH  versus ( ) 5.00: >>DPH A ); and 
 
Case 2 ( ( ) 5.00:0 ≤<DPH  versus ( ) 5.00: ><DPH A ). 

 
This formulation suggests the use of the binomial distribution with p = 0.5 to test the null hy-
pothesis. 
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 L-7.2.3.  Noether (1987) discusses determining an adequate sample size based on a de-
fined level of power to apply the sign test for the median.  Under the assumption that the test 
statistic (in this case the number of samples that exceed {are less than} C) is normally dis-
tributed, a conservative sample size, n′ , is calculated as: 
 

 
( )

2

2
11

2
14 






 −

+
=′ −−

p

ZZ
n βα  

 
where qZ  is the q quantile of the standard normal distribution (from Table B-15), α  is the 
significance level of the test, β−1  is the desired power for the test, and p  is the true proba-
bility that an observation exceeds {is less than} C.  The value of p  can be taken from past 
information, a pilot sample, or chosen to represent a meaningful shift in the data (Noether, 
1987).  The normality of the test statistic under the null hypothesis rests on the normal ap-
proximation to the binomial distribution.  As discussed in Appendix E, this approximation 
works well when the sample size is at least 20 ( 10≥np , 5.0=p ).  If the suggested sample 
size does not exceed 20, consult a statistician. 
 
 L-7.2.4.  Let nxxx ,,, 21   represent the n data points.  Define a new variable 

CXD −= . 
 
 L-7.2.4.1.  If possible, assign values to any measurements below the detection limit 
with procedures described in Appendix H. Subtract C from each observation, ix , to obtain the 
deviations, Cxd ii −= .  If any of the deviations are zero, delete them and correspondingly 
reduce the sample size (n). 
 
 L-7.2.4.2.  Count the number of positive {negative} deviations ( id ) and denote this 
number by y. 
 
 L-7.2.4.3.  The number of positive {negative} differences is described by a binomial 
distribution.  In terms of the notation and terminology used in Appendix E, the number of 
data points is the number of “trials,” n.  Under the null hypothesis, the probability, p, of a 
positive {negative} difference (a success) is 0.5.  The total number of positive {negative} 
differences, y, is the successful occurrence of an event y times out of n.  Therefore, bin(y; n, 
p = 0.5) is the probability of y positive {negative} differences for a set of n trials, where the 
probability of a positive {negative} difference p = 0.5 (when H0 is assumed to be true).  The 
probability of obtaining less than or equal to y positive {negative} differences,  
 

 P(Y ≤ y) =∑
=

y

i
pnibin

0
),,(  
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is the value of the “cumulative binomial distribution.”  Table B-1 presents the probabilities 
of the cumulative binomial distribution for various values of n, p, and k where k = y. 
 
 L-7.2.4.4.  If the probability of obtaining an equal or larger number of positive {nega-
tive} differences than the observed number y is small, that is, if α≤=≥ )5.0,|( pnyYP , 
then it is unlikely that the null hypothesis is true and the null hypothesis is rejected.   
Equivalently, 
 
 L-7.2.4.4.1.  If )1()5.0,|1()5.0,|( α−≥=−≤==< pnyYPpnyYP , 0H  may be re-
jected. 
 
 L-7.2.4.4.2.  Otherwise, there is not enough evidence to reject 0H . 

 
 L-7.2.5.  Use Table B-1 of Appendix B to find the probability value associated with  
n, ,1−y  and 5.0=p , which is the cumulative binomial distribution probability,  
 
 )5.0,|1( =−≤ pnyYP   
 
to determine whether or not to reject the null hypothesis. 
 
 L-7.3.  Example of the Sign Test for the Median.  Suppose arsenic concentrations at a 
site are to be compared to a regulatory threshold value of 5 mg/kg using a 90% level of 
confidence ( 10.0=α ).  The median can be compared to this threshold using the following 
hypothesis test: 

 5~:0 ≤µH , 5~: >µAH  . 
 
 L-7.3.1.  Suppose we wish to know the adequate sample size necessary to be 80% cer-
tain that we can detect a meaningful difference from the null hypothesis.  The meaningful 
difference for this site is defined to be when the probability of exceeding the regulatory 
threshold is twice as likely as being below the threshold, ( ) 325~ =>µP .  The required  
sample size is 41: 
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 L-7.3.2.  Consider the data presented in Paragraph L-6.3.2 for arsenic concentrations in 
surface soil samples (from 0 to 5 feet below ground surface) at Site B. Table L-10 presents 
the analytical results from samples collected at the site.  All arsenic concentrations were de-
tected, so no proxy concentrations are needed to evaluate the data. 
 
 L-7.3.3.  The number of positive deviations ( id ), y = 3. 
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 l-7.3.4.  Using Table B-1 in Appendix B, we find 002090.0)5.0,16|2( ===≤ pnYP  

Table L-10. 
Analytical Results From Samples Collected At The Site For Example L-7.3 

Site B sample  
location 

Top depth of 
sample 

(ft) 

Bottom depth 
of sample 

(ft) 

Arsenic  
concentration 

(mg/kg) 
di = xi  –C Sign of 

di 

EPC–BG01 1 2 4.84 –0.16 – 
EPC–BG01 4 5 4.15 –0.85 – 
EPC–BG02 1 2 4.53 –0.47 – 
EPC–BG02 4 5 4.72 –0.28 – 
EPC–BG03 1 2 4.76 –0.24 – 
EPC–BG03 4 5 4.93 –0.07 – 
EPC–BG04 1 2 4.34 –0.66 – 
EPC–BG04 4 5 4.51 –0.49 – 
EPC–BG05 1 2 5.01 0.01 + 
EPC–BG05 4 5 3.83 –1.17 – 
EPC–BG06 1 2 4.8 –0.2 – 
EPC–BG06 4 5 4.07 –0.93 – 
EPC–BG07 0.5 1 7.43 2.43 + 
EPC–BG07 2 2.5 4.6 –0.4 – 
EPC–BG08 1 2 8.12 3.12 + 
EPC–BG08 4 5 4.96 –0.04 – 

 
 L-7.3.5.  As 0.002090 < 0.9, H0 may not be rejected.  Therefore, it appears that the true 
median for arsenic is less than the regulatory threshold of 5 mg/kg.  However, to achieve 
80% power and satisfy the sample size requirement calculated earlier, an additional 25 ran-
domly selected samples would be needed to increase the total sample size to 41.  
 
L-8.  Test for a Proportion or Percentile. 
 
 L-8.1.  The One-Sample Proportion Test.  Given a random sample of size n, the non-
parametric, one-sample proportion test may be used to test hypotheses regarding a population 
proportion or population percentile for a distribution from which the data were drawn.  The 
only assumption required for the one-sample proportion test is that it be a random sample.  
To verify this assumption, review the procedures and documentation used to select the sam-
pling points and ascertain that proper randomization has been used in sample collection. 
 
 L-8.1.1.  The null and alternative hypotheses for this test can be stated as: 
 
 CXH oP ≤:0 ,  CXH oPA >:  
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where oPX  is the 0P  quantile of the variable X; that is, 
 
 0)( PXXP oP =≤  . 
 
 L-8.1.2  If P is the “true” proportion of X that is less than or equal to C = XP, then 
 
 PCXP =≤ )(  . 
 
 L-8.1.3.  The hypothesis statement can be written as: 
 
 PPH ≤00 : ,  PPH A >0: . 
 
 L-8.1.4.  Equivalently, 
 

00 : PPH ≥ ,  0: PPH A <  . 
 
(Note that P, the true portion of the population less than C, should not be confused with the 
probability density function P(X) for the variable X discussed in Appendix E.) 
 
 L-8.1.5.  Because the only assumption is that it be a random sample, the procedures are 
valid for any underlying distributional shape.  The procedures are also robust to outliers, as 
long as they do not represent data errors.  This test is recommended when fewer than 50% of 
the results are detected.  The test may be used as long as the proportion of non-detects is 
smaller than the proportion, p0, of interest, and n must be relatively large for the test to be re-
liable. 
 
 L-8.1.6.  Directions for the one-sample proportion test for a simple random sample and 
a systematic random sample are given below in Paragraph L-8.2, followed by an example 
presented in Paragraph L-8.3. 
 
 L-8.2.  Directions for a Simple Random Sample and a Systematic Random Sample.   
Directions to apply the one-sample proportion test for Case 1 and Case 2: Case 1 
( 00 : PPH ≤ , 0: PPH A > ); and Case 2 ( 00 : PPH ≥ , 0: PPH A < ), which are given in braces  
{ }. 
 
 L-8.2.1.  Given a random sample nxxx ,,, 21   of measurements from the population, let 
P denote the proportion of X's that do not exceed C.  This true proportion can be estimated 
from the sample data by dividing the number (k) of sample points that are less than or equal 
to C by the sample size (n). 
 
 nkpP =≈  . 
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 L-8.2.2.  Compute np, and n(1 – p).  If both np and n(1 – p) are greater than or equal  
to 5, proceed.  

 L-8.2.3.  Otherwise, consult a statistician as analysis may be complex.  Calculate: 
 

 
nPP

Pp
z

/)1( 00

0

−

−
= . 

 L-8.2.4.  Use Table B-15 of Appendix B to find the critical value, α−1Z , such that 
%100)1( α−  of the normal distribution is below α−1Z .  For example, if 05.0=α  then 

645.11 =−αZ . 
 
 L-8.2.4.1.  If }{ 11 αα −− −<> ZzZz , 0H may be rejected. 
 
 L-8.2.4.2.  If }{ 11 αα −− −≥≤ ZzZz , there is not enough evidence to reject 0H .  Therefore, 
the false acceptance error rate must be verified. 
 
 L-8.2.5.  To calculate the power of the test, choose a proportion, P1, that would consti-
tute a meaningful difference from P0, and use a statistical software package to generate the 
power curve of the test. 
 
 L-8.2.6.  If only one false acceptance error rate (β) has been specified (at P1), it is  
possible to calculate the sample size that achieves the DQOs.  To do this, calculate: 
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 L-8.2.7.  If nm ≤ , the false acceptance error rate has been satisfied.  Otherwise, the 
false acceptance error rate has not been satisfied.  It is usually more helpful to do this calcula-
tion before sampling, as all of the parameter values needed for the calculation are available 
before the sampling begins. 
 
 L-8.2.8.  The results of the test could be: 
 
 L-8.2.8.1.  0H is rejected, conclude that { }00 PPPP <> . 
 
 L-8.2.8.2.  0H is not rejected, the false acceptance error rate was satisfied, and conclude 
that { }00 PPPP ≥≤ . 
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 L-8.2.8.3.  0H is not rejected, the false acceptance error rate was not satisfied, and the 
conclusion that { }00 PPPP ≥≤  is uncertain because the sample size was too small. 

 L-8.2.9.  Example of the One-Sample Test for Proportions of Simple and Systematic 
Random Samples.  Groundwater concentrations of gasoline at a site are compared to a regu-
latory threshold C = 35 micrograms per liter (μg/L).  Suppose this site has only 13 detections 
out of 90 groundwater samples collected to date.  Because more than 50% of the data are 
censored, the test of proportions is more appropriate than a t-test or Wilcoxon signed rank 
test.  The test of proportions can be used to determine if more than 95% of the concentrations 
are less than the regulatory threshold at the 90% level of confidence.  The null and alterna-
tive hypotheses are as follows:  
 
 35: 95.00 ≥XH  μg/L, 35: 95.0 <XH A  μg/L . 

 L-8.2.9.1.  Equivalently, 
 
 95.0:0 ≤PH ,  95.0: >PH A  . 
 
(This is Case 1 in Paragraph L-8.2.)  Suppose 11 of the detected concentrations exceed this 
regulatory threshold; therefore, the proportion of samples with detected concentrations below 
the threshold is ( ) 8778.090/1190 =−=p . 
 
 L-8.2.9.2.  Determine whether np ≥ 5 and n(1 – p) ≥ 5: 
 
 90 0.8778 79np = × =  
 
 (1 ) 90 (1 0.08778) 11n p− = × − =  . 
 
 L-8.2.9.3.  Because np ≥ 5 and n(1 – p) ≥ 5, the test of proportions can be used.  
In this example, P0 = 0.95 and 1 – α = 0.90. 
 

 143.3
90/)95.01(95.0

95.08778.0
/)1( 00

0 −=
−

−
=

−

−
=

nPP
Pp

z . 

 
 L-8.2.9.4.  Using Table B-15 of Appendix B, we find the critical value 90.0Z =1.282.  
 
 L-8.2.9.5.  Compare the calculated value z with the critical value.  The null  
hypothesis is rejected if .90..0Zz >  As )(282.1143.3 90.0Zz ≤≤− , there is not enough evidence 
to reject 0H .  Therefore, the false acceptance error rate has to be verified through a power 
curve or sample size calculation.  Suppose a false acceptance error rate was specified at  
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99.01 =P  ( 20.0=β ); it is possible to calculate the sample size that achieves this error rate 
using the following equation: 
 

 

.8343.82
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 L-8.2.9.6.  Because ),(9083 nm ≤≤ the false acceptance error rate has been satisfied.  
Therefore, 0H was not rejected and the false acceptance error rate was satisfied.  There is at 
least 90% confidence that the proportion of gasoline concentrations below the regulatory 
threshold is less than 0.95 (i.e., 95.0≤P , or, equivalently, 3595.0 ≥X ). 
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APPENDIX M 

Hypothesis Testing—Two-Population and General Cases 

 

M-1.  Introduction.  A two-sample test is used when a data user is interested in making in-

ferences about two independent populations, comparing some parameter from one popula-

tion to the corresponding parameter from a second population.  For example, a common 

environmental application entails comparing the population mean or median of the study 

area data set to the population mean or median of the background data set.  EPA 600/R-

96/084, QA/G-9 contains additional examples of the basic statistical tests presented here.  

Lehmann (1975) is a good resource for nonparametric tests.  Montgomery (1997) contains 

a fuller treatment of two-sample t-tests, matched pairs t-tests, ANOVA, and multiple com-

parison tests. 

 

M-2.  Comparing Two Means.  Two-sample tests do not require equal sample sizes, though 

equal sample sizes are recommended.  The accuracy of estimating summary statistics from 

each sample is based on the number of samples available; data sets with many samples can 

provide more accurate estimates of the mean and standard deviation than those with only a 

few.  When sample sizes are not equal, it may mean that one population is not defined as 

well as the other.  If sample sizes are grossly unequal, the result of the two-sample test may 

produce an incorrect conclusion. 

 

 M-2.1.  Student's Two-Sample t-Test.  Student's two-sample t-test is a parametric sta-

tistical test that can be used to compare two population means based on the independent 

random samples x1, x2,..., xm from the first population, and samples y1, y2,..., yn from the se-

cond population.  This test assumes the variances of the two populations are approximately 

equal.  This supposition can be verified using an F-test or Levene’s test (Appendix N, Par-

agraph N-4).  However, the F-test is not recommended because it is not robust to deviations 

from normality.  A positively skewed distribution tends to give rise to higher values of F 

and false rejection of the null hypothesis that the variances of two distributions are equal.  

If the two variances are not equal, the Satterthwaite’s t-test is recommended (See Paragraph 

M-2.1.2 for directions and Paragraph M-2.1.3 for an example). 

 

 M-2.1.1.  Introduction.  The principal assumption required for the two-sample t-test is 

that a random sample of size m (x1, x2,..., xm) is drawn from population 1, and an independ-

ent random sample of size n (y1, y2,..., yn) is drawn from population 2.  The second assump-

tion required for the two-sample t-test is that the sample means, x (sample 1) and y  

(sample 2), are approximately normally distributed (if X and Y are normal, the sample 

means x and y will be also be normally distributed). 

 

 M-2.1.1.1.  The two-sample t-test is commonly used to compare site contaminant 

concentrations to background concentrations: 

 



 

 

 

 

EM 200-1-16 

31 May 13 

 

M-2 
 

 

 00 :   BSH , 0:   BSAH  . 

 

The “true” mean site concentration and “true” mean background concentrations are denoted 

by S  and B , respectively.  When the above null hypothesis is selected, often 0 = 0 and  

 = 0.2 or 0.1.  For this situation, the value of  tends to be somewhat higher than that used 

for other statistical applications (e.g., where  may be 0.05 or 0.01).  This occurs to avoid a 

large Type II error (in this case, concluding the site is “clean” when it is “dirty” relative to 

background).  As  decreases, the value of x > y  required to reject yxH  :0  increases.  

The following null and alternative hypotheses are also frequently used: 

 

 00 :   BSH ,  0:   BSAH  . 

 

 M-2.1.1.2.  In this situation, a common value for  is 0.05.  However, the value for 0 

depends greatly on the project.  To reject H0, that is, to demonstrate that the site is “clean” 

relative to background, the site mean must be significantly less than the background plus 0 

(e.g., x << y + 0).  When there is actually no difference between the site and background 

populations (i.e., S = B), rejecting the null hypothesis in favor of the alternative hypothe-

sis (i.e., the site is “clean” relative to background), becomes less probable as the selected 

value of 0 decreases.  In general, a small value of 0 is undesirable from a cost perspective 

as a larger than budgeted number of samples may be required to determine if the means dif-

fer by 0.  However, an extremely large value of 0 is undesirable from an environmental 

risk perspective as H0 may be rejected even when the site mean is much larger than the 

background mean.  Occasionally, 0 is equal to one or two standard deviations of the back-

ground data set.  The selection of an appropriate value of 0 is a critical component of the 

DQO process during project planning; the value should be established only after input is 

obtained from all users and stake holders. 

 

 M-2.1.2.  Directions to Apply the Two-sample t-test for Differences Between the  

Population Means.  Steps to apply the two-sample t-test for differences between the  

population means for Case 1 and Case 2 are as follows: Case 1: oo yxH  : , 

0:   yxAH ; and Case 2: 00 :   yxH , 0:   yxAH , which is given in 

braces { }. 

 

 M-2.1.2.1.  Verify that both data sets are normal, using procedures in Appendices F 

and J, such as the Shapiro-Wilk test (Paragraphs F-3.2 and F-3.3) and a normal probability 

plot (Paragraphs J-5.5 and J-5.6). 

 

 M-2.1.2.2.  Calculate the sample mean, x , and the sample variance, 2

Xs  (Appendix 
D), for the first data set (containing m points) and compute the sample mean, y , and the 
sample variance, 2

Ys , for the second data set (containing n points). 
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 M-2.1.2.3.  Determine if the variances of the two populations are equal.  If the vari-

ances of the two populations are not equal, use Satterthwaite’s t-test (presented below).   

Otherwise, compute the pooled standard deviation: 

 

 
   
   11

11 22






nm

snsm
s YX

E . 

 

 M-2.1.2.4.  Calculate  

 

 
mns

yx
t

E /1/1

0







. 

 

 M-2.1.2.5.  Use Table B-23 of Appendix B to find the critical value, 2,1  nmt  , such 

that 100)1(  % of the t-distribution with (m + n – 2) degrees of freedom is below 

2,1  nmt  . 

 

 M-2.1.2.5.1.  If }{ 2,12,1   nmnm tttt  , reject 0H .  Go to step M-2.1.2.7.  

 

 M-2.1.2.5.2.  If }{ 2,12,1   nmnm tttt  , there is not enough evidence to reject 0H

.  Therefore, the false acceptance error rate will need to be verified.  Go to M-2.2.6.  

 

 M-2.1.2.6.  To calculate the power of the test, assume that the true values for the mean 

and standard deviation are those obtained in the sample and use a statistical software pack-

age to generate the power curve of the two-sample t-test.  If only one false acceptance error 

rate (β) has been specified (at δ1), it is possible to calculate the sample size that achieves the 

DQOs, assuming the true mean and standard deviation are equal to the values estimated 

from the sample, instead of calculating the power of the test. 
 
 M-2.1.2.7.  Calculate:  
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If mm *  and nn * , the false acceptance error rate has been satisfied.  Otherwise, the 

false acceptance error rate has not been satisfied. 

 

 M-2.1.2.8.  The results of the test could be: 

 

 M-2.1.2.8.1.  0H  is rejected; }{ 00   yxyx . 
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 M-2.1.2.8.2.  0H  is not rejected and the false acceptance error rate is satisfied; 

}{ 00   yxyx . 

 

 M-2.1.2.8.3.  0H  is not rejected and the false acceptance error rate was not satisfied; 

}{ 00   yxyx , but this conclusion is uncertain because the sample size was 

too small. 

 
 M-2.1.3.  Example of the Student's Two-Sample t-Test (Equal Variances) for Simple 

and Systematic Random Samples.  Consider the case where nickel (Ni) surface soil concen-

trations are compared between Site A and Background using the test:  

 

 oo yxH  : ,  0:   yxAH  . 

 

Let X refer to the site Ni concentrations and Y to the background Ni concentrations.   

Let 0 = 0. 

 

 M-2.1.3.1.  The following Ni concentrations are obtained for the site soil (m = 6): 

2.665, 3.610, 5.470, 7.150, 8.340, and 7.960 mg/kg. 

 

 M-2.1.3.2.  The following Ni concentrations are obtained for the background soil 

(n = 10): 5.140, 7.460, 5.990, 3.360, 3.190, 2.870, 5.950, 1.720, 4.770, and 5.605 mg/kg. 

 
 M-2.1.3.3.  In this example, the Shapiro-Wilk test was used to test the assumption of 

normality and an F-test was used to test the assumption of equal variances.  Because the data 

have equal variances at a significance level of 0.05, the Student’s two-sample t-test is more 

appropriate. 

 

Data Sample Mean Sample Variance Sample Size 
Site (X) 5.87 5.53 6 

Background (Y) 4.61 3.12 10 

 

 M-2.1.3.4.  Using methods presented above in Paragraph M-2.1, determine if the vari-

ances of the two populations are equal.  If the variances of the two populations are not  

equal, use Satterthwaite’s t-test (Paragraph M-2.2).  Otherwise, compute the pooled standard 

deviation: 
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 M-2.1.3.5.  Calculate  

 



 

 

 

 

EM 200-1-16 

31 May 13 

 

M-5 
 

 

 22.1
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 M-2.1.3.6.  Because we want an 80% level of confidence, 20.0 .  So, 

8681.014,80.0 t .  Now compare the calculated value, t, with the critical value, 14,80.0t : 

8681.022.1  .  Therefore, reject 0H .  At the 80% level of confidence, the mean concentra-

tion of Ni at Site A is greater than the mean background concentration of Ni. 

 
 M-2.2.  Satterthwaite’s t-Test (Unequal Variances).  If the two variances are not 

equal, the use of Satterthwaite’s t-test is recommended.  Directions are provided below in 

Paragraph M-2.2.1, followed by an example in Paragraph M-2.2.2. 

  

 M-2.2.1.  Directions for Applying Satterthwaite’s t-Test to Unequal Variances.  This 

describes the steps for applying the two-sample t-test for differences between the popula-

tion means for: Case 1: oyxH  :0 vs. 0:   yxAH ; and Case 2: 

00 :   yxH  vs. 0:   yxAH , which is given in braces { }. 
 

 M-2.2.1.1.  Verify that both data sets come from a normal distribution, using the tests 

presented in Appendices F and J, such as the Shapiro-Wilk test (Paragraph F-3.2) and a 

normal probability plot (Paragraph J-5.5).  

 

 M-2.2.1.2.  Calculate the sample mean, x , and the sample variance, 2

Xs  (Appendix 

C), for sample 1 and compute the sample mean, y , and the sample variance, 2

Ys , for sample 

2. 

 

 M-2.2.1.3.  Test for equal variances, using tests presented in Appendix N, such as 

Bartlett’s test (Paragraph N-3).  If the variances are approximately equal, use the two-

sample t-test (presented in Paragraph M-2.2.2).  Otherwise, compute the standard deviation 

for unequal variances: 

 

 
n
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s
s YX

NE

22

 . 

 

 M-2.2.1.4.  Calculate  

 

 
NEs

yx
t 0
 . 

 

 

 M-2.2.1.5.  Use Table B-23 of Appendix B to find the critical value,  ,1t , such that 

)1(100  % of the t-distribution with v degrees of freedom is below  ,1t , and  
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Round down the degrees of freedom to the nearest integer.  Compare t to the critical value: 

 M-2.2.1.5.1.  If }{ ,1,1    tttt , 0H may be rejected.  

 

 M-2.2.1.5.2.  If }{ ,1,1    tttt , there is not enough evidence to reject 0H .  

Therefore, the false acceptance error rate will need to be verified.  Go to M-2.2.1.6. 

 

 M-2.2.1.6.  If 0H  was not rejected, calculate either the power of the test or the sample 

size necessary to achieve the false rejection and false acceptance error rates.  To calculate 

the power, assume that the true values for the mean and standard deviation are those ob-

tained in the sample and use a statistical software package to generate the power curve of 

the two-sample t-test.  A simple method to check on statistical power does not exist. 

 

 M-2.2.1.7.  The results of the test could be: 

 

 M-2.2.1.7.1.  0H  is rejected: }{ 00   yxyx . 

 

 M-2.2.1.7.2.  0H  is not rejected and the false acceptance error rate is satisfied, 

}{ 00   yxyx . 

 

 M-2.2.1.7.3.  0H  is not rejected but the false acceptance error rate is not satisfied; 0H  

is uncertain because the sample size was too small. 

 

 M-2.2.2.  Example of Applying Satterthwaite’s t-test to Unequal Variances.  Because 

we want a 95% level of confidence, 05.0  and v = 6 (round down to the nearest integer).  

So, 943.16,95.0 t .  Now compare the calculated value (t) with the critical value, 6,95.0t .  Be-

cause 943.1031.1  , there is not enough evidence to reject 0H . 

 

 M-2.2.2.1.  As a result of not having enough evidence to reject the null hypothesis, it 

is necessary to calculate either the power of the test or the sample size necessary to achieve  

the false rejection and false acceptance error rates.  DEFT can be used to evaluate power 

and sample size and is presented in this example.  To calculate the power of the test, one 

must consider what an acceptable difference among the means is before concluding H0 

should be rejected.  The difference that one is willing to accept depends on the detection 
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limits achieved, the range of concentrations from each data set, and what is considered to 

have practical significance vs. statistical significance. 

 

 M-2.2.2.2.  The power curve (Figure M-1) shows where a statistically significant dif-

ference between the means was assumed to be 1 mg/kg (the region between the vertical 

dashed and solid lines).  According to DEFT, 21 samples are needed for the estimated per-

formance curve.  In the above example, the site data have 36 samples and the background 

data only have 8.  Therefore, there may be a need to take more background samples.  It is 

important to note that the true difference in the mean (4.619 – 4.925 = –0.31) is to the left 

of the action level. 

 

 
 

Figure M-1.  Estimated Power Performance Curve. 
 

 M-2.3.  Matched Pairs t-Test. 

 

 M-2.3.1.  Introduction.  Sometimes, the two populations of interest represent different 

measurements on the same homogenous group.  For example, contaminant concentration in 

groundwater before and after a certain remediation treatment may need to be compared.  If 

measurements are taken from the same set of wells both before and after treatment, we can 

match the results by well.  That is, each well will have a result from before the treatment 

and a result from after the treatment.  Under this experimental design, the observed differ-

ences for each well before and after treatment become the sample data because we expect 

the two results from each well to be more homogeneous than the results among wells. 
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 M-2.3.1.1.  The differences are then analyzed using the one-sample t-test if the as-

sumptions for that test are met.  Namely, the one-sample t-test assumes the differences rep-

resent a random sample.  It also assumes that the average difference follows a normal 

distribution.  If the normal assumption is not valid, Paragraph M-4.1.6 discusses a non-

parametric alternative for matched pairs designs.  In addition to matched pairs, one would 

ideally assign the order of the treatments randomly to each subject, although that would not 

be possible in the groundwater remediation example.  Matching can also occur between 

subjects that are closely alike in all respects except the treatment that is applied. 

 

 M-2.3.1.2.  The matched pairs t-test is commonly used to compare site contaminant 

concentrations before and after a treatment: 

BAH  :0 , BAAH  :  . 

 

 M-2.3.1.3.  The “true” mean concentration before treatment and the “true” mean con-

centration after treatment are denoted by B and A, respectively.  The before treatment 

mean is often referred to as the “baseline” mean.  Directions are provided below in Para-

graph M-2.3.2, followed by an example in Paragraph M-2.3.3. 

 

 M-2.3.2.  Directions to Apply the Matched Pairs t-test for Differences Between the 

Means Before and After a Treatment.  Steps to apply the Matched Pairs t-test for differ-

ences between the means for Case 1 and Case 2 are as follows: Case 1: BAH  :0 , 

BAAH  : ; and Case 2: BAH  :0 , BAAH  : , which is given in braces { }. 

 

 M-2.3.2.1.  Subtract the before treatment concentration (Bi) from the corresponding 

after treatment concentration (Ai) for each pair of results (Bi, Ai) to obtain the differences: 

 

 iii BAd   . 

 

 M-2.3.2.2.  Verify that the differences, ndddd ...,, 321 , are normal, using procedures in 

Appendices F and J, such as the Shapiro-Wilk test (Paragraphs F-3.2 and F-3.3) and a nor-

mal probability plot (Paragraphs J-5.5 and J-5.6). 

 

 M-2.3.2.3.  Calculate the sample mean, d , and the sample variance, 2

ds  (Appendix D). 

 

 M-2.3.2.4.  Calculate  

 
ns

d
t

d

 . 

 

 M-2.3.2.5.  Use Table B-23 of Appendix B to find the critical value, 1,1  nt  , such that 

100)1(  % of the t distribution with (n – 1) degrees of freedom is below 1,1  nt  . 
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 M-2.3.2.5.1.  If }{ 1,11,1   nn tttt  , reject 0H .  Go to M-2.3.2.7.  

 

 M-2.3.2.5.2.  If }{ 1,11,1   nn tttt  , there is not enough evidence to reject 0H .  

Therefore, the false acceptance error rate will need to be verified.  Go to M-2.3.2.6.  

 

 M-2.3.2.6.  To calculate the power of the test, assume that the true values for the mean 

and standard deviation are those obtained in the sample and use a statistical software package 

to generate the power curve of the matched pairs t-test.  If only one false acceptance error 

rate (β) has been specified (at µ1), it is possible to approximately calculate the sample size 

that achieves the DQOs, assuming the true mean and standard deviation are equal to the val-

ues estimated from the sample, instead of calculating the power of the test.  A derivation of 

the following formula is given in Appendix A of EPA 600/R-96/055, QA/G-4. 

 

 M-2.3.2.7.  Calculate:  
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where Zp is the p100th percentile of the standard normal distribution (Table B-15 of Appendix 

B).  Round m up to the next integer.  If , the false acceptance error rate has been satis-

fied.  If , the false acceptance error rate has not been satisfied.  

 

 M-2.3.2.8.  The results of the test could be: 

 

 M-2.3.2.8.1.  0H  is rejected; }{ BABA   . 

 

 M-2.3.2.8.2.  0H  is not rejected and the false acceptance error rate is satisfied; 

}{ BABA   . 

 

 M-2.3.2.8.3.  0H  is not rejected and the false acceptance error rate was not satisfied; 

}{ BABA   , but this conclusion is uncertain because the sample size was too small. 

 

 M-2.3.3.  Example of the Matched Pairs t-Test for the Difference Between Means 

Before and After Treatment.  Consider the case where the results of a groundwater reme-

diation procedure are compared before and after treatment to determine if the remediation 

has decreased the concentration of the contaminant.  Test the null hypothesis that the treat-

ment had no lowering effect at the 95% level of confidence: 

 

 BAH  :0 ,  BAAH  :  . 

 

 M-2.3.3.1.  The data consist of measured TCE concentrations (mg/L) at monitoring 

nm 

nm 
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wells before and after a treatment-test, given in Table M-1. 

 

 M-2.3.3.2.  Determine if the differences follow a normal distribution.  A Shapiro-Wilk 

test for normality does not reject the hypothesis that the differences are normal (p = 

0.4248).  So, assuming normality is reasonable. 

 

 M-2.3.3.3.  Calculate  

 

 10.4
109.13
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 M-2.3.3.4.  Assume that we want a 95% level of confidence, 05.0 .  So, 

833.19,95.0 t .  Now compare the calculated value, t, with the critical value 9,95.0t : 

833.110.4  .  Therefore, reject 0H .  This means that there is a lower mean concentra-

tion of TCE after remediation. 

 
Table M-1. 
TCE Concentrations (mg/L) at Monitoring Wells Before and After a Treatment 

Sample ID Baseline (01/2000) Post–Test (12/2000) Difference 
Well 1 20.9 0.917 –20.0 

Well 2 9.17 8.77 –0.400 

Well 3 5.96 4.37 –1.59 

Well 4 41.5 4.34 –37.2 

Well 5 34.3 10.7 –23.6 

Well 6 19.7 1.48 –18.2 

Well 7 38.9 0.272 –38.6 

Well 8 8.18 0.520 –7.66 

Well 9 9.13 3.06 –6.07 

Well 10 28.5 1.90 –26.6 

 

M-3.  Comparing Proportions and Percentiles: Two-Sample Test for Proportions.  This  

Paragraph considers hypotheses concerning two population proportions (or percentiles).  

The two-sample test for proportions can be used to compare two population percentiles or 

proportions and is based on an independent random sample of m ( mxxx ,,, 21  ) from the 

first population and an independent random sample of size n ( nyyy ,,, 21  ) from the second 

population.  The sample proportion for the first population is represented by 1p and the 

sample proportion for the second population is represented by 2p . 

 

 M-3.1.  Introduction.  The principal assumption for this non-parametric test is that of 

random sampling from the two populations.  The two-sample test for proportions is valid 

(robust) for any underlying distributional shape and is robust to outliers, providing they are 

not pure data errors.  Directions for a two-sample test for proportions for a simple random 
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sample and a systematic simple random sample are given below in Paragraph M-3.2, fol-

lowed by an example in Paragraph M-3.3. 

 

 M-3.2.  Directions for Applying the Two-Sample Test for Proportions.  Directions for 

applying the two-sample test for proportions are presented for Case 1: 0210 :  PPH  and 

021:  PPH A ; and Case 2: 0210 :  PPH  and 021:  PPH A , which is given in  

braces { }.  Given m random samples mxxx ,,, 21   from the first population, and n samples 

from the second population, nyyy ,,, 21  , let 1k  be the number of points from sample 1 

which exceed some concentration C, and let 2k  be the number of points from sample 2 that 

exceed C.  

 

 M-3.2.1.  Calculate the sample proportions: mkp /11  , nkp /22  .  

 

 M-3.2.2.  Calculate the pooled proportion: )/()( 21 nmkkp  . 

 M-3.2.3.  Compute:  

 

 1mp , )1( 1pm  , 2np , )1( 2pn  .  

 

If all of the above values are greater than or equal to 5, continue.  Otherwise, seek assis-

tance from a statistician as analysis is complicated. 

 

 M-3.2.4.  Calculate:  

 

 )/1/1()1(/)( 21 nmppppz   

 

 M-3.2.5.  Use Table B-15 of Appendix B to find the critical value, 1Z , such that 

100)1(  % of the normal distribution is below 1Z .  For example, if  = 0.05 then  

1Z  = 1.645. 
 

 M-3.2.5.1.  If }{ 11    ZzZz , reject 0H . 

 

 

 M-3.2.5.2.  If }{ 11    ZzZz , do not reject 0H .  Proceed to M-3.2.6 to calculate 

the false acceptance error rate. 

 

 M-3.2.6.  If H0 is not rejected, calculate either the power of the test or the sample size 

necessary to achieve the false rejection and false acceptance error rates.  If only one false  

acceptance error rate (β) has been specified at P1 – P2, it is possible to calculate the sample 

sizes that achieve the DQOs (assuming the proportions are equal to the values estimated 

from the sample) instead of calculating the power of the test.  To do this, calculate: 
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2

21 PP
P


  . 

 

Zp is the th100p  percentile of the standard normal distribution (Table B-15 of Appendix 

B).  
 

 M-3.2.6.1.  If m > m* and n > m*, then the false acceptance error rate has been satis-

fied.  
 

 M-3.2.6.2.  If both m and n are below m*, the false acceptance error rate has not been 

satisfied.  
 

 M-3.2.6.3.  If m* is between m and n, use a software package like the DEFT or 

DataQUEST to calculate the power of the test, assuming that the true values for the propor-

tions 1P  and 2P are those obtained in the sample.  

 M-3.2.6.4.  If the estimated power is below 1 – β, the false acceptance error rate has 

not been satisfied. 

 

 M-3.2.7.  The results of the test could be: 

 

 M-3.2.7.1.  0H  is rejected; 021  PP { 021  PP }. 

 

 M-3.2.7.2.  0H was not rejected, the false acceptance error rate was satisfied, and it 

seems 021  PP { 021  PP }. 

 

 M-3.2.7.3.  0H was not rejected, the false acceptance error rate was not satisfied, and 

it seems 021  PP { 021  PP }, but this outcome is uncertain because the sample size 

was probably too small. 
 

 M-3.3.  Example of Two-Sample Test for Proportions for Simple and Systematic 

Random Samples.  Gasoline groundwater concentrations at Site A are compared to back-

ground concentrations:  

 

 0210 :  PPH ,  021:  PPH A  . 

 
 M-3.3.1.  The groundwater site data are following (m = 15): 243, 700, 781, 385, 642, 

97.2, 233, 11.1, 10.60, 14.90, 14.90, 12.70, 9.57, 6.04, and 7.32 μg/L. 
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 M-3.3.2.  The groundwater background data are following (n = 45): 177.0, 4.27, 10.60, 

10.60, 14.90, 14.60, 12.70, 9.57, 95.70, 7.32, 7.32, 7.32, 6.58, 6.90, 6.90, 39.5, 4.27, 10.60, 

10.60, 14.90, 14.60, 12.70, 9.57, 6.04, 7.32, 7.32, 7.32, 146.00, 6.90, 6.90, 44.5, 4.27, 10.60, 

10.60, 14.90, 14.60, 12.70, 9.57, 6.04, 7.32, 7.32, 7.32, 111.00, 6.90, and 6.90 μg/L. 

 

Data ki Sample Size 
Site (i = 1) 7 15 

Background (i = 2) 6 45 

 

where ki is the number of detected concentrations above the regulatory threshold (35 μg/L).  

 

 M-3.3.3.  Determine whether or not 1mp , )1( 1pm  , 2np , )1( 2pn  are all greater  

than 5:  

 

 467.015/7/11  mkp  

 

 133.045/6/22  nkp  

 
 57)467.0(151 mp   

 58)467.01(15)1( 1  pm  

 

 56)133.0(452 np   

 

 539)133.01(45)1( 2  pn . 

 

 M-3.3.4.  Calculate the following: 

 

 217.0)4515/()67()/()( 21  nmkkp  
 

 
72.2)45/115/1()217.01(217.0/)133.0467.0(

)/1/1)(1(/)( 21



 nmppppz
 . 

 

 M-3.3.5.  Because the level of confidence is 95%, 05.0 .  Using Table B-15, we 

find that 645.105.01 Z .  Now compare the calculated value, z, with the critical value, 

05.01Z : 645.174.2  .  
 

 M-3.3.6.  Therefore, there is enough evidence to reject H0 (i.e., the results suggest that 

the proportion of samples with gasoline levels above the regulatory threshold in the site 

well samples is greater than the proportion above the regulatory threshold in the back-

ground well samples). 
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M-4.  Nonparametric Comparisons of Two Populations. 

 
 M-4.1.  The Wilcoxon Rank Sum Test.  The Wilcoxon rank sum test is a nonparamet-

ric test that can be used to compare two population distributions based on n independent 

random samples ( nxxx ,,, 21  ) from the first population, and m independent random sam-

ples ( myyy ,,, 21  ) from the second population.  The most general form of the hypotheses 

for a one-tailed Wilcoxon rank sum test can be stated in terms of the probability that an ob-

servation from distribution Y exceeds a value from distribution X, such as: 

 

     5.0:,5.0:0  YXPHYXPH A  . 

 

 M-4.1.2.  Introduction.  Hypotheses on the relative rank of the mean of each popula-

tion can also be formulated with the additional assumption that the two underlying distribu-

tions have the same shape and dispersion (Conover, 1980).  That is, one distribution differs 

by some fixed amount (or is increased by a constant) when compared to the other distribu-

tion.  An important advantage of the Wilcoxon rank sum test is its partial robustness to out-

liers, because the analysis is conducted on rankings of the observations.  This limits the 

influence of outliers because a given observation can be no more extreme than the first or 

last rank.  Directions and an example for the Wilcoxon rank sum test are given in Para-

graphs M-4.1.3 and M-4.1.4, respectively.  If a relatively large number of samples have 

been taken, it is more efficient to use the large sample approximation to the Wilcoxon rank 

sum test (Paragraph M-4.1.6) to perform the hypothesis test. 

 M-4.1.3.  Directions for the Wilcoxon Rank Sum Test for Simple and Systematic 

Random Samples.   

 M-4.1.3.1.  Let nxxx ,,, 21   represent the n observations from population 1 and 

myyy ,,, 21   represent the m observations from population 2, where both n and m are less 

than or equal to 20.  

 

 M-4.1.3.1.1.  Case 1: 

 

   5.0:0  YXPH :  Values of X tend to be smaller than or equal to values of Y. 

 

   5.0: YXPH A :  Values of X tend to be larger than values of Y.  

 

 M-4.1.3.1.2.  Case 2: 

 

   5.0:0  YXPH :  Values of X tend to be larger than or equal to values of Y.  

 

   5.0:  YXPH A :  Values of X tend to be smaller than values of Y. 
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 M-4.1.3.1.3.  Case 3: 

 

   5.0:0  YXPH :  Values of X tend to be equal to values of Y.  

 

   5.0:  YXPH A :  Values of X tend to be smaller than or greater than values of Y. 

 

 M-4.1.3.2.  If either m or n is larger than 20 and the smaller of the two is at least 4 

(Lehmann, 1975), use the large sample approximation described in Paragraph M-4.1.5. 

 

 M-4.1.3.3.  Combine the two data sets and rank the measurements (from both data 

sets) from smallest to largest, keeping track of which population contributed each meas-

urement.  

 

 M-4.1.3.3.1.  Assign the rank of 1 to the smallest value of the combined data sets and 

note whether the smallest value is from population 1 or 2. 

 

 M-4.1.3.3.2.  Assign the rank of 2 to the second smallest value of the combined data 

sets (noting the population), and so forth.  
 

 M-4.1.3.3.3.  If there are ties, assign the average of the ranks that would otherwise 

have been assigned to the tied observations. 
 
 M-4.1.3.4.  Calculate R, the sum of the ranks of the data from population 1, and then 

calculate: 
 

 
2

)1( 


nn
RW . 

 

 M-4.1.3.5.  Use Table B-17 of Appendix B to find the critical value, W  (or 2/W  for 

Case 3). 
 

 M-4.1.3.6.  Compare W to the critical value W . 

 

 M-4.1.3.6.1.  For Case 1, reject H0 if WnmW  .  

 

 M-4.1.3.6.2.  For Case 2, reject H0 if WW  .  

 

 M-4.1.3.6.3.  For Case 3, reject H0 if 2/WnmW   or 2/WW  .  

 

 M-4.1.3.7.  The results of the test could be: 
 

 M-4.1.3.7.1.  0H was rejected and it seems values from population 1 tend to be greater 

than (Case 1), smaller than (Case 2), or different from (Case 3) values from population 2. 
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 M-4.1.3.7.2.  0H was not rejected, and it seems that values from population 1 tend to 

be smaller than or equal to (Case 1), greater than or equal to (Case 2), or not different from 

(Case 3) values from population 2. 
 

 M-4.1.3.7.3.  If 0H is not rejected, it should be determined whether adequate power 

was achieved.  However, as power calculations tend to be complex and difficult to do man-

ually, it is recommended that a statistician be consulted. 
 

 M-4.1.4.  Example of the Wilcoxon Rank Sum Test for Simple and Systematic  

Random Samples.   

 M-4.1.4.1.  Consider the Case 1 (Paragraph M-4.1.3), where lead (Pb) surface soil 

concentrations are compared between Site A and background at a significance level of  = 

0.05 using the test. 
 

 M-4.1.4.1.1.  0H : Site A Pb concentrations tend to be less than or equal to back-

ground Pb concentrations. 
 

 M-4.1.4.1.2.  AH : Site A Pb concentrations tend to be greater than background Pb 

concentrations. 
 

 M-4.1.4.2.  Suppose the Pb surface site concentrations (X) are as follows (n = 20): 

8.24, 6.57, 4.48, 4.34, 16.00, 3.83, 4.11, 3.48, 3.66, 5.01, 93.80, 3.70, 129.00, 4.92, 91.80, 

3.86, 4.21, 4.32, 10.00, and 9.38 mg/kg.  

 M-4.1.4.3.  Suppose the Pb surface background concentrations (Y) are as follows (m = 

16): 3.81, 3.68, 3.72, 3.68, 5.97, 4.12, 6.42, 4.13, 8.88, 3.01, 5.34, 3.74, 10.70, 3.86, 10.80, 

and 4.40 mg/kg. 
 

5.199
2

)120(20
5.409

2

)1(








nn
RW  

 

 10805.0 WW  

 

 212108)16)(20(  Wnm  . 

 M-4.1.4.4.  Because 2125.199  , H0 cannot be rejected.  There is insufficient  

evidence to conclude that the lead concentrations from Site A are greater than background 

lead concentrations. 
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Table M-2. 
Example M-4.1.4 Pb Concentrations 

Location Result 
(mg/Kg) 

Rank Location Result 
(mg/Kg) 

Rank 

background 3.01 1 background 4.4 19 

Site 3.48 2 site 4.48 20 

Site 3.66 3 site 4.92 21 

background 3.68 4.5 site 5.01 22 

background 3.68 4.5 background 5.34 23 

Site 3.70 6 background 5.97 24 

background 3.72 7 background 6.42 25 

background 3.74 8 site 6.57 26 

background 3.81 9 site 8.24 27 

Site 3.83 10 background 8.88 28 

background 3.86 11.5 site 9.38 29 

Site 3.86 11.5 site 10.0 30 

Site 4.11 13 background 10.7 31 

background 4.12 14 background 10.8 32 

background 4.13 15 site 16.0 33 

Site 4.21 16 site 91.8 34 

Site 4.32 17 site 93.8 35 

Site 4.34 18 site 129.0 36 

 

 M-4.1.5.  Large Sample Approximation of the Wilcoxon Rank Sum Test.  When a 

relatively large number of samples has been taken, it is more efficient to use a large sample 

approximation of the Wilcoxon rank sum test to obtain the critical value of W. Directions 

and an example are presented in Paragraphs M-4.1.5.1 and M-4.1.5.2, respectively.   

Required sample size to achieve a specified power is explored in Paragraphs M-4.1.4.3 and 

M-4.1.4.4. 

 M-4.1.5.1.  Directions for a Large Sample Approximation of the Wilcoxon Rank Sum 

Test for Simple and Systematic Random Samples.   
 

 M-4.1.5.1.1.  Let nxxx ,,, 21   represent the n observations from population 1 and 

myyy ,,, 21   represent the m observations from population 2 where either n or m is greater 

than 20 and the smaller of n and m is at least 4 (Lehmann, 1975).  The following hypothesis 

tests are considered: 
 

 M-4.1.5.1.1.1.  Case 1.    5.0:0  YXPH ,   5.0: YXPH A . 

 

 M-4.1.5.1.1.2.  Case 2.    5.0:0  YXPH ,   5.0:  YXPH A . 

 

 M-4.1.5.1.1.3.  Case 3.    5.0:0  YXPH ,   5.0:  YXPH A . 
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 M-4.1.5.1.2.  List and rank the measurements from both populations from smallest to 

largest, keeping track of which population contributed each measurement.  
 

 M-4.1.5.1.2.1.  The rank of 1 is assigned to the smallest value of the combined data 

sets, the rank of 2 to the second smallest value of the combined data sets, and so forth. 

 

 M-4.1.5.1.2.2.  If there are ties, assign the average of the ranks that would otherwise 

have been assigned to the tied observations. 

 

 M-4.1.5.1.3.  Calculate R, the sum of the ranks of the data from population 1, and then 

calculate:  
 

 
2

)1( 


nn
RW . 

 

 M-4.1.5.1.4.  Calculate:  
 

 12/)1(
2

 mnmnZ
mn

w pp  . 

 

 M-4.1.5.1.4.1.  Case 1.  1p  
 

 M-4.1.5.1.4.2.  Case 2: p   
 

 M-4.1.5.1.4.3.  Case 3.  Calculate both )2/(2/  pw  and )2/1(2/1   pw   

(Lehmann, 1975). 
 
 M-4.1.5.1.5.  Note that pZ  is the thp100  percentile of the standard normal distribution 

(Table B-15 of Appendix B). 
 

 M-4.1.5.1.5.1.  For Case 1, reject H0 if  1wW .  

 

 M-4.1.5.1.5.2.  For Case 2, reject H0 if wW  .  

 

 M-4.1.5.1.5.3.  For Case 3, reject H0 if 2/1  wW  or 2/wW  .  

 M-4.1.5.1.6.  The results of the test could be as follows.  

 

 M-4.1.5.1.6.1.  H0 was rejected and it seems values from population 1 tend to be 

greater than (Case 1), smaller than (Case 2), or different from (Case 3) values from popula-

tion 2. 
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 M-4.1.5.1.6.2.  H0 was not rejected, and it seems that values from population 1 tend to 

be smaller than or equal to (Case 1), greater than or equal to (Case 2), or not different from 

(Case 3) values from population 2. 
 

 M-4.1.5.2.  Example of the Large Sample Approximation to the Wilcoxon Rank Sum 

Test for Simple and Systematic Random Samples. 
 

 M-4.1.5.2.1.  Consider the case where lead (Pb) surface soil concentrations are com-

pared between Site A and background at a significance level of 0.05 using the test (Case 1 

in Paragraph M-4.1.5.1) (Table M-3). 
 

 M-4.1.5.2.1.1.  0H : Site A Pb concentrations tend to be less than or equal to back-

ground Pb concentrations. 
 

 M-4.1.5.2.1.2.  AH : Site A Pb concentrations tend to be larger than background lead 
concentrations. 
 
Table M-3. 
Example M-4.1.5.2 Pb Concentrations 

Location Result Rank Location Result Rank 
Background 3.01 1 site 4.48 22 

Background 3.05 2 site 4.92 23 

Site 3.48 3 site 5.01 24 

Site 3.66 4 background 5.34 25 

Background 3.68 5.5 background 5.97 26 

Background 3.68 5.5 background 6.2 27 

Site 3.7 7 background 6.42 28 

Background 3.72 8 site 6.57 29 

Background 3.74 9 site 8.24 30 

Background 3.81 10 background 8.88 31 

Site 3.83 11 site 9.38 32 

Site 3.86 12.5 site 10 33 

Background 3.86 12.5 background 10.7 34 

Site 4.11 14 background 10.8 35 

Background 4.12 15 background 15.5 36 

Background 4.13 16 site 16 37 

Background 4.2 17 background 20.6 38 

Site 4.21 18 site 91.8 39 

Site 4.32 19 site 93.8 40 

Site 4.34 20 site 129 41 

Background 4.4 21 — — — 
 

 M-4.1.5.2.2.  Suppose the surface soil Pb concentrations for Site A (X) are: 8.24, 6.57, 

4.48, 4.34, 16.00, 3.83, 4.11, 3.48, 3.66, 5.01, 93.80, 3.70, 129.00, 4.92, 91.80, 3.86, 4.21, 
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4.32, 10.00, and 9.38 mg/kg.  

 M-4.1.5.2.3.  Suppose the background surface soil Pb concentrations (Y) are: 3.05, 

3.81, 3.68, 3.72, 4.20, 3.68, 5.97, 4.12, 6.42, 6.20, 4.13, 8.88, 3.01, 15.5, 5.34, 3.74, 20.6, 

10.70, 3.86, 10.80, and 4.40 mg/kg. 

 

 M-4.1.5.2.4.  Note that tied values occur at for concentrations 3.68 and 3.86.  These 

ties are assigned the average of the ranks they would otherwise have been assigned.  The 

rank of 3.68 is 5.5, which is the average of ranks 5 and 6, and the rank of 3.86 is 12.5, 

which is the average of ranks 12 and 13. 
 

 M-4.1.5.2.5.  Population 1 is the lead surface site data (n = 20), and population 2 is the 

background lead data (m = 21).  Calculate W as:  
 

 5.248
2

)120(20
5.458

2

)1(








nn
RW . 

 

 M-4.1.5.2.6.  Calculate  
 

 12/)12120(2021645.1
2

2021
12/)1(

2



 mnmnZ

mn
w pp = 273.1 

 

 645.195.01   ZZZ p  . 

 M-4.1.5.2.6.  Compare the calculated statistic W to the critical value 1w , (248.5 < 

273.1).  Because  1wW , do not reject the null hypothesis.  Lead concentrations from 

Site A may be less than or equal to background lead concentrations.  The power of the test 

needs to be determined (refer to Paragraph M-4.1.5.3).  

 
 M-4.1.5.3.  Directions for Calculating Sample Size to Achieve a Specified Power for 

the Wilcoxon Rank Sum Test.   
 
 M-4.1.5.3.1.  Noether (1987) discusses the determination of an adequate sample size 

based on a predefined level of power to apply the Wilcoxon rank sum test for the following 

hypothesis test.  The n values of X ( nxxx ,,, 21  ) compared to m values of Y ( myyy ,,, 21  ): 

 

 M-4.1.5.3.1.1.  Case 1.    5.0:0  YXPH ,    5.0: YXPH A . 

 

 M-4.1.5.3.1.2.  Case 2.    5.0:0  YXPH ,    5.0:  YXPH A . 
 

 M-4.1.5.3.1.3.  Case 3:    5.0:0  YXPH ,    5.0:  YXPH A . 
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 M-4.1.5.3.2.  The total number of samples collected, N = n + m, is compared with a 

conservative estimate of the number of samples N   required to achieve some desired power 

1 –   Under the assumption that the test statistic (in this case, the large sample approxima-

tion for the Wilcoxon rank sum statistic in Paragraph M-4.1.5.1) is normally distributed, N   

is determined as follows.  For Cases 1 and 2:  
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and for Case 3: 
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where qZ  =  q quantile of the standard normal distribution (from Table B-15) 

   = significance level of the test 

 1  = desired power for the test 

     
N

n
c   

      p  =   YXP  . 

 

 M-4.1.5.3.4.  Setting c equal to 0.5 will be best unless there are reasons to sample more 

heavily from one of the populations.  The value of p   can be taken from past information, a 

pilot sample, or chosen to represent a meaningful shift in the data (Noether, 1987).  The 

normality of the test statistic under the null hypothesis is generally valid if either n or m  

exceeds 20 and the smaller of the two is at least 4.  If the suggested sample size does not 

meet these requirements, consult a statistician. 
 
 M-4.1.5.4.  Example of Calculating Sample Size to Achieve a Specified Power for the 

Wilcoxon Rank Sum Test.  Suppose Pb surface soil concentrations at a site are to be com-

pared to background concentrations using a 95% level of confidence ( 05.0 ) using the 

following hypothesis test (Case 1). 
 

 M-4.1.5.4.1.  0H : Site A Pb concentrations tend to be less than or equal to back-

ground concentrations. 
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 M-4.1.5.4.2.  AH : Site A Pb concentrations tend to be higher than background con-

centrations. 
 

 M-4.1.5.4.3.  We wish to ensure that the sample size is large enough to find a meaning-

ful elevation of lead concentrations with 80% probability ( 20.0 ).  Suppose historical in-

formation indicates that the probability of site lead concentration being less than background 

lead concentration is about 1/3.  We decide to use this as our estimate of p  .  We wish to 

take an equal number of samples from the site and background, so that c = 0.5.  The required 

sample size to meet the power requirement is: 
 

 
 

 

 

   
2.74

5.0333.05.015.012

842.0645.1
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


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


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
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 M-4.1.5.4.4.  As we wish to collect and equal number of samples from the site and 

background, the calculated required total sample size is rounded up to the next largest even 

whole number, 76 (an even number is required because it is being assumed that the re-

quired sample size is equal to the sum of an equal number of site and background samples).  

If it is assumed that 38 site plus 38 background samples are required to achieve adequate 

power for the test performed in Paragraph M-4.1.5.2, it follows that, though the null hy-

pothesis was not rejected, the result is not conclusive (as only 20 site and 21 background 

samples were collected). 
 
 M-4.1.6.  Matched Pairs Wilcoxon Signed Ranks Test.  As discussed in Paragraph M-

2.3, matching subjects can lead to efficient comparisons between two populations.  Howev-

er, the observed differences between treatments will not always appear to come from a 

normal distribution.  In that case, the one-sample Wilcoxon signed ranks test that was dis-

cussed in Appendix L can be used to test whether the mean or median difference differs 

significantly from zero.  Directions for applying the Wilcoxon signed ranks test to a 

matched pairs design are presented in Paragraph M-4.1.6.1 and an example is presented in 

Paragraph M-4.1.6.2.  See the discussion in Appendix L for more details on applying the 

Wilcoxon signed ranks test. 
 

 M-4.1.6.1.  Directions for the Wilcoxon Signed Ranks Test for Matched Pairs.  The 

following describes the steps for applying the Wilcoxon signed ranks test for a matched 

pairs design when the sample size, n, is less than 20 for: Case 1: BAH  :0 , 

BAAH  : ; and Case 2: BAH  :0 , BAAH  : , which is given in braces { }. 

 

 M-4.1.6.1.1.  Subtract each before concentration (Bi) from the after concentration (Ai) 

to get the difference: 
 

 iii BAd   . 
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If any of the differences are zero, delete them and correspondingly reduce the sample size 

(n).  

 

 M-4.1.6.1.2.  Assign ranks from 1 to n based on ordering the absolute deviations id  

(i.e., magnitude of differences ignoring the sign) from smallest to largest.  The rank 1 is as-

signed to the smallest value, the rank 2 to the second smallest value, and so forth.  If there 

are ties, assign the average of the ranks that would otherwise have been assigned to the tied 

observations. 
 

 M-4.1.6.1.3.  Assign the sign for each observation to create the signed rank.  The sign 

is positive if the deviation di is positive and the sign is negative if the deviation di is nega-

tive. 

Calculate R, the sum of the ranks with a positive sign. 
 

 M-4.1.6.1.4.  Use Table B-24 of Appendix B to find the critical value nw , . 

 

 M-4.1.6.1.5.  Compare the calculated test statistic, R, to the critical value: 

 M-4.1.6.1.5.1.  If nwnnR ,}2/)1({  }{ , nwR  , 0H may be rejected.  

 

 M-4.1.6.1.5.2.  If nwnnR ,}2/)1({  }{ , nwR  , there is not enough evidence to 

reject 0H ; verify the false acceptance error rate.  

 

 M-4.1.6.1.6.  If H0 was not rejected, calculate either the power of the test or the sam-

ple size necessary to achieve the false rejection and false acceptance error rates using a 

software package like DEFT (EPA QA/G-4D).  
 

 M-4.1.6.1.7.  The results of the test may be:  
 

 M-4.1.6.1.7.1.  0H  is rejected; }{ BABA   . 

 

 M-4.1.6.1.7.2.  H0 is not rejected and the false acceptance error rate is satisfied; 

}{ BABA   . 

 
 M-4.1.6.1.7.3.  H0 is not rejected and the false acceptance error rate was not satisfied; 

}{ BABA   , but this conclusion is uncertain because the sample size was too small. 
 
 M-4.1.6.2.  Example of the Matched Pairs Wilcoxon Signed Ranks Test for the Dif-

ference Between Means Before and After Treatment.  Consider the case where the results 

of a groundwater remediation procedure are compared before and after treatment to see if 

the remediation has lowered the concentration of the contaminant.  Test the hypothesis that 

the treatment had no lowering effect at the 95% level of confidence: 
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 BAH  :0 ,  BAAH  :  . 

 

 M-4.1.6.2.1.  The data consist of measured TCE concentrations (mg/L) at monitoring 

wells before and after treatment (Table M-4).  Negative values of the difference support the 

alternative hypothesis. 

 M-4.1.6.2.2.  The differences are roughly symmetrical so the Wilcoxon signed ranks 

test can be applied. 
 

 M-4.1.6.2.3.  Because the sign ranks are all negative, 0R . 
 

 M-4.1.6.2.4.  Using Table B-24 of Appendix B, we find the critical value 1110,05.0 w . 

 

Table M-4. 
TCE Concentrations (mg/L) at Monitoring Wells Before and After Treatment for  
Example M-4.1.6.2 

Sample Baseline (01/2000) Post–Test (12/2000) Difference Signed 
Rank 

Well 1 20.9 0.917 –20.0 –6 

Well 2 9.17 8.77 –0.400 –1 

Well 3 5.96 4.37 –1.59 –2 

Well 4 41.5 4.34 –37.2 –9 

Well 5 34.3 10.7 –23.6 –7 

Well 6 19.7 1.48 –18.2 –5 

Well 7 38.9 0.272 –38.6 –10 

Well 8 8.18 0.520 –7.66 –4 

Well 9 9.13 3.06 –6.07 –3 

Well 10 28.5 1.90 –26.6 –8 

 

 M-4.1.6.2.5.  Recall that negative values of the difference support the alternative hy-

pothesis.  Therefore we reject 0H  if R is smaller than the critical value.  Comparing the 

calculated test statistic and the critical value 

4411}2/)11(10{}2/)1({0 ,  nwnnR  ,  so 0H  is rejected.  The treatment appears 

to have lowered TCE concentration in groundwater. 

 

 M-4.1.6.2.6.  If the differences do not meet the symmetry assumption of the Wilcoxon 

signed ranks test, the one-sample sign test could be used for the analysis.  However, a spe-

cific example will not be presented here. 

 M-4.2.  The Quantile Test.  The quantile test is used to compare two populations us-

ing m independent random samples (x1, x2,..., xm) from the first population and n independ-

ent random samples (y1, y2,..., yn) from the second population.  The quantile test is useful in 

detecting instances where only parts of the data are different rather than a complete shift in 
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the data.  It looks at a certain number of the largest data values to determine if too many da-

ta values from one population are present to be accounted for by pure chance.  When the 

quantile test and the Wilcoxon rank sum test (discussed above) are applied together, the 

combined tests are the most powerful at detecting true differences between two popula-

tions. 
 
 M-4.2.1.  Introduction.  The quantile test assumes a set of random samples from popu-

lation 1 and an independent set of random samples from population 2.  The quantile test is 

not robust to outliers, and assumes either a systematic (e.g., a triangular grid) or simple 

random sampling design.  The quantile test may not be used for stratified designs.  In  

addition, exact false rejection error rates are not available, only approximate rates.  The 

quantile test is difficult to do by hand so directions are not included in this guidance.  Di-

rections for a modified quantile test that can be done by hand are contained below in Para-

graph M-4.2.2, followed by an example in Paragraph M-4.2.3. 

 

 M-4.2.2.  Directions for a Modified Quantile Test Done by Hand.  Let there be m 

measurements from population 1 (the reference area or background group) and n measure-

ments from population 2 (the test area).  The modified quantile test can be used to detect 

differences in shape and location of the two distributions.  For this test, the significance 

level, , can either be approximately 0.10 or approximately 0.05.  

 

 M-4.2.2.1  0H : population 1 = population 2. 

 

 M-4.2.2.2.  AH : population 2 > population 1. 

 

 M-4.2.2.3.  Combine the two samples and orders them from smallest to largest, keep-

ing track of which sample a value came from. 

 

 M-4.2.2.4.  Using Table B-25 of Appendix B, determine the critical number (C) for a 

sample size n from the reference area and sample size m from the test area using the signif-

icance level .  If the Cth largest measurement of the combined population is the same as 

others, increase C to include all of these tied values.  
 
 M-4.2.2.4.1.  If the largest C measurements from the combined samples are all from 

population 2 (the test area), then reject the null hypothesis and conclude that there are dif-

ferences between the two populations. 
 

 M-4.2.2.4.2.  Otherwise, the null hypothesis is not rejected and it appears that there is 

no difference between the two populations. 
 

 M-4.2.3.  Example of a Modified Quantile Test Done by Hand.  Consider the case 

where nickel surface soil concentrations are compared between Site A and background  

using the test (Table M-5). 
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 M-4.2.3.1.  0H : population 1 = population 2. 

 

 M-4.2.3.2.  AH : population 1 > population 2. 

 

 M-4.2.3.3.  Suppose data for nickel surface site data (population 1) are the m = 6 val-

ues: 2.67, 3.61, 5.47, 7.15, 8.34, and 7.96 mg/kg.  

 

 M-4.2.3.4.  Suppose data for nickel surface background data (population 2) are the n = 

10 values: 5.14, 7.46, 5.99, 3.36, 3.19, 2.87, 5.95, 1.72, 4.77, and 5.61 mg/kg. 

 

Table M-5. 
Nickel Surface Soil Concentrations for Example M-4.2.3 

Location Result 
(mg/kg) 

Rank 

Background 1.72 1 

Site 2.67 2 

Background 2.87 3 

Background 3.19 4 

Background 3.36 5 

Site 3.61 6 

Background 4.77 7 

Background 5.14 8 

Site 5.47 9 

Background 5.61 10 

Background 5.95 11 

Background 5.99 12 

Site 7.15 13 

Background 7.46 14 

Site 7.96 15 

Site 8.34 16 

 

 M-4.2.3.5.  505.0,6,10,,  CC mn  ; because the fifth largest value is 5.99, there is no 

need to increase C.  
 

 M-4.2.3.6.  Only three of the largest five values are from population 1 (site concentra-

tions), therefore the null hypotheses cannot be rejected.  The result is that there is no differ-

ence between the site concentrations and the background concentrations of nickel. 
 

M-5.  Multiple Population Tests.  This Paragraph describes procedures to evaluate data 

from more than two populations.  One could accomplish the same objectives by applying 

the tests described above multiple times.  However, doing so would underestimate the true 

false rejection decision error rate.  In other words, if multiple individual tests are done, H0 
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is rejected more frequently than desired.  The tests described in this Paragraph control the 

overall false rejection decision error rate by making multiple comparisons simultaneously. 
 
 M-5.1.  One-Factor Analysis of Variance (ANOVA).  The one-factor ANOVA is a 

statistical procedure to determine whether differences in mean concentrations among two or 

more populations are statistically significant.  When a single variable is being measured for 

multiple populations (e.g., the concentration of chromium at multiple sites), the one-factor 

ANOVA allows the comparison of multiple population means in one test.  Because the 

ANOVA test compares all the means to one another simultaneously, large false positives 

rates associated with multiple separate pairwise mean comparisons are avoided.  Multi-

factor ANOVA tests would be used when comparing several variables from multiple popu-

lations (e.g., the concentration of arsenic and chromium at multiple sites), but these are 

more complex than one-factor ANOVA tests and are beyond the scope of this document. 
 

 M-5.1.1.  Introduction.  There are two types of ANOVAs: parametric and nonpara-

metric.  The parametric ANOVA assumes that the errors, called residuals, are normally  

distributed with equal variance.  The one-way parametric ANOVA model is the following: 
 

 
jiiji

x
,,

   

 

The jix , denotes the jth measured value of the ith group, where the ith group contains ni values 

and i = 1, 2, …K (the number of groups or populations).  The residuals ji ,  are assumed to 

be values of a random variable  that possess a normal distribution with mean of zero and 

standard deviation of .  The parameters i are the populations means for the groups; each 

possessing a common standard deviation .  The equation is a model in the sense that it is 

of the form: 

 

 Measured value = Function one or more parameters + Residual (random error). 

 

(Also refer to the linear regression model in Appendix Q.)  As the population means μi are 

unknown, they are estimated by the sample group means:  
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1 ,

 for i = 1, 2, …K. 

 

 M-5.1.1.1.  Thus, the “true” residuals ji , are estimated by the “sample” residuals as 
follows: 
 

ijiji
xxe 

,,
 . 

 

The sample residuals for each group (e.g., the ni residuals for group i) must each be tested 

for normality and must be normally distributed. 
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 M-5.1.1.2.  The ANOVA is especially useful in situations where sample sizes are 

small.  To apply a parametric one-way ANOVA, at least two groups must be present in the 

data and at least two samples must be available for each group.  Although the ANOVA as-

sumes equal variances, the test is not sensitive to unequal variances as long as the violation 

is not severe. 
 
 M-5.1.1.3.  Directions for the ANOVA are given in Paragraph M-5.1.2, followed by 

an example in Paragraph M-5.1.3.  

 M-5.1.2.  Directions for the ANOVA Test.  Let Knnn ,,, 21   represent the sample siz-

es of each of the K sample populations to be compared to one another.  Let the values from 

each population be represented by jix ,  where Ki ,,2,1   for the K groups and

inj ,,2,1   for the observations in the ith group. 
 

 M-5.1.2.1.  KH   210 : (no difference among the population means). 

 

 M-5.1.2.2.  HA : at least one mean, i  is different from one or more of the other 

means. 

 M-5.1.2.3.  Verify that the residuals are normally distributed with equal variances (see 

Appendix F and Appendix N, respectively).  
 

 M-5.1.2.4.  Let %100)1(   represent the chosen significance level for the test, so  

is the false rejection rate for the test.  Set up the ANOVA table as follows: 
 

Source of 
Variation 

Degrees of 
Freedom (v) 

Sum of 
Squares Mean Square F-Value 

 

Groups       
 

SSG 
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Note that 

 

 EGT     

 

 SST = SSG + SSE . 

 

 M-5.1.2.5.  It may be convenient to calculate MSE using the formula: 
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In this form, MSE is often referred to as the “pooled” variance for the K groups, where 2

is is 

the sample variance for the ith group: 
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 M-5.1.2.6.  Use Table B-7 of Appendix B to determine the critical value, 
EG vvF ,,1  , 

where nmF ,, is the 100 th percentile of the F distribution with m degrees of freedom for the 

numerator and n degrees of freedom for the denominator.  Compare F to 
EG vvF ,,1  .  If 

EG vvFF ,,1  , then reject 0H (the means of the sample populations are not all equal).  Oth-

erwise, conclude that there is no difference among the sample population means.  If 0H  is 

rejected, perform multiple comparison tests to determine which populations are significantly  

different. 
 

 M-5.1.2.7.  Statistical software sometimes outputs the coefficient of determination for 

the ANOVA:  
 

 2 SSG/SSTANOVAr  . 

The square root of this quantity is similar in function to the regression coefficient for an or-

dinary least squares regression line (refer to Appendix Q) in that it accounts for the variation 

in the measured values accounted for by the model (often referred to as the explained varia-

tion).  A large value for 2

ANOVAr  (which ranges from 0 to 1) indicates that most of the variation 

is ascribable to differences between the group means.  It can be shown that 
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Therefore, when the calculated value of the statistic F is small (i.e., when the null hypothe-

sis is not rejected), 2

ANOVAr  will be near zero. 

 

 M-5.1.3.  Example of ANOVA.  Suppose manganese (Mn) groundwater concentra-

tions are going to be compared among the seven different wells at Site A using the follow-

ing test with 95% level of confidence. 

 

 M-5.1.3.1.  KH   210 :  (no difference among the sample means).  

 

 M-5.1.3.2.  HA: at least one mean, i  is different from one or more of the other 

means.  

 

 M-5.1.3.3.  Table M-6 presents the data.  All Mn concentrations were detected, so no 

proxy concentrations are needed to evaluate the data. 
 

 M-5.1.3.4.  The data were tested for equal variances using Bartlett’s test for equal var-

iances (see Paragraph N-3).  The data were also tested for normality using the Shapiro-Wilk 

test.  Because the data were not normal, the data were transformed so that the residuals 

would follow a normal distribution. 
 

 M-5.1.3.5.  Summary statistics for each well are presented in Table M-7. 
 

 M-5.1.3.6.  Let %100)1(   represent the chosen significance level for the test, where 

.05.0  Note that in this example K = 7 and ni = 8 for i = 1, 2, … 7.  Set up the ANOVA 

table as follows: 
 

Source of  
Variation 

Degrees of 
Freedom (v) 

Sum of 
Squares 

Mean 
Square 

F 

Value 
Groups 6 137.29 22.88 346.09 

Error 49 3.24 0.066  

Total 55 140.53   

 

 M-5.1.3.7.  The power of an ANOVA F-test can be estimated prior to a study.  Table 

B-28 in Appendix B lists the power for K = 3 to 10 groups and significance levels of  = 
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0.2, 0.1, and 0.05, where each group contains an equal number of samples n.  To use the ta-

bles, the “effect size,”  , must be also estimated as: 

   (largest group mean – smallest group mean)/(MSE)1/2 . 

 M-5.1.3.8.  The tables list various values of  .  For a specified value of K, n, , and

, the tables list the minimum power (probability) corresponding to the alternative hypothe-

sis that all group means, other than the two extremes, are equal to the “grand mean,” which 

is equal to the median of the largest and smallest group means.  When comparing K groups 

of equal size n, the tables are useful for determining approximately how large a sample size 

for each group is required to achieve a particular level of confidence 1 –  and power 1 – .  

For example, for K = 3 groups and  = 0.05, to detect a size effect   = 1.0 (i.e., a differ-

ence between the largest and smallest mean equal to MSE1/2) with power of at least 1 –  = 

0.80, the required sample size for each group 20n . 

 

Table M-6. 
Manganese (Mn) Groundwater Concentrations to be Compared Among the Wells  
at Site A 

Well Location Result Log Result 
mg/L 

Well Location Result 
  mg/L 

Log Result 

69-2-02 0.432 –0.839 69-2-06A 0.294 –1.224 

69-2-02 0.44 –0.821 69-2-06A 0.301 –1.201 

69-2-02 0.513 –0.667 69-2-06A 0.379 –0.970 

69-2-02 0.704 –0.351 69-2-06A 0.352 –1.044 

69-2-02 0.327 –1.118 69-2-06A 0.346 –1.061 

69-2-02 0.316 –1.152 69-2-06B 0.13 –2.040 

69-2-02 0.454 –0.790 69-2-06B 0.184 –1.693 

69-2-02 0.401 –0.914 69-2-06B 0.209 –1.565 

69-2-04 0.0504 –2.988 69-2-06B 0.2 –1.609 

69-2-04 0.0502 –2.992 69-2-06B 0.0739 –2.605 

69-2-04 0.054 –2.919 69-2-06B 0.0876 –2.435 

69-2-04 0.0523 –2.951 69-2-06B 0.126 –2.071 

69-2-04 0.0923 –2.383 69-2-06B 0.129 –2.048 

69-2-04 0.0556 –2.890 69-2-07 0.0137 –4.290 

69-2-04 0.0534 –2.930 69-2-07 0.019 –3.963 

69-2-04 0.0517 –2.962 69-2-07 0.0163 –4.117 

69-2-05 0.00684 –4.985 69-2-07 0.0195 –3.937 

69-2-05 0.00639 –5.053 69-2-07 0.0112 –4.492 

69-2-05 0.00631 –5.066 69-2-07 0.0112 –4.492 

69-2-05 0.00813 –4.812 69-2-07 0.0102 –4.585 

69-2-05 0.00747 –4.897 69-2-07 0.00946 –4.661 

69-2-05 0.00679 –4.992 69-2-08 0.563 –0.574 

69-2-05 0.00731 –4.919 69-2-08 0.512 –0.669 
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Well Location Result Log Result 
mg/L 

Well Location Result 
  mg/L 

Log Result 

69-2-05 0.00444 –5.417 69-2-08 0.475 –0.744 

69-2-06A 0.3 –1.204 69-2-08 0.546 –0.605 

69-2-06A 0.286 –1.252 69-2-08 0.276 –1.287 

69-2-06A 0.303 –1.194 69-2-08 0.383 –0.960 

   69-2-08 0.33 –1.109 

   69-2-08 0.27 –1.309 

 

Table M-7. 
Summary Statistics for Mn by Well 

Well Sample Size Mean of Log Result Standard Deviation of Log Result 
69-2-02 8 –0.832 0.2539 

69-2-04 8 –2.877 0.2026 

69-2-05 8 –5.018 0.1818 

69-2-06A 8 –1.144 0.1031 

69-2-06B 8 –2.008 0.3779 

69-2-07 8 –4.317 0.2832 

69-2-08 8 –0.907 0.3011 

 

 M-5.2.  Kruskal-Wallis Test.  The Kruskal-Wallis test is the nonparametric version of 

the ANOVA.  It is a statistical procedure to determine whether differences in median con-

centrations among a number of groups or multiple populations are statistically significant.  

The Kruskal-Wallis allows the comparison of multiple population means in one test.  If the 

test shows statistically significant differences among the groups, multiple comparison pro-

cedures can be used to identify which group or groups are different. 

 

 M-5.2.1.  Introduction.  In terms of hypothesis tests, the null hypothesis is that all 

group medians are equal and the alternative hypothesis is that at least one group is different 

from one or more other groups.  To test this hypothesis, no assumptions are required about 

the shape of the distributions; each group may have a different distribution.  The Kruskal-

Wallis test is used to evaluate whether the distributions are identical.  Directions for the 

Kruskal-Wallis test are given below in Paragraph M-5.2.2, followed by an example in  

Paragraph M-5.2.3. 
 

 M-5.2.2.  Directions for the Kruskal-Wallis Test.  Let %100)1(   represent the  

chosen significance level for the test. 
 

 M-5.2.2.1.  Rank all xi,j observations from lowest to highest.  Let RI,j denote the rank 

of the xi,j observation.  

 M-5.2.2.1.1.  Ties.  If two or more observations are numerically equal, then use an av-

erage rank for each observation.  The average rank is calculated as the average of the ranks 

that the tied observations would have received had the observations been different. 
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 M-5.2.2.1.2.  Censored Data.  If any values are not-detected, it is appropriate to con-

sider the ranks for these values equal to zero.  (It is irrelevant what number is assigned to 

the non-detected values as long as all such values are assigned the same number, and it is 

smaller than any detected value.) 
 

 M-5.2.2.2.  Add the ranks of the observations in each group.  Call the sum of the 
ranks for the ith group Ri.  Also calculate the average rank for each group, iii nRR / .  If 
there are at least 50% detected results and no tied values, then compute the Kruskal-Wallis 
statistic: 
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 M-5.2.2.3.  If there are at least 50% detected results and there are tied values present 

in the data, then compute the adjusted Kruskal-Wallis statistic:  
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where g is the number of groups of distinct tied observations and )( 3

kkk wwW  , where 

kw is the number of tied data in the tied group k.  Note that the unique observations can be 

considered groups of size 1, with the corresponding 0)11( 3 kW .  If all the group  

medians are equal, then H = 0.  As the differences between the groups medians increase,  
H will also increase; so the larger the value of H, the less probable H0 is true. 

 M-5.2.2.4.  Compare the calculated value H (or H  ) to the tabulated critical value for 

the chi-square distribution, 2

1,1  K , with K – 1 degrees of freedom and %100)1(   level 

of confidence (found in Table B-2 of Appendix B).  

 M-5.2.2.5.  Reject H0 if H > 2

1,1  K .  If H0 is rejected use multiple comparison tests 

to determine which populations are significantly different. 
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 M-5.2.3.  Example of the Kruskal-Wallis Test.  Suppose lead groundwater concentra-

tions are going to be compared among seven wells using the Kruskal-Wallis test with 95% 

level of confidence. 
 

 M-5.2.3.1.  7210 :   H  (i.e., no difference among the well means). 

 

 M-5.2.3.2.  :AH  at least one mean is different from one or more of the other means. 

 

 M-5.2.3.3.  Table M-8 presents the data.  All lead concentrations were detected so no 

proxy concentrations were needed to evaluate the data. 
 

 M-5.2.3.4.  The sum of the ranks for each of the seven groups is: 
 

2721 R , 1682 R , 5.623 R , 4204 R , 3045 R , 5.736 R , 2967 R  

 

 M-5.2.3.5.  Because there are at least 50% detected results and there are tied values 

present in the data, compute the adjusted Kruskal-Wallis statistic: 
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The table below summarizes the g = 4 tied groups: 
 

Tied Rank Number of Tied Observations 
kw  

kkK wwW  3  

4 3 24 

12.5 2 6 

19.5 2 6 

21.5 2 6 
 

 
  
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8
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 59.122

6,95.0

2

17,05.01

2

1,1     K .  

 

 M-5.2.3.6.  Now compare the calculated value to the critical value, 48.91 > 12.59.  As 

the calculated value exceeds the critical value, reject H0. 
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 M-5.2.3.7.  Because there is a difference in the average lead concentration among the 

seven wells, a multiple comparison test should be done to determine which wells are signif-

icantly different.  A multiple comparison test based on ranks is discussed in Conover 

(1980). 

Table M-8. 
Lead Concentrations for Example M-5.2.3 

Well Result 
mg/L 

Rank Well Result 
mg/l 

Rank 

6 0.978 1 5 3.100 29 

6 1.037 2 7 3.118 30 

3 1.061 4 5 3.144 31 

3 1.061 4 7 3.178 32 

3 1.061 4 1 3.215 33 

6 1.095 6 1 3.219 34 

6 1.109 7 1 3.235 35 

3 1.144 8 5 3.346 36 

3 1.227 9 1 3.395 37 

3 1.241 10 5 3.421 38 

3 1.270 11 5 3.434 39 

3 1.426 12.5 1 3.478 40 

6 1.426 12.5 1 3.586 41 

6 1.513 14 5 3.605 42 

6 1.530 15 5 3.627 43 

6 1.601 16 7 3.671 44 

2 2.588 17 7 3.689 45 

2 2.595 18 5 3.694 46 

2 2.610 19.5 7 3.922 47 

2 2.610 19.5 7 3.932 48 

2 2.625 21.5 4 4.057 49 

2 2.625 21.5 4 4.101 50 

2 2.639 23 4 4.103 51 

7 2.918 24 4 4.119 52 

1 3.011 25 4 4.159 53 

7 3.035 26 4 4.177 54 

1 3.068 27 4 4.214 55 

2 3.073 28 4 4.228 56 

 

M-6.  Multiple Comparison Tests.  Multiple comparisons occur whenever more than one 

statistical test is performed with the same data.  These comparisons can arise, for example, 

as a result of the need to test multiple down-gradient wells against a pool of up-gradient 

background data or to regularly test several indicator parameters for contamination.  The 
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multiple comparison tests described in this section may not be needed if a significant dif-

ference is not obtained from the ANOVA F-test. 
 

 M-6.1.  Introduction.  Comparisons are usually written in terms of linear combinations 

of the population means, and are often referred to as “contrasts.”  For example, we may 

want to know if the mean for population 1, 1 , differs from the mean for population 2, 2 .  

This contrast can be written as 21   .  In general, a contrast is a linear combination  

 

  iia 
 

 

where  
 

   0ia .  

 

Beyond comparing pairs of means, a contrast to compare the mean of population 1 to the 

means of populations 2 and 3 can be written as 3212   . 

 

 M-6.1.1.  The Type I error rate for multiple comparison tests can be viewed in two 

ways.  Comparison-wise significance considers the probability of rejecting the hypothesis 

that only a single contrast equals zero ( 0: 10 H ) when it is actually true.  Experiment-

wise significance considers the probability of rejecting any of a set of m hypotheses on con-

trasts ( mjH j ...,,1,0:0  ) when all of them are true. 

 M-6.1.2.  Table M-9 summarizes the multiple comparison tests that will be covered in 

this document.  The Fisher’s Least Significant Difference (LSD) test and Bonferroni’s test 

are multiple comparison tests that are based on the Student’s t distribution, whereas the 

Tukey’s test and Duncan’s multiple range test are based on the Studentized range statistic.  

Scheffé’s multiple comparison test is used to achieve an experiment-wise false positive rate 

for all possible contrasts or linear combinations of means at the same time.  All the multiple 

comparison tests presented rely on the assumption of normality.  Assumptions of normality 

should have been verified during the ANOVA process, which is typically performed prior 

to these multiple comparison tests.  More information on multiple comparison tests can be 

found in Mason et al. (1989) and Montgomery (1997). 
 

 M-6.1.3.  There is no clear answer to the question of which multiple comparison tech-

nique should be used.  For comparing all pairs of treatment means, Fisher’s LSD is the least 

conservative (most powerful) test for identifying differences between means (i.e., it rejects 

H0 most often) followed by Duncan’s Multiple Range, Tukey, and finally Sheffé.  The rela-

tive conservatism of the Bonferroni Test will depend on the number of groups.  Montgom-

ery (1997) recommends Fisher’s LSD or Duncan’s multiple range test for comparing all 

treatment means as long as the ANOVA F-test is significant, based on Monte Carlo studies 

conducted by Carmer and Swanson (1973).  Mason et al. (1989) recommend Fisher’s LSD 

to control the comparison-wise error rate and Tukey’s test to control the experiment-wise 
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error rate for comparing all treatment means.  When many comparisons need to be made, 

multiple range tests such as Duncan’s multiple range test and Tukey’s test should be used 

as a compromise between the desired experiment-wise error rate and an unacceptable com-

parison-wise error rate (Mason et al., 1989).  Obviously, if one’s purpose is to compare 

treatment means to a control or if contrasts other than pairwise comparisons of treatments 

are of interest, Dunnett’s, Bonferroni’s, or Scheffé’s test may be preferred. 
 

Table M-9. 
Summary of Multiple Comparison Tests 

Test Purpose 
Dunnett’s Comparing treatment means to a control mean 

Fisher’s LSD Comparing all pairs of means 

Duncan’s multiple range Comparing all pairs of means 

Tukey’s Comparing all pairs of means 

Bonferroni’s Comparing any set of contrasts  

Scheffé’s Comparing any set of contrasts 

 

 M-6.2.  Fisher’s Least-Significant Difference Test.  Fisher’s LSD test is an extension 

of the t-test for comparing all pairs of treatment means.  Each pairwise comparison will 

have a Type I error rate (probability of declaring the pair of means different when they are 

not) of  .  Therefore, the experiment-wise error rate (the probability of declaring any pair 

of means different when they are not) will be larger than  .  The disadvantage to the Fish-

er’s LSD test is that its experiment-wise error rate is not satisfactory for testing all possible 

pairs of group means when there are a moderate to large number of groups to be compared 

(Mason et al., 1989).  Directions for Fisher’s LSD test (from Mason et al., 1989) are given 

in Paragraph M-6.2.1 and an example is presented in Paragraph M-6.2.2. 

 

 M-6.2.1.  Directions for Fisher’s LSD Test.  Let K represent the total number of popu-

lations to be compared.  Let  represent the sample sizes of each of the K sample 

populations.  Let the values from each population be represented by jix ,  where i = 1, 2,…, 

K for the K groups and inj ,...,2,1  for the observations at the ith group.  Let %100)1(   

represent the chosen confidence level for the test. 

 

 M-6.2.1.1.  Verify the assumptions of normality. 

 

 M-6.2.1.2.  The means of two groups, ix  and kx , in an ANOVA are declared to be 

significantly different if:  

 

 LSD ki xx   

 

where 

 

Knnn ,,, 21 
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vE t ,  is the 100th percentile for the Student’s t distribution with vE degrees of freedom (see 

Table B-23 in Appendix B).  MSE and vE come from the ANOVA procedures previously 

defined.  Note that for K groups, 2/)1( KK differences ki xx   need to be calculated. 
 

 M-6.2.2.  Example of Fisher’s LSD Test.  Mean manganese groundwater concentra-

tions in seven wells were compared to one another using the ANOVA.  The null hypothesis 

was rejected.  The LSD test is subsequently applied below using the 95% level of confi-

dence. 
 

 M-6.2.2.1.  The table in Paragraph M-5.1.3 presents the data.  All manganese concen-

trations were detected so no proxy concentrations are needed to evaluate the data. 
 

 M-6.2.2.2.  Assumptions of normality were verified for the log result during the 

ANOVA process. 
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 M-6.2.2.3.  Means that differ by more than 0.2584 would be considered statistically 

different with 95% confidence.  Alternatively, confidence intervals for the difference in 

means can be calculated as LSD)(  ki xx .  If zero is not in the confidence interval, the 

two population means are declared significantly different at the   significance level.  

Table M-10 summarizes the results.  Comparisons significant at the 0.05 level are  

indicated by ***. 
 

 M-6.2.2.4.  Another way to visualize the conclusions is to list the means in order and 

identify those that are not significantly different.  In Table M-11, means designated with 

the same “group” letter (A, B, C, etc.) are not significantly different at 05.0 . 
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 M-6.2.2.5.  As Wells 69-2-02 and 69-2-08 are in LSD grouping A, the means for the-

se wells are not statistically different.  The preceding table indicates that the difference be-

tween the two means is 0.0758, which is less than LSD = 0.2584. 
 

 M-6.3.  Bonferroni’s Test.  The Bonferroni’s test is designed to control the experi-

ment-wise error rate (the probability of declaring any two means different when they are 

not).  The test uses the overall significance level divided by the number of selected compar-

isons as the comparison-wise significance level.  Mason et al. (1989) warn that 

Bonferroni’s test should not be used when the number of comparisons becomes very large, 

because this results in an extremely conservative comparison-wise test.  However, they do 

state that the experiment-wise error rate can be better controlled using Bonferroni’s test ra-

ther than the Fisher’s LSD test (where comparison-wise error is controlled).  Also, note that 

Bonferroni’s test can be used to test any contrast of interest (Mason et al., 1989).  Direc-

tions for Bonferroni’s Test (from Mason et al., 1989) are presented in Paragraph M-6.3.1 

and an example is presented in Paragraph M-6.3.2. 

Table M-10. 
Results for Example M-6.2.2   

Well Comparison 
Difference Between Means 

ki xx 
 (mg/L)

 
95% Confidence 
Interval (mg/L) 

02 – 08 0.0758 (–0.1825, 0.3342) 

02 – 06A 0.3123 (0.0539, 0.5706)*** 

02 – 06B 1.1769 (0.9186, 1.4353)*** 

02 – 04 2.0452 (1.7868, 2.3036)*** 

02 – 07 3.4857 (3.2273, 3.7440)*** 

02 – 05 4.1861 (3.9277, 4.4444)*** 

08 – 06A 0.2365 (–0.0219, 0.4948) 

08 – 06B 1.1011 (0.8427, 1.3595)*** 

08 – 04 1.9694 (1.7110, 2.2277) *** 

08 – 07 3.4098 (3.1515, 3.6682)*** 

08 – 05 4.1103 (3.8519, 4.3686)*** 

06A – 06B 0.8646 (0.6063, 1.1230)*** 

06A – 04 1.7329 (1.4746, 1.9913)*** 

06A – 07 3.1734 (2.9150, 3.4317)*** 

06A – 05 3.8738 (3.6154, 4.1322)*** 

06B – 04 0.8683 (0.6099, 1.1266)*** 

06B – 07 2.3088 (2.0504, 2.5671)*** 

06B – 05 3.0092 (2.7508, 3.2675)*** 

04 – 07 1.4405 (1.1821, 1.6988)*** 

04 – 05 2.1409 (1.8825, 2.3992)*** 

07 – 05 0.7004 (0.4420, 0.9588)*** 
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Table M-11. 
List of the Means in Order for Example M-6.2.2 

Well  Mean of Log Result n LSD Groupings  
69-2-02 –0.8315 8 A 

69-2-08 –0.9073 8 B  A 

69-2-06A –1.1438 8 B 

69-2-06B –2.0084 8 C 

69-2-04 –2.8767 8 D 

69-2-07 –4.3172 8 E 

69-2-05 –5.0176 8 F 

 
 M-6.3.1.  Directions for Bonferroni’s Test.  Let K represent the total number of popu-

lations to be compared.  Let    represent the sample sizes of each of the K  

sample populations.  Let the values from each population be represented by jix ,   

where i = 1, 2,…, K for the K groups and inj ,...,2,1 for the observations in the ith group.  

Let %100)1(   represent the selected confidence level for the test. 

 

 M-6.3.1.1.  Verify the assumptions of normality.  

 

 M-6.3.1.2.  Let  

 

   

represent one of m linear combinations of the means, , for which the hypothesis 

0:0 H  vs. 0: AH  is being tested. 

 M-6.3.1.3.  Reject H0 if  
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E
t  , is the 100 th percentile for the Student’s t distribution with vE degrees of freedom (see 

Table B-23 in Appendix B), and m is the number of comparisons.  For K means (groups), 

there are  

 

 
 

2

1


KK
m  

 

possible comparisons.  MSE and vE are determined from the ANOVA procedures previous-

ly defined. 

 
 M-6.3.2.  Example of Bonferroni’s Test.  Suppose manganese groundwater concentra-

tions are going to be compared among the seven different wells at Site A using 

Bonferroni’s test with 95% level of confidence. 

 

 M-6.3.2.1.  Table M-6 presents the data.  All manganese concentrations were detect-

ed, so no proxy concentrations are needed to evaluate the data. 
 

 M-6.3.2.2.  The assumptions of normality were verified during the ANOVA process.  

The contrasts to make pairwise comparisons of all 7 means are the 21 differences (where 

1ia ): 

0426902269   
 A0626904269   

 0826905269   
 

0526902269     B0626904269     BA 0626906269     

A0626902269     0726904269     0726906269    A  

B0626902269     0826904269     0826906269    A  

0726902269     A0626905269     0726906269    B  

0826902269     B0626905269     0826906269    B  

0526904269     0726905269     0826907269     
 

  412.0128.020.3
8

1

8

1
066.0/MSEBSD

2/1

49,999.0

2/12

,2/1 















  tnat iivm E  . 

 

Means that differ by more than 0.412 would be considered statistically different with 95% 

confidence.  Alternatively, confidence intervals for the difference in means can be calculat-

ed as BSD ki xx .  If zero is not covered by the confidence interval, the two population 

means are declared significantly different at the   significance level.  
 

 M-6.3.2.3.  In Table M-12, means with the same letter are not significantly different at 

05.0 .  For example, the mean for 69-2-02 does not differ from the mean for 69-2-08 by 

more than 0.412, so we accept  
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 0: 08269022690   H .  

 

Table M-12. 
Means with the Same Letter are not Significantly Different at 05.0  in Example  
M-6.3.2 

Well Mean of Log Result n Bonferroni Grouping 
69-2-02 –0.8315 8 A 

69-2-08 –0.9073 8 A 

69-2-06A –1.1438 8 A 

69-2-06B –2.0084 8 B 

69-2-04 –2.8767 8 C 

69-2-07 –4.3172 8 D 

69-2-05 –5.0176 8 E 

 
On the other hand, we can reject 
 

 0: 05269022690   H   

 

because the two observed means differ by more than 0.412.  Notice that the more conserva-

tive Bonferroni test does not reject  

 

 0: 06269022690   AH    

 

with 95% confidence while Fisher’s LSD tests did. 

 M-6.4.  Tukey’s Test.  Tukey’s test is designed to control the experiment-wise chance 

of a Type I error (declaring any two population means different when they are not) at    

assuming equal sample sizes (Mason et al., 1989).  Because of this, it is less powerful than 

Fisher’s LSD or Duncan’s multiple range test (Montgomery, 1997).  Directions and an ex-

ample for Tukey’s Test (from Mason et al., 1989) are given in Paragraphs M-6.4.1 and M-

6.4.2, respectively. 

 M-6.4.1.  Directions for Tukey’s Test.  Let K represent the total number of popula-

tions to be compared.  Let  represent the sample sizes of each of the K sample 

populations.  Let the values from each population be represented by jix , , where i = 1, 2,…, 

K for the K groups and inj ,...,2,1  for the observations at the ith group.  Let %100)1(   

be the confidence level. 

 

 M-6.4.1.1.  Verify the assumptions of normality.  Two averages, ix  and
 rx , are based 

on in and rn samples, respectively, where 

 

Knnn ,,, 21 
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Two means are significantly different if TSD||  ri xx  where: 
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 M-6.4.1.2.  The quantity 
Evkq ,, is the Studentized range statistic in Table B-22 of Ap-

pendix B, where k is the number of means being compared (typically equal to the number 

of groups K); MSE and vE are from the ANOVA procedure previously defined, and  rep-

resents the desired significance level. 

 

 M-6.4.2.  Example of Tukey’s Test.  Manganese groundwater concentrations are 

compared among the seven different wells at Site A using Tukey’s Test with 95% level of 

confidence. 
 

 M-6.4.2.1.  Table M-6 presents the data.  All manganese concentrations were detected 

so no proxy concentrations are needed to evaluate the data.  Assumptions of normality were 

verified during the ANOVA process. 
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Table M-13. 
Results from Example M-6.4.2 

Well Comparison 
Difference 

Between Means 
(mg/L) 

Simultaneous 95% 
Confidence Intervals (mg/L) 

69-2-02–69-2-08 0.0758 (–0.3194, 0.4710) 

69-2-02–69-2-06A 0.3123 (–0.0829, 0.7075 

69-2-02–69-2-06B 1.1769 (0.7817, 1.5721)*** 

69-2-02–69-2-04 2.0452 (1.6500, 2.4404) *** 

69-2-02–69-2-07 3.4857 (3.0905, 3.8809)*** 

69-2-02–69-2-05 4.1861 (3.7909, 4.5813)*** 

69-2-08–69-2-06A 0.2365 (–0.1587, 0.6317) 

69-2-08–69-2-06B 1.1011 (0.7059, 1.4963)*** 

69-2-08–69-2-04 1.9694 (1.5742, 2.3646)*** 

69-2-08–69-2-07 3.4098 (3.0146, 3.8051)*** 


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Well Comparison 
Difference 

Between Means 
(mg/L) 

Simultaneous 95% 
Confidence Intervals (mg/L) 

69-2-08–69-2-05 4.1103 (3.7150, 4.5055)*** 

69-2-06A–69-2-06B 0.8646 (0.4694, 1.2598)*** 

69-2-06A–69-2-04 1.7329 (1.3377, 2.1281)*** 

69-2-06A–69-2-07 3.1734 (2.7782, 3.5686)*** 

69-2-06A–69-2-05 3.8738 (3.4786, 4.2690)*** 

69-2-6B–69-2-04 0.8683 (0.4731, 1.2635)*** 

69-2-06B–69-2-07 2.3088 (1.9135, 2.7040)*** 

69-2-06B–69-2-05 3.0092 (2.6139, 3.4044)*** 

69-2-04–69-2-07 1.4405 (1.0453, 1.8357)*** 

69-2-04–69-2-05 2.1409 (1.7457, 2.5361)*** 

69-2-07–69-2-05 0.7004 (0.3052, 1.0956)*** 

 

 M-6.4.2.2.  Means that differ by more than 0.3952 would be considered statistically 

different with 95% confidence.  Alternatively, confidence intervals for the difference in 

means can be calculated for the difference of any two means as TSD ri xx .  If zero is not 

in the confidence interval, the two population means are significantly different at the    

significance level.  Table M-13 summarizes the results.  Comparisons significant at 0.05  

are indicated by ***. 
 

 M-6.4.2.3.  In Table M-14, means with the same letter are not significantly different at 

0.05 . 
 
Table M-14. 
Means with the Same Letter are not Significantly Different at  = 0.05  

Tukey Grouping Mean of Log Result n Well 
A –0.8315 8 69-2-02 

A –0.9073 8 69-2-08 

A –1.1438 8 69-2-06A 

B –2.0084 8 69-2-06B 

C –2.8767 8 69-2-04 

D –4.3172 8 69-2-07 

E –5.0176 8 69-2-05 

 

 M-6.5.  Duncan’s Multiple Range Test.  Duncan’s multiple range test is used to test 

for differences in all pairs of means.  Considering the ordered list of means, this procedure 

provides an experiment-wise error rate of  

   1
11




p
   
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when the pair of means are p steps apart in the ordered list (Montgomery, 1997).  Thus, the 

experiment-wise probability of a Type I error depends on how far apart in the ordered list 

the two means lie (Mason et al., 1989).  Duncan’s multiple range test is similar to Tukey’s 

test except that it has greater power to detect differences but does not control the experi-

ment-wise error rate as well.  Directions for Duncan’s multiple range test (from Mason et 

al., 1989, and Montgomery, 1997) are presented in Paragraph M-6.5.1 followed by an ex-

ample in Paragraph M-6.5.2. 

 
 M-6.5.1.  Directions for Duncan’s Multiple Range Test.  Let K represent the total 

number of populations to be compared.  Let  represent the sample sizes of each of the K 

sample populations.  Let the values from each population be represented by  where i = 1, 

2,…, K  and j = 1, 2,…, n for the observations in the ith group (population).  
 

 M-6.5.1.1.  Verify the assumptions of normality.  The means  
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jii x
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x
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,
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are sorted from smallest to largest.  The two extreme means are compared first.  The largest 

and smallest of p = K averages, and (each based on a sample size of n), are significant-

ly different if pba Rxx   where  

 

 

2/1
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MSE
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
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
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n
qR

Evpp  . 

 

 M-6.5.1.2.  The quantity 

 

 
Evpq ,,  

 

is the Studentized range critical value (see Table B-6 of Appendix B).  MSE and vE are 

from the ANOVA procedure previously defined, and  represents the comparison-wise er-

ror rate.  The experiment-wise significance level for comparing the extremes of p means is  

 

   1
11




p

p  . 

 

 M-6.5.1.2.1.  If the smallest and largest means are not significantly different, then no 

more comparisons are made and all other comparisons are declared not significantly differ-

ent at the   %1001 p  level of confidence.  

 

n

jix ,

ax bx
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 M-6.5.1.2.2.  If the smallest and largest averages are significantly different, then two 

comparisons are made where p = k – 1: one for the second smallest and the largest averag-

es, and one for the smallest and the second largest averages. 

 

 M-6.5.1.2.3.  For the two comparisons, if neither of these tests is significantly differ-

ent, then no more comparisons are performed and only two extreme means ( and ) are 

concluded to be significantly different. 

 

 M-6.5.1.2.4.  If one or both of these tests are statistically significant, testing should 

continue with groups of averages lying within the two extremes that have been declared 

significantly different.  

 

 M-6.5.1.3.  Testing continues until no further significant differences are obtained. 

 

 M-6.5.2.  Example of Duncan’s Multiple Range Test.  Suppose manganese groundwa-

ter concentrations are going to be compared among the seven different wells at Site A using 

Duncan’s multiple range test with 95% level of confidence. 

 

 M-6.5.2.1.  Table M-6  presents the data.  All manganese concentrations were detect-

ed so no proxy concentrations are needed to evaluate the data. 
 

 M-6.5.2.2.  The assumptions of normality were verified during the ANOVA process. 

 

 M-6.5.2.3.  There are seven groups to compare so we begin by comparing the one 

with the smallest mean to the one with the largest mean. 

 

     296.00908.0255.38/066.0/MSE
2/1

49,7,05.0

2/1

,7,7  qnqR
Ev . 

 

Considering 

 

 296.0186.4)0176.5(8315.00526902269   xx  

 

we can conclude that the population means for these two wells differ at the  

 

 26.0)05.01(1)1(1 171  p   

 

significance level.  As the two extreme means were significantly different, we now test 

means that are 6 levels apart. 

 

     292.00908.0212.38/066.0/MSE
2/1

49,6,05.0

2/1

,6,6  qnqR
Ev . 

 

Considering  
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 292.0486.3)3172.4(8315.00726902269   xx  

and 

 

 292.0110.4)0176.5(9073.00526908269   xx  

 

we can conclude that the population means for these two comparisons differ at the  

 

 23.0)05.01(1)1(1 161  p   

 

significance level. 

 

 M-6.5.2.4.  Because means 6 levels apart are significantly different, continue the pro-

cess with means 5 levels apart and so on.  The final results are summarized in the  

Table M-15, where means with the same letter are not significantly different at an  

experiment-wise significance level of α = 0.05. 
 
 M-6.6.  Dunnett’s Test for Simple Random and Systematic Samples.  Dunnett’s test is 

used to test the difference between sample or “treatment” means from different populations 

against a control population.  Dunnett’s method is the same as the standard two-sample t-

test (Paragraph M-2), except for the use of a larger pooled estimate of variance and the 

need for special t type tables (Table B-26 of Appendix B).  The experiment-wise signifi-

cance level for all comparisons will be  (Montgomery, 1997).  Directions for the use of 

Dunnett’s method for a simple random sample or a systematic random sample are presented 

in Paragraph M-6.6.1 and followed by an example in Paragraph M-6.6.2. 

 
Table M-15. 
Means with the same Letter are not Significantly Different at Significance of  = 0.05  
Duncan Grouping Mean of Log Result N Well 

69-2-02 –0.8315 8 A  

69-2-08 –0.9073 8 B  A  

69-2-06A  –1.1438 8 B 

69-2-06B  –2.0084 8 C 

69-2-04 –2.8767 8 D 

69-2-07 –4.3172 8 E 

69-2-05 –5.0176 8 F 

 
 M-6.6.  Dunnett’s Test for Simple Random and Systematic Samples.  Dunnett’s test is 

used to test the difference between sample or “treatment” means from different populations 

against a control population.  Dunnett’s method is the same as the standard two-sample t-

test (Paragraph M-2), except for the use of a larger pooled estimate of variance and the 

need for special t type tables (Table B-26 of Appendix B).  The experiment-wise signifi-

cance level for all comparisons will be  (Montgomery, 1997).  Directions for the use of 
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Dunnett’s method for a simple random sample or a systematic random sample are presented 

in Paragraph M-6.6.1 and followed by an example in Paragraph M-6.6.2. 

 

 M-6.6.1.  Directions for Dunnett’s Test for Simple Random and Systematic Samples.  

Let K represent the total number of populations to be compared so there are (K – 1) sample 

populations and a single control population.  Let 121 ,,, Knnn   represent the sample sizes of 

each of the (K – 1) sample populations and let m represent the sample size of the control 

population.  

 

 M-6.6.1.1.  H0:  0 Ci   (no difference between the sample means and the control 

mean).  

 

 M-6.6.1.2.  HA: 0 Ci   for i = 1, 2,…, K – 1 where i  represents the mean of the 

ith sample population and C  represents the mean of the control population. 

 M-6.6.1.3.  Let  represent the chosen significance level for the test. 

 

 M-6.6.1.4.  Verify the assumptions of normality.  For each sample population, make 

sure that 2/5.0  inm .  If not, Dunnett’s Test should not be used. 

 

 M-6.6.1.5.  Calculate the sample mean, ix , and the variance, 2

is , for each of the  

K – 1 populations and the control ( CKi ,1,,2,1   ).  

 M-6.6.1.6.  Calculate the pooled standard deviation: 
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For each of the K – 1 sample populations, compute  
 

 
Cip

Ci
i

nns

xx
t

11 


  . 

 

 M-6.6.1.7.  Use Table B-26 of Appendix B to determine the critical value, 
Evt ,1  , 

where the degrees of freedom vE = )1()1()1( 11  Knnm  .  Compare ti to 
Evt ,1   for 

each of the K – 1 sample populations.  
 

 M-6.6.1.7.1.  If ti > 
Evt ,1   for any sample population, then reject 0H and conclude that 

the mean of the sample population exceeds the mean of the control population.  
 

 M-6.6.1.7.2.  Otherwise, conclude that the mean of the sample population does not 

exceed the mean of the control population. 
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 M-6.6.2.  Example of Dunnett’s Test for Simple Random and Systematic Samples.  

Suppose manganese (Mn) groundwater concentrations at six wells are going to be com-

pared to a background well at Site A using the following test with 95% level of confidence. 
 

 M-6.6.2.1.  H0: 0 Ci   (no difference between the sample means and the control 

mean). 
 

 M-6.6.2.2.  HA: 0 Ci   for i = 1, 2,…, K – 1 where i represents the mean of the 

ith sample population and C  represents the mean of the control population.  
 

 M-6.6.2.3.  All Mn concentrations were detected so no proxy concentrations are need-

ed to evaluate the data. 
 

 M-6.6.2.4.  The assumptions of normality were verified during the ANOVA process.  

Because the sample population for each well is equal to 8, we only have to calculate m/ni 

once.  As m/ni = 8/8 = 1 is between 0.5 and 2, it is reasonable to apply Dunnett’s test. 

 
 

Well 69-2-02 69-2-04 69-2-08 69-2-05 69-2-06B 69-2-06A Bkgd 
Mean of 

Log Result –0.832 –2.877 –0.907 –5.018 –2.008 –1.144 –4.317 

Variance 0.064 0.041 0.091 0.033 0.143 0.011 0.080 
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so for each sample well 

 

Sample Well, i ti 

69-2-02 27.11 

69-2-04 11.20 

69-2-08 26.52 

69-2-05 –5.45 

69-2-06B 17.96 

69-2-06A 24.68 
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 M-6.6.2.5.  The degrees of freedom are 49)18()18()18(   .  So, using 

Table B-26 of Appendix B with 49 degrees of freedom, the critical value 49,95.0t  = 2.32.  

 

 M-6.6.2.5.  For all wells except Well 69-2-05, ti > t0.95, 49.  We then reject H0 and con-

clude that the means of the sample well populations exceed the mean of the control well 

population, except for Well 69-2-05. 

 

Table M-16. 
Data for Example M-6.6.2 

Well Location Result 
(mg/L) Log Result Well Location Result 

(mg/L) 
Log 

Result 
69-2-02 0.432 –0.839 69-2-06A 0.294 –1.224 

69-2-02 0.44 –0.821 69-2-06A 0.301 –1.201 

69-2-02 0.513 –0.667 69-2-06A 0.379 –0.970 

69-2-02 0.704 –0.351 69-2-06A 0.352 –1.044 

69-2-02 0.327 –1.118 69-2-06A 0.346 –1.061 

69-2-02 0.316 –1.152 69-2-06B 0.13 –2.040 

69-2-02 0.454 –0.790 69-2-06B 0.184 –1.693 

69-2-02 0.401 –0.914 69-2-06B 0.209 –1.565 

69-2-04 0.0504 –2.988 69-2-06B 0.2 –1.609 

69-2-04 0.0502 –2.992 69-2-06B 0.0739 –2.605 

69-2-04 0.054 –2.919 69-2-06B 0.0876 –2.435 

69-2-04 0.0523 –2.951 69-2-06B 0.126 –2.071 

69-2-04 0.0923 –2.383 69-2-06B 0.129 –2.048 

69-2-04 0.0556 –2.890 bkgd 0.0137 –4.290 

69-2-04 0.0534 –2.930 bkgd 0.019 –3.963 

69-2-04 0.0517 –2.962 bkgd 0.0163 –4.117 

69-2-05 0.00684 –4.985 bkgd 0.0195 –3.937 

69-2-05 0.00639 –5.053 bkgd 0.0112 –4.492 

69-2-05 0.00631 –5.066 bkgd 0.0112 –4.492 

69-2-05 0.00813 –4.812 bkgd 0.0102 –4.585 

69-2-05 0.00747 –4.897 bkgd 0.00946 –4.661 

69-2-05 0.00679 –4.992 69-2-08 0.563 –0.574 

69-2-05 0.00731 –4.919 69-2-08 0.512 –0.669 

69-2-05 0.00444 –5.417 69-2-08 0.475 –0.744 

69-2-06A 0.3 –1.204 69-2-08 0.546 –0.605 

69-2-06A 0.286 –1.252 69-2-08 0.276 –1.287 

69-2-06A 0.303 –1.194 69-2-08 0.383 –0.960 

   69-2-08 0.33 –1.109 

   69-2-08 0.27 –1.309 

 

 M-6.7.  Scheffé’s Test.  Scheffé’s test is designed to allow the comparison of any set 

of contrasts while controlling the experiment-wise Type I error rate (the probability of  
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declaring any contrast different from 0 when it is not) to be no more than   (Montgomery, 

1997).  When the experimenter is only interested in comparing pairs of treatment means, 

Scheffé’s test is not the most sensitive.  Directions for Scheffé’s Test and an example are 

presented in Paragraphs M-6.7.1 and M-6.7.2, respectively. 

 

 M-6.7.1.  Directions for Scheffé’s Test.  Let K represent the total number of popula-

tions to be compared.  Let  represent the sample sizes of each of the K sample 

populations.  Let  
 

 



K

i

inN
1

  

 

be the overall sample size.  Let the values from each population be represented by jix ,  
where i = 1, 2,…, K for the K groups and inj ...,,2,1  for the observations in the ith group.  
Let %100)1(   be the confidence level for the test. 
 

 M-6.7.1.1.  Verify the assumptions of normality.  Let  
 

   
 

represent one of m linear combinations of the means iu being tested for  vs.

.  
 

 M-6.7.1.2.  Reject H0 if  ii xa  exceeds the critical value  

 

 
  KNK

K

i

ii FKnaMSES 



  ,1,1

1

2 )1(/   

 

where is the number of observations in the ith group of  

 

 



in

j

ji

i

i x
n

x
1

,

1
 

 

and  
 

 KNKF  ,1,1    

 

is the %100)1(   percentile for the F distribution with K – 1 numerator degrees of free-
dom and N – K denominator degrees of freedom (see Table B-7 in Appendix B). 
 
 M-6.7.2.  Example of Scheffé’s Test.  Suppose manganese concentrations in ground-

water are going to be compared in six different sampling wells and a background well using 

Scheffé’s test with a 95% level of confidence. 

Knnn ,,, 21 

iia  

0:0 H

0: AH

in
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 M-6.7.2.1.  Table M-16 presents the data.  All manganese concentrations were detect-

ed, so no proxy concentrations are needed to evaluate the data.  The assumptions of normal-

ity were verified during the ANOVA process.  

 

 M-6.7.2.2.  Suppose two contrasts are of interest: comparing the background well to 

all of the other wells combined and comparing well 69-2-06A to well 69-2-06B.  These two 

contrasts can be written: 

 

 0826906269062690526904269022691 6    BAbkgd  

 BA 06269062692     .  

The contrast estimates are: 

 

 0826906269062690526904269022691 6ˆ
  xxxxxxx BAbkgd  

 

 
             

1177.13

907.0008.2144.1018.5877.2832.0317.46




 

 

   8646.0008.2144.1ˆ
06269062692   BA xx . 

 

The critical values are: 

 

 

 

 

1841.229.26589.0

17
8

1

8

1

8

1

8

1

8

1

8

1

8

36
066.0

)1(/MSE

49,6,95.0

,1,1

1

2

1













 





F

FKnaS KNK

K

i

ii 

 

 

 

 

 

2

2

1 , 1,

1

0.95,6,49

MSE / ( 1)

1 1
0.066 7 1

8 8

0.128 6 2.29 0.4766 .

K

i i K N K

i

S a n K F

F

   



  

 
     

 

   



 

 

 M-6.7.2.3.  Because the absolute value of each contrast exceeds the relevant critical 

value, we reject 0: 10 H  and 0: 20 H  with 95% confidence.  In other words, the  

average measurement at the background well is significantly different from the average 

measurement at the other six wells, and the average measurement at well 69-2-06A differs 

significantly from the average at well 69-2-06B.  
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APPENDIX N 
Hypothesis Testing—Tests of Dispersion 

 
N-1.  Introduction.  Many statistical tests make assumptions on the dispersion of data, as 
measured by variance.  This Appendix considers some of the most commonly used statistical 
tests for equality of variance, a key assumption for the validity of a two-sample t-test and 
analysis of variance (ANOVA).  More information on hypothesis tests on the variance can be 
found in EPA/240/B-026/003, QA/G-9S. 
 
N-2.  F-Test for the Equality of Two Variances.  An F-test may be used to see whether the 
true underlying variances of two populations are equal.  Usually the F-test is employed as a 
preliminary test, before conducting the two-sample t-test for the equality of two means.  
The assumptions underlying the F-test are that the two samples are independent random 
samples from two underlying normal populations.  The F-test for equality of variances is 
highly sensitive to departures from normality.  (In the case of non-normality, Levene’s test 
is recommended, Paragraph N-4.)  Directions for implementing an F-test are given in 
Paragraph N-2.1, followed by an example in Paragraph N-2.2.  
 
 N-2.1.  Directions for an F-Test Comparing Two Variances.  Let x1, x2,..., xm represent 
the m data points from population 1 and y1, y2,..., yn represent n data points from population 
2.  To perform an F-test, proceed as follows. 
 
 N-2.1.1.  Test the null hypothesis of equal variances: 
 
 2222

0 :,: yxAyx HH σσσσ ≠=  . 
 
 N-2.1.2.  Verify the assumption of normality using one of the methods described in 
Appendix F. 
 
 N-2.1.3.  Calculate the sample variance, 2

xs (for the sX , ) and 2
ys (for the sY , ) (Appendix 

D). 
 
 N-2.1.4.  Calculate the variance ratios, 22 / yxx ssf =  and 22 / xyy ssf = .  
 
 N-2.1.5.  Let f equal the larger of these two values. 
 
 N-2.1.5.1.  If xff = , then let 1−= mk  and 1−= nq . 
 
 N-2.1.5.2.  If yff = , then let 1−= nk  and 1−= mq . 
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 N-2.1.6.  Using Table B-7 of Appendix B of the F-distribution, we find the critical 
value,  

 qkFU ,,2/1 α−=  
 
Where k denotes the degrees of freedom in the numerator and q the degrees of freedom in the 
denominator for the ratio f.  
 
 N-2.1.6.1.  If Uf > , conclude that the variances of the two populations are not the 
same.  
 
 N-2.1.6.2.  If Uf ≤ , there is insufficient evidence to conclude the variances are 
different. 
 
 N-2.2.  Example of an F-Test Comparing Two Variances.  Consider the case where 
nickel concentrations in surface soil are compared between Site A and Background.  The null 
and alternative hypotheses are: 
 
 2222

0 :,: yxAyx HH σσσσ ≠=  . 
 
 N-2.2.1.  Nickel in surface soils at Site A (X) was detected at following concentrations 
(m = 6): 2.665, 3.610, 5.470, 7.150, 8.340, 7.960 mg/kg.  
 
 N-2.2.2.  Nickel in surface background (bkgd) soils (Y) was detected at the following 
concentrations (n =10): 5.140, 7.460, 5.990, 3.360, 3.190, 2.870, 5.950, 1.720, 4.770, 5.605 
mg/kg. 
 
 N-2.2.3.  Verify the assumption of normality.  For this case, the Shapiro-Wilk test is 
used. 
 
 N-2.2.4.  Calculate the sample variance, 2

xs  (for the sX , ) and 2
ys  (for the sY , ). 

 
Data Sample Mean Sample Variance Sample Size 
Site 5.87 5.53 6 
Background 4.61 3.12 10 

 
 N-2.2.5.  Calculate the variance ratios: 

 77.1
12.3
53.5/ 22 === yxx ssf   

 
and 
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 56.0
53.5
12.3/ 22 === xyy ssf . 

 
 N-2.2.6.  Therefore .77.1=f  
 
 N-2.2.7.  Because xff = , 516 =−=k  and 9110 =−=q . 
 

484.49,5,975.0,,2/1 === − fFU qkα . 
 
 N-2.2.8.  Because )484.477.1( ≤≤Uf , there is insufficient evidence to conclude the 
variances are different. 
 
N-3.  Bartlett’s Test for the Equality of Two or More Variances.  Bartlett’s test, which is 
essentially a generalization of the F-test, is a way of testing whether two or more population 
variances of normal distributions are equal.  In the case of only two variances, Bartlett’s test 
is equivalent to the F-test.  Directions for Bartlett’s test are given in Paragraph N-3.1, 
followed by an example in Paragraph N-3.1.  Like the F-test it is sensitive to deviations from 
normality. 
 
 N-3.1.  Directions for Bartlett’s Test for Two or More Variances.  Let K represent the 
total number of populations to be compared.  Let Knnn ,,, 21   represent the sample sizes of 
each of the K sample populations.  Let N represent the total number of samples,  

knnnN ++= ....21 .  Let the values from each population be represented by jix , , where 
Ki ,,2,1 =  for the K groups and inj ,,2,1 =  for the observations in the ith group.  

 
 N-3.1.1.  22

2
2
10 : KH σσσ ===   (no difference among the population variances). 

 
 N-3.1.2.  HA : at least one variance, 2

iσ , is different from one or more of the other 
variances. 
 
 N-3.1.3.  For example, consider two wells, where four samples have been taken from 
Well 1 and three samples have been taken from Well 2.  In this case, ,3,4,2 21 === nnK  
and .734 =+=N  
 
 N-3.1.4.  Verify the assumption of normality using one of the methods described in 
Appendix F.  For each of the K groups, calculate the sample variances, 2

is (see Appendix D). 
 
 N-3.1.5.  Compute the pooled variance using the K groups:  
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 2

1

2 )1(
)(

1
i

K

i
ip sn

KN
s −

−
= ∑

=

 . 

 
 N-3.1.6.  Compute the test statistic (TS): 
 

 2 2

1
( )Ln( ) ( 1)Ln( )

K

p i i
i

TS N K s n s
=

= − − −∑ , where Ln is the natural logarithm. 

 
 N-3.1.7.  Using a chi-square table (Table B-2 of Appendix B), find the critical value of 
the chi-squared distribution, 2

,1 ναχ − , with 1−= Kν  degrees of freedom and the %100)1( α−  
level of confidence.  For example, for a level of confidence of 95% (significance level α = 
0.05) and ν = 5, 2

5,95.0χ  = 11.1. 
 
 N-3.1.7.1.  If 2

,1 ναχ −>TS , reject H0 (conclude that the variances are not all equal) at the 
%100)1( α− level of confidence. 

 
 N-3.1.7.2.  If 2

,1 ναχ −≤TS , there is insufficient evidence to reject H0. 
 
 N-3.2.  Example of Bartlett’s Test for Two or More Variables.  Using chromium 
concentrations in subsurface site soil, the data are: 2.95, 5.17, 4.80, 4.53, 4.01, 5.91, 3.96, 
4.81, 5.27, 5.99, 4.60, 5.51, 4.72, 3.56, 4.22, 3.91, 5.81, 4.48, 5.10, 4.94, 4.76, 4.62, 4.72, 
4.73, 3.21, 4.14, 4.85, 4.25, 5.09, 3.68, 5.12, 6.60, 6.19, 3.15, 4.11, 2.80 mg/kg. 
 
 N-3.2.1.  The chromium concentrations in subsurface background soil are: 4.60, 5.29, 
4.26, 5.28, 4.53, 5.74, 5.86, 3.84 mg/kg. 
 
 N-3.2.2.  Verify the assumption of normality.  For this case, the Shapiro-Wilk test is 
used.  
 
 N-3.2.3.  Let N represent the total number of samples.  As the site data has 361 =n  
samples and the background data has 82 =n samples, 44=N  and 2=K . 
 
 N-3.2.4.  For each of the K groups, calculate the sample variances, 2

is : 2
1s = 0.806 (site 

variance) and 2
2s = 0.526 (background variance). 

 
 N-3.2.5.  Compute the pooled variance:  
 

 2

1

2 )1(
)(

1
i

K

i
ip sn

KN
s −

−
= ∑

−
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 ( )

[ ]

2 2
1 1 2 2

1 ( 1) ( 1)
44 2
1 (36 1)0.806 (8 1)0.526 0.7593 .
42

n s n s = − + − −

= − + − =

 

 
 N-3.2.6.  Compute the test statistic TS:  
 

 2 2

1
( ) Ln( ) ( 1) Ln( )

K

p i i
i

TS N K s n s
=

= − − −∑   

  [ ](44 2) Ln(0.7593) (36 1) Ln(0.806) (8 1) Ln(0.526) 0.4802= − − − + − =  . 
 
 N-3.2.7.  Using a chi-squared table (Table B-2 of Appendix B), find the critical value, 

2
,1 ναχ − .  In this case, with a significance level of 5% and 1 degree of freedom, 2

1,95.0χ = 3.841.  
As 841.34802.0 ≤=TS , there is insufficient evidence to conclude the variances are different 
at the 05.0=α  significance level. 
 
N-4.  Levene’s Test for the Equality of Two or More Variances.  Levene’s test is a non-
parameter alternative to Bartlett’s test for homogeneity of variance (testing for differences 
among the dispersions of several groups).  Levene’s test is less sensitive to departures from 
normality than Bartlett’s test and has greater power than Bartlett’s for non-normal data.  In 
addition, Levene’s test has power nearly as great as Bartlett’s test for normally distributed 
data.  However, Levene’s test is more difficult to apply than Bartlett’s test because it 
involves applying an ANOVA to the absolute deviations from the group means.  Directions 
for Levene’s test are given in Paragraph N-4.1, followed by an example in Paragraph N-4.2. 
 
 N-4.1.  Directions for Levene’s Test for the Equality of Two or More Variances.  Let K 
represent the total number of populations to be compared.  Let Knnn ,,, 21   represent the 
sample sizes of each of the K sample populations.  Let N represent the total number of 
samples, knnnN ++= ....21 .  Let the values from each population be represented by jix ,  
where Ki ,,2,1 =  for the K groups and inj ,,2,1 =  for the observations in the ith group.  
 
 N-4.1.1.  22

2
2
10 : KH σσσ ===   (no difference among the population variances). 

 
 N-4.1.2.  HA : at least one variance, 2

iσ , is different from one or more of the other 
variances. 
 
 N-4.1.3.  For example, consider two wells where four samples have been taken from 
well 1 and three samples have been taken from well 2.  In this case, ,3,4,2 21 === nnK  
and .734 =+=N   
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 N-4.1.4.  Verify the assumption of normality using one of the methods described in 
Appendix F.  For each of the K groups, calculate the group mean, ix : 
 

 ∑
=

=
1

1
,1

1
1

1 n

j
jx

n
x ,  ∑

=

=
2

1
,2

2
2

1 n

j
jx

n
x , ….  ,  ∑

=

=
Kn

j
jK

K
K x

n
x

1
,

1 . 

 
 N-4.1.5.  Compute the absolute residuals  
 
 ijiji xxz −= ,,   
 
where jix ,  represents the jth value of the ith group.  For each of the K groups, calculate the 
means, iz  ,of these residuals:  
 

 ∑
=

=
2

1
,1

1
1

1 n

j
jz

n
z ,  ∑

=

=
2

1
,2

2
2

1 n

j
jz

n
z ,….,  ∑

=

=
Kn

j
jK

K
K z

n
z

1
,

1 . 

 
 N-4.1.6.  Calculate the overall mean residual: 
 

 i

K

i
i

K

i

n

j
ji zn

n
z

n
z

i

∑∑∑
== =

==
11 1

,
11 . 

 
 N-4.1.7.  Compute the following sums of squares for the absolute residuals: 
 

 2 2
,

1

inK

TOTAL i j
i l j

SS z n z
= =

= −∑∑  

 

 
2

2
K

i
GROUPS

i l i

zSS n z
n=

= −∑  

 
 GROUPSTOTALERROR SSSSSS −= . 
 
 N-4.1.8.  Compute  
 

 
)/(
)1/(

KNSS
KSS

f
ERROR

GROUPS

−
−

=  . 

 
 N-4.1.9.  Using Table B-7 of Appendix B, find KNkF −−− ,1,1 α , the critical value of the F-
distribution with (K – 1) numerator degrees of freedom, )( KN −  denominator degrees of 
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freedom, and the desired level of significance, α .  For example, if 05.0=α , the numerator 
degrees of freedom are 5, and the denominator degrees of freedom are 18, then using Table 
B-7, we find that 77.218,5,95.0 =F .  
 
 N-4.1.10.  If f > F, reject the assumption of equal variances. 
 
 N-4.2.  Example of Levene’s Test for the Equality of Two or More Variables.  Consider 
the case where nickel concentrations in surface soil are compared between Site A and 
background (bkgd) using the test: 
 
 22

0 : yxH σσ = ,  22: yxAH σσ ≠  . 
 
 N-4.2.1.  Suppose data for nickel in surface site soil are: 2.665, 3.610, 5.470, 7.150, 
8.340, 7.960 mg/kg.  And suppose data for nickel in surface background are: 5.140, 7.460, 
5.990, 3.360, 3.190, 2.870, 5.950, 1.720, 4.770, 5.605 mg/kg. 
 
 N-4.2.2.  Verify the assumption of normality.  For this case, the Shapiro-Wilk test is 
used. 
 

 Site mean = 87.51 1

1
,1

1
1 == ∑

=

n

j
jx

n
x . 

 Background mean = 61.41 2

1
,2

2
2 == ∑

=

n

j
jx

n
x . 

 
 

Site A 
ijiji xxz −= ,,  Background 

ijiji xxz −= ,,  
2.67 3.20 5.14 0.534 
3.61 2.26 7.46 2.854 
5.47 0.40 5.99 1.384 
7.15 1.28 3.36 1.246 
8.34 2.47 3.19 1.416 
7.96 2.09 2.87 1.736 

  5.95 1.344 
  1.72 2.886 
  4.77 0.164 
  5.61 0.999 

 Mean of the site residuals = 95.11 1

1
,1

1
1 == ∑

=

n

j
jz

n
z . 
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 Mean of the background residuals = 46.11 2

1
,2

2
2 == ∑

=

n

j
jz

n
z . 

 

 Overall residual mean = 64.111
11 1

, === ∑∑∑
== =

i

K

i
i

K

i

n

j
ji zn

n
z

n
z

i

. 

 

 60.12
1 1

2
, =−= ∑∑

= =

znzSS
K

i

n

j
jiTOTAL

i

. 

 

 92.0
2

=−= ∑
=

zn
n
z

SS
K

li i

i
GROUPS . 

 
 68.11=−= GROUPSTOTALERROR SSSSSS . 
 

 098.1
)216/(68.11
)12/(9167.0

)/(
)1/(

=
−
−

=
−
−

=
KNSS

KSS
f

ERROR

GROUPS . 

 
 Numerator degrees of freedom: (K – 1) = (2 – 1) = 1. 
 
 Denominator degrees of freedom: (N – K) = (16 – 2) = 14. 
 
 N-4.2.3.  Because 05.0=α , the critical value 611.414,1,95.0 =F .  Comparing the 
calculated value ( f ) and the critical value, 14,1,95.0F , we see that 14,1,95.0Ff ≤ , so do not reject 
H0.  Therefore, we can conclude that the variance for the surface soil site concentration of 
nickel is equal to the variance of the surface soil background concentrations of nickel. 
 
N-5.  Maximum F-Ratio Test for Equality of Two or More Variances.  The maximum F-ratio 
tests whether three or more population variances from normal distributions are equal (Mason 
et al., 1989).  The test also assumes that the sample sizes for the populations are equal.  As 
this test is sensitive to departures from normality, it is recommended that normality tests be 
done before using it.  Directions are given in Paragraph N-5.1, followed by an example in 
Paragraph N-5.2. 
 
 N-5.1.  Directions for the Maximum F-Ratio Test for Equality of Two or More 
Variances.  Let K represent the total number of populations to be compared.  Let Knnn ,,, 21   
represent the sample sizes of each of the K sample populations.  Let N represent the total 
number of samples, knnnN ++= ....21 .  Let the values from each population be represented 
by jix ,  where Ki ,,2,1 =  for the K groups and inj ,,2,1 =  for the observations in the ith 
group.  
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 N-5.1.1.  22
2

2
10 : KH σσσ ===   (no difference among the population variances). 

 N-5.1.2.  HA : at least one variance, 2
iσ , is different from one or more of the other 

variances. 
 
 N-5.1.3.  Verify the assumption of normality using one of the methods described in 
Appendix F. 
 
 N-5.1.4.  Calculate the sample standard deviation for each of the K data sets.  Denote 
these standard deviations by is  and the corresponding sample size by in , where 

Ki ,,2,1 = .  Identify the largest value of si, max(si), and the smallest value of si, min(si). 
 
 N-5.1.5.  Calculate the ratio ( )2

max )min(/)max( ii ssf = .  
 
 N-5.1.6.  If nnnn k ===== 21 , use the critical values in Table B-27 of Appendix 
B, α,, vkF , where k = K and 1−= nv  for the desired level of significance α, to determine 
whether to reject the hypothesis of equal standard deviations.  If the in  is unequal but not too 
different, use the “harmonic mean of the in ”, n′ :  
 

 1−′= nv , where ( )∑
=

=′
K

i
inKn

1
/1 . 

 
 N-5.1.7.  If >maxf α,, vKF , then conclude there is evidence that the variances are not 
equal. 
 
 N-5.2.  Example of the Maximum F-Ratio Test for Equality of Three or More 
Variances.  Manganese concentrations in groundwater are compared between seven wells 
from Site A using the test:  
 
 N-5.2.1  22

0 : jiH σσ =   for all i and j. 

 N-5.2.2.  22: jiAH σσ ≠   for some ji ≠ . 

 N-5.2.3.  The data (Table N-1) were tested for equal variances using Bartlett’s test 
(Paragraph N-3).  The data were also tested for normality using the Shapiro-Wilk test.  
Because the data were not normal, they were transformed so that residuals would follow a 
normal distribution. 
 
Well 69-2-02 69-2-04 69-2-05 69-2-06A 69-2-06B 69-2-07 69-2-08 
    si 0.254 0.203 0.182 0.103 0.378 0.283 0.301. 

( 54.8)103.0/301.0())min(/)max( 22
max === ii ssf . 
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Table N-1. 
Data for Example N-5.2 

Well Location 
Result 
(mg/L) 

Log 
Result Well Location 

Result 
(mg/L) 

Log 
Result 

69-2-02 0.432 –0.839 69-2-06A 0.294 –1.224 
69-2-02 0.44 –0.821 69-2-06A 0.301 –1.201 
69-2-02 0.513 –0.667 69-2-06A 0.379 –0.970 
69-2-02 0.704 –0.351 69-2-06A 0.352 –1.044 
69-2-02 0.327 –1.118 69-2-06A 0.346 –1.061 
69-2-02 0.316 –1.152 69-2-06B 0.13 –2.040 
69-2-02 0.454 –0.790 69-2-06B 0.184 –1.693 
69-2-02 0.401 –0.914 69-2-06B 0.209 –1.565 
69-2-04 0.0504 –2.988 69-2-06B 0.2 –1.609 
69-2-04 0.0502 –2.992 69-2-06B 0.0739 –2.605 
69-2-04 0.054 –2.919 69-2-06B 0.0876 –2.435 
69-2-04 0.0523 –2.951 69-2-06B 0.126 –2.071 
69-2-04 0.0923 –2.383 69-2-06B 0.129 –2.048 
69-2-04 0.0556 –2.890 69-2-07 0.0137 –4.290 
69-2-04 0.0534 –2.930 69-2-07 0.019 –3.963 
69-2-04 0.0517 –2.962 69-2-07 0.0163 –4.117 
69-2-05 0.00684 –4.985 69-2-07 0.0195 –3.937 
69-2-05 0.00639 –5.053 69-2-07 0.0112 –4.492 
69-2-05 0.00631 –5.066 69-2-07 0.0112 –4.492 
69-2-05 0.00813 –4.812 69-2-07 0.0102 –4.585 
69-2-05 0.00747 –4.897 69-2-07 0.00946 –4.661 
69-2-05 0.00679 –4.992 69-2-08 0.563 –0.574 
69-2-05 0.00731 –4.919 69-2-08 0.512 –0.669 
69-2-05 0.00444 –5.417 69-2-08 0.475 –0.744 

69-2-06A 0.3 –1.204 69-2-08 0.546 –0.605 
69-2-06A 0.286 –1.252 69-2-08 0.276 –1.287 
69-2-06A 0.303 –1.194 69-2-08 0.383 –0.960 

   69-2-08 0.33 –1.109 
   69-2-08 0.27 –1.309 

 
 N-5.2.4.  Because nnnn k ===== 21 , use the critical values in Table B-27 of 
Appendix B with 7181 =−=−= nv .  So, 80.1105.0,7,7,, == FF vK α . 
 
 N-5.2.5.  Compare the calculated value (8.54) to the critical value (11.80); because the 
calculated value maxf  is not greater than the critical value, H0 cannot be rejected (i.e., there is 
evidence that the variances are equal).  
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APPENDIX O 
Measures of Correlation 

 
O-1.  Introduction.  A correlation coefficient provides a measure of the degree of association 
between two variables or measurements.  For example, the degree of association between pH 
and the concentration of a dissolved metal in groundwater may be of interest.  The primary 
objective of calculating a correlation coefficient is to determine whether one variable in-
creases or decreases as the second variable increases, or whether the two variables vary inde-
pendently of one another. 
 
 O-1.1.  In environmental applications, a correlation coefficient may be used to deter-
mine the strength of an association.  For example, numerous groundwater sites contaminated 
with chlorinated solvents also have high dissolved iron concentrations.  Is it possible to de-
termine whether the high iron locations are the same as where chlorinated solvent levels are 
also high?  A correlation coefficient for the relationship provides a quantitative measure of 
the degree of association of these measured parameters. 
 
 O-1.2.  A high correlation coefficient does not prove cause and effect.  When the corre-
lation between two variables is high, the relationship is strong; but one cannot conclude that 
one variable causes the other variable to increase or decrease without further evidence.  
Measuring and identifying correlation is often critical for environmental data, which are fre-
quently correlated over time or space, or both. 
 
 O-1.3.  Classical statistical methods typically assume data are not correlated.  If correla-
tions are not identified before data are statistically evaluated, then statistical methods can 
provide misleading results.  There are also statistics that depend upon correlation in the data, 
such as geostatistics (Appendix R), and there are methods available for “detrending” or 
“uncorrelating” data under certain circumstances.  These cases are beyond the scope of this 
discussion, and may be best addressed by a statistician. 
 
 O-1.4.  Several different correlation coefficients for measuring the degree of association 
between two variables will be discussed.  The correlation coefficients share common proper-
ties.  Each is a dimensionless quantity with values ranging from –1 to 1.  A positive correla-
tion coefficient for two variables indicates that one variable tends to increase as the other 
variable increases.  A negative correlation indicates that one variable tends to decrease as the 
other variable increases.  The highest possible degree of correlation occurs when the absolute 
value of the correlation coefficient equals one.  When two variables are truly independent, 
the behavior of one variable cannot be predicted from the other variable, and the correlation 
coefficient is zero.  The references EPA/240/B-026/003, QA/G-9S and Conover (1980) con-
tain additional details about measures of correlation. 
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O-2.  Correlation Coefficients as Hypothesis Testing. 
 
 O-2.1.  Introduction.  Calculated values of a correlation coefficient for a set of actual 
measurements are rarely identically equal to zero when a true correlation is absent (when the 
true correlation coefficient γ = 0).  Therefore, a hypothesis test is done to determine the pres-
ence or absence of a significant correlation.  Hypothesis tests are discussed in additional de-
tail in Appendices L, M, and N. 
 
 O-2.1.1.  The significance of the correlation is often evaluated using a hypothesis test in 
the form: 
 
 H0: γ = 0,   HA: γ ≠ 0. 
 
 O-2.1.1.1.  The correlation coefficient for a set of measured results ( )ii yx ,  is initially 
calculated.  The calculated (sample) correlation coefficient, γ̂ , is viewed as an approximation 
of the population correlation coefficient,γ , for the X and Y variables. 
 
 O-2.1.1.2.  The probability, p, of obtaining the calculated value when X and Y are not 
correlated (when the true correlation coefficient γ = 0) is then determined.  The probability is 
typically calculated by statistical software. 
 
 O-2.1.1.3.  If p is sufficiently small (e.g., p ≤ α = 0.05 or 0.01), then a correlation ex-
ists.  More accurately, the null hypothesis that the true correlation coefficient is zero is re-
jected (with a level of confidence of at least 1 – α). 
 
 O-2.1.1.4.  When statistical software is unavailable, the largest possible absolute value 
of a correlation coefficient that can occur when X and Y are not correlated is obtained from a 
table.  The tabular value for the 1 – α level of confidence is subsequently compared to the 
calculated value.  If the calculated value is larger than the value obtained from the table, the 
null hypothesis is rejected, and the correlation coefficient is not equal to zero. 
 
 O-2.1.2.  Directions and an example for using a correlation coefficient statistical test are 
in Paragraphs O-2.2 and O-2.3, respectively. 
 
 O-2.1.3.  Typically, a correlation coefficient is viewed to be significantly different from 
zero if the p value is less than a specified significance level, usually taken to be between 0.1 
and 0.01.  The p value is discussed in more detail in Appendices L, M, and N. Various values 
for the absolute value of the correlation coefficient, γ , qualitatively describe the degree of 
association below:  
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Absolute value of correlation coefficient Degree of relationship 

           50.0<γ  Extremely Weak 

75.050.0 << γ  Weak 

90.075.0 << γ  Moderate 

95.090.0 << γ  Moderately Strong 

00.195.0 << γ  Strong 
 
 O-2.1.4.  Four different sample correlation coefficients are discussed below. 
 
 O-2.1.4.1.  Pearson’s r. 
 
 O-2.1.4.2.  Spearman’s rho (ρ). 
 
 O-2.1.4.3.  Serial correlation coefficient. 
 
 O-2.1.4.4.  Kendall’s tau (τ). 
 
 O-2.1.5.  Pearson’s r measures the degree of correlation between two variables for line-
ar relationships.  Kendall’s τ  and Spearman’s ρ  measure the degree of any monotonic rela-
tionship between two variables.  Two variables, X and Y, are monotonically correlated if, 
overall, Y consistently increases or decreases as X increases.  Note that X and Y will not be 
monotonically correlated if, as X increases, Y increases then decreases (or decreases then in-
creases). 
 
 O-2.2.  Directions for a Correlation Coefficient Statistical Test.  Calculate the test sta-
tistic: 
 

 

2
1 2

−
−

=

n
r

rt . 

 
 O-2.2.1.  Use Table B-23 of Appendix B to find the critical value να ,2/1−t , which is  
(1 – α/2)100th percentile of the Student’s t distribution with degrees of freedom 2−= nν .  
 
 O-2.2.1.1.  Conclude that the correlation is significantly different from zero if  

 να ,2/1−> tt . 
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 O-2.2.1.2.  Otherwise, state that there is insufficient evidence to conclude that the corre-
lation coefficient is different from zero. 
 
 O-2.2.2.  A one-tailed test can be performed in a similar manner by replacing α/2 by α.  
For example, to test whether a correlation exceeds zero, compare t with 2,1 −− nt α .  If 2,1 −−> ntt α  
conclude that the correlation is larger than zero.  Otherwise conclude that the true correlation 
may be less than or equal to zero. 
 
 O-2.3.  Example of a Test for a Correlation Coefficient.  Consider the following data set 
for chromium and lead in subsurface soil background (in mg/kg). 
 

Sample Chromium (X) Lead (Y) 
EPC-BG01 4.60 3.50 
EPC-BG02 5.29 4.16 
EPC-BG03 4.26  4.19 
EPC-BG04 5.28 3.91 
EPC-BG05 4.53 3.66 
EPC-BG06 5.74 4.31 
EPC-BG07 5.86 4.19 
EPC-BG08 3.84 3.35 

 
 O-2.3.1.  The objective is to test if the correlation coefficient is different from zero, 
based on 90% level of confidence. 
 
 O-2.3.2.  For 90% confidence, 10.0=α . 
 
 O-2.3.3.  The correlation coefficient was calculated in Paragraph O-2.4.2 and equals 

72.0=r . 
 
 O-2.3.4.  The test statistic is  
 

 563.2

28
)7229.0(1

7229.0

2
1 22

=

−
−

=

−
−

=

n
r

rt  

 
with .628 =−=ν  
 
 O-2.3.5.  The critical value is 943.16,95.02,2/1 ==−− tt nα . 
 
 O-2.3.6.  Comparing the test statistic to the critical value, t = 2.563 > 1.943.  With at 
least 90% confidence, the correlation coefficient is significantly different from zero.   
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However, given the magnitude of r, the linear association between chromium and lead could 
be qualitatively described as “weak.” 
 
 O-2.4.  Pearson’s r.  The Pearson’s r is a parametric measure of correlation for linear 
relationship between two variables.  A linear association implies that, as one variable in-
creases, so does the other in a uniform manner (i.e., linearly), or as one variable decreases the 
other increases linearly.  A value of +1 implies a perfect positive linear correlation, i.e., that 
all the data pairs (xi, yi) lie on a straight line with a positive slope.  A value of –1 implies per-
fect negative linear correlation.  Directions and an example for Pearson’s correlation coeffi-
cient are presented in Paragraphs O-2.4.1 and O-2.4.2. 
 
 O-2.4.1.  Directions for Pearson’s Correlation Coefficient.  Let x1, x2,..., xn represent 
one variable (X) of the n data points and let y1, y2,..., yn represent the corresponding values of 
a second variable (Y).  The Pearson correlation coefficient, r, for the sample of (xi, yi) pairs is 
computed by: 

 
yx

n

i
ii

y

i
n

i x

i

ssn

yxnyx

s
yy

s
xx

n
r

)1(1
1 1

1 −

−
=









 −




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

 −
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=
∑

∑ =

=

. 

 
 O-2.4.2.  Example of Pearson’s Correlation Coefficient.  Consider the following data 
set for n = 8 chromium and lead in subsurface soil background (in mg/kg): 
 

Sample Chromium(X) Lead(Y) 
EPC-BG01 4.60 3.50 
EPC-BG02 5.29 4.16 
EPC-BG03 4.26 4.19 
EPC-BG04 5.28 3.91 
EPC-BG05 4.53 3.66 
EPC-BG06 5.74 4.31 
EPC-BG07 5.86 4.19 
EPC-BG08 3.84 3.35 

 
 O-2.4.2.1.  For chromium,  
 

 39.43.845.865.744.535.284.265.294.60
8

1
=+++++++=∑

=i
ix  

 

 7.1973.845.865.744.535.284.265.294.60 22222222
8

1

2 =+++++++=∑
=i

ix  . 

 
So, 925.48/4.39 ==x and  
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 7226.0
7

)925.48(7.197
1

2
1

22

=
×−

=
−

−
=
∑
=

n

xnx
s

n

i
i

x  . 

 
 O-2.4.2.2.  For lead,  
 

 31.273.354.194.313.663.914.194.163.50
8

1
=+++++++=∑

=i
iy  

 

 2.1233.354.194.313.663.914.194.163.50 22222222
8

1

2 =+++++++=∑
=i

iy . 

 
So, 909.38/27.31 ==y  and  
 

 3632.0
7

)909.38(2.123
1

2
1

22

=
×−

=
−

−
=
∑
=

n

yny
s

n

i
i

y . 

 
 O-2.4.2.3.  The “cross term” dependent upon the product of chromium and lead is: 
 

155.3.3.35)84.3(4.19)86.5(4.31)74.5(3.66)53.4(

3.91)28.5(4.19)26.4(4.16)5.29(3.50)60.4(

=×+×+×+×

+×+×+×+×=∑
n

i
ii yx

 

 
So, 
 

 72.0
3729.07226.07

)909.3925.48(3.155
=

××
××−

=r . 

 
Paragraphs O-2.4.3 and O-2.4.4 will demonstrate how to test whether the sample correlation 
coefficient indicates that the population correlation coefficient differs from zero. 
 
 O-2.4.3.  Discussion.  Although two independent variables will produce a correlation 
coefficient of zero, it should be noted that a calculated correlation coefficient that is equal to 
or near zero does not demonstrate the absence of a significant relationship between the two 
variables.  For example, because Pearsons’ r does not detect non-linear relationships, a 
strong non-linear relationship could result in a value of r equal to zero. 
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 O-2.4.3.1.  The data from the previous example are illustrated in Figure O-1.  Correla-
tion coefficients should be used with scatter plots to determine whether a low value of Pear-
son’s r is due to a non-linear relationship or a lack of association. 
 

 

 

 
Figure O-1.  Scatter Plot for Chromium and Lead. 

 
 O-2.4.3.2.  Pearson’s r can be sensitive to the presence of one or two extreme values, 
especially when sample sizes are small.  Such values may result in a high correlation, sug-
gesting a strong linear trend, when only a moderate or weak trend is present.  This may hap-
pen, for instance, if a single (x, y) pair has very high values for both measurements while the 
remaining data values are uncorrelated.  For example, Figure O-2 plots an example where a 
very large outlier exists.  Including the outlier leads to a sample correlation coefficient of 
0.96.  Without this value, the sample correlation coefficient falls to –0.10.  Extreme values 
may also lead to low sample correlation coefficients, thus tending to mask a strong linear 
trend.  This may happen if all the (x, y) pairs except one (or two) tend to cluster tightly about 
a straight line, and the exceptional point has a very large X value paired with a moderate or 
small Y value (or vice versa).  Because of the influences of extreme values, it is wise to use a 
scatter plot in conjunction with a Pearson correlation coefficient. 
 
 O-2.4.3.3.  An important property of Pearson’s r is that it is unaffected by changes in 
location of the data (adding or subtracting a constant from all of the X or Y measurements) 
and by changes in scale of the data (multiplying the X or Y values by a positive constant).  
Linear transformations on the data pairs do not affect the correlation coefficient of the meas-
urements.  For example, if one variable in the pair was temperature in degrees Celsius, then 
the correlation would not change if Celsius is converted to Fahrenheit. 
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Figure O-2.  Scatter Plot with Outlier. 

 
 O-2.4.3.4.  However, Pearson’s r is not invariant to non-linear transformations.  If non-
linear transformations of the measurements are made, then the Pearson correlation coefficient 
between the transformed values will differ from the Pearson correlation coefficient of the 
original measurements.  For example, if X and Y represent PCB and dioxin concentrations in 
soil, respectively, and ( )LogU X=  and ( )LogV Y= , then the Pearson correlation coeffi-
cients between X and Y and between U and V will be different because the logarithmic trans-
formation is a nonlinear transformation. 
 
 O-2.4.3.5.  It should be further noted that statistical tests that use r to estimate the popu-
lation correlation coefficient rely on the assumption that the true relationship between the 
variables X and Y follows a bivariate normal distribution.  If either variable X or Y is not 
normal, then together X and Y are not likely to follow a bivariate normal distribution.  For 
more details see Snedecor and Cochran (1982). 
 
 O-2.5.  Spearman’s rho.  Spearman’s rank correlation coefficient measures monotonic 
correlation for ordinal data (data that can be ranked) and is nonparametric (i.e., can be used 
when the data are not normally distributed). 
 
 O-2.5.1.  Introduction.  Data may be either linearly or non-linearly correlated.  When 
one variable tends to consistently increase or decrease as another variable increases, the two 
variables possess a monotonic correlation.  Unlike Pearson’s r, Spearman’s rho, ρ, may be 
used to measure the strength of both linear and nonlinear relationships. 
 
 O-2.5.1.1.  It is calculated by first replacing each value x, by its rank R(x) (1 for the 
smallest x value, 2 for the second smallest, etc.) and each value y by its rank R(y).  These 
pairs of ranks are then treated as the (x, y) data and Spearman’s rank correlation is calculated 
using the same formula as for Pearson’s correlation.  
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 O-2.5.1.2.  Directions and an example for calculating a Spearman’s rank correlation co-
efficient are contained in the Paragraphs O-2.5.2 and O-2.5.3. 
 
 O-2.5.1.3.  Because meaningful (monotonically increasing) transformations of the  
data will not alter the ranks of the respective variables (the ranks for Log(x) will be the  
same as the ranks for x), Spearman’s correlation will not be altered by non-linear increasing 
transformations of x and y.  For instance, the Spearman correlation between PCB and dioxin  
concentrations (x and y) in soil will be the same as the correlation between their logarithms, 
Log(x) and Log(y).  Because Spearman’s ρ is a nonparametric measure of correlation, it is 
invariant for monotonic increasing transformations and is less sensitive to extreme values 
than Pearson’s correlation.  However, Pearson’s r has higher statistical power than  
Spearman’s ρ. 
 
 O-2.5.2.  Directions for the Spearman’s Rank Correlation Coefficient.  Let  
 
 ( ) ( ) ( )nxRxRxR ,,, 21    
 
represent a set of ranks of the n data points for the variable X and let  
 
 ( ) ( ) ( )nyRyRyR ,,, 21    
 
represent a set of ranks of a second variable Y of the n data points.  The Spearman sample 
correlation coefficient, ρ , for X and Y is computed by: 
 

 ( ) ( )
( )

( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( )yRxR
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 O-2.5.3.  Example of Spearman’s Correlation Coefficient.  Consider the following data 
set for chromium and lead in subsurface soil background (in mg/kg): 
 

Sample Chromium(X) Lead(Y) 
EPC-BG01 4.60 3.50 
EPC-BG02 5.29 4.16 
EPC-BG03 4.26 4.19 
EPC-BG04 5.28 3.91 
EPC-BG05 4.53 3.66 
EPC-BG06 5.74 4.31 
EPC-BG07 5.86 4.19 
EPC-BG08 3.84 3.35 
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 O-2.5.3.1.  First the data must be ranked: 
 

Sample Chromium Rank (X) Lead Rank (Y) 
EPC-BG01 4.60 4 3.50 2 
EPC-BG02 5.29 6 4.16 5 
EPC-BG03 4.26 2 4.19 6.5 
EPC-BG04 5.28 5 3.91 4 
EPC-BG05 4.53 3 3.66 3 
EPC-BG06 5.74 7 4.31 8 
EPC-BG07 5.86 8 4.19 6.5 
EPC-BG08 3.84 1 3.35 1 

 
 O-2.5.3.2.  Notice that two of the lead values are equal, so their rank is assigned to be 
the average of ranks 6 and 7. 
 
 O-2.5.3.3.  For chromium, ( ) 5.4=xR , and ( ) 45.2=xRs . 
 
 O-2.5.3.4.  For lead, ( ) 5.4=yR , and ( ) 43.2=yRs . 

 
 O-2.5.3.5.  The sum of the cross-products for chromium and lead ranks is: 
 

( ) ( )
8

1
(1 1) (2 6.5) (3 3) (4 2) (5 4) (6 5) (7 8) (8 6.5)

189 .

i i
i

R x R y
=

= × + × + × + × + × + × + × + ×

=

∑  

 
 O-2.5.3.6.  The correlation coefficient is  
 

 647.0
43.245.27

)5.45.48(189
=

××
××−

=ρ  . 

 
 O-2.6.  Serial Correlation Coefficient.  The serial correlation coefficient is a measure of 
the extent to which successive observations (either in time or space) are related.  The primary 
difference between the serial correlation coefficient and other measures of correlation is the 
manner in which the correlation coefficient is used and the manner in which one of the varia-
bles is scaled.  For example, the serial correlation coefficient is frequently used to determine 
the behavior of some variable of interest X with respect to time (t).  Frequently, the variable 
X is measured at equally spaced time intervals, so that the data points are of the form (x1, t1), 
(x2, t2),…., (xn, tn).  The serial correlation coefficient may be a parametric or non-parametric 
measure of correlation, depending upon how it is calculated.  For example, if variable X is 
being evaluated with respect to time t, Spearman’s ρ is essentially being calculated if the 
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values of X are replaced with the corresponding ranks.  Directions and examples for calculat-
ing a serial correlation coefficient are presented in the following two paragraphs. 
 
 O-2.6.1.  Directions to Calculate the Serial Correlation Coefficient.   
 
 O-2.6.1.1.  For a sequence of data points taken serially in time, or “one-by-one in a 
row,” the serial correlation coefficient can be calculated by replacing the sequencing variable 
by the numbers 1 through n and calculating Pearson’s correlation coefficient with x being the 
actual data values, and y being the numbers 1 through n.  For example, for a sequence of 
samples collected every 10 feet along a straight transit line at a waste site, the distances on 
the transit line of the data points are replaced by the numbers 1 through n, for samples taken 
at 10-foot intervals (first 10-foot sample point = 1, the 20-foot sample point = 2, the 30-foot 
sample point = 3, etc.). 
 
 O-2.6.1.2.  To calculate the serial correlation coefficient, let x1, x2,..., xn  represent the 
data values collected in sequence over equally spaced periods.  Label the periods 1, 2..., n to 
match the data values.  Use the directions above to calculate the Pearson’s Correlation Coef-
ficient between the data, x, and the time-periods, y. 
 
 O-2.6.2.  Estimating the Serial Correlation Coefficient.  Consider benzene results taken 
from quarterly groundwater samples at well MW01 in Site A from 1998–2000.  Benzene has 
been detected during all of these sampling events, so no proxy concentrations were derived.  
Also, notice how the numbers 1 through 10 replace the actual sample dates. 
 

Time Jan-98 Apr-98 Jul-98 Oct-98 Apr-99 Jul-99 Oct-99 Apr-00 Jul-00 Oct-00 
Time  
Period 
Number 

1 2 3 4 5 6 7 8 9 10 

Concentra-
tion (μg/L) 

12.2 3.79 3.42 5.47 0.81 1.84 7.56 4.3 2.68 6.17 

 
 O-2.6.2.1.  For the concentration (X), 
 

 24.48
10

1
=∑

=i
ix , 8.329

10
2 =∑

i
ix , 824.4=x , and 284.3=xs . 

 
 O-2.6.2.2.  For the time period (Y), 
 

 55
10

1
=∑

=i
iy , 385

10
2 =∑

i
iy , 5.5=y , and 028.3=ys . 

 
The cross term is: 
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 2.240
10

1
=∑

=i
ii yx . 

 
 O-2.6.2.3.  Using Paragraph O-2.4.1, we see that the Pearson correlation coefficient, r, 
between the concentration (X) and the time period (Y) gives a serial correlation coefficient of: 
 

 2813.0
028.3284.39

)5.5824.410(2.240
−=

××
××−

=r . 

 
 O-2.7.  Kendall’s Coefficient of Rank Correlation.  In instances where data do not fol-
low a normal or other known distribution, it is still possible to test for the significance of as-
sociation between two variables.  Kendall’s coefficient of rank correlation, also referred to as 
Kendall’s τ (the Greek letter tau), is a measure of correlation that may be used for variables 
that are at least ordinal in nature (i.e., variables with values that can be ranked).  It is fre-
quently encountered in ecological applications such as counting of fish species in a stream in 
different seasons.  
 
 O-2.7.1.  Introduction.  Kendall’s τ does not assume any particular data distribution and 
accommodates censored values.  Non-detected results should be assigned a value smaller 
than the lowest measured value.  As the test depends only upon signs of the differences be-
tween data points (or the ranks), information about magnitudes of these differences is not 
used; as a result, the test possesses less power than its parametric counterpart, Pearson’s r 
(i.e., a larger number of data points are required to identify a correlation using Kendall’s τ).  
However, Kendall’s τ  is advantageous because assumptions about the underlying data dis-
tribution are not required, and it is less sensitive to outliers and censored values than a para-
metric test. 
 
 O-2.7.1.1.  Kendall’s τ is also invariant with respect to monotonic transformations of 
the variables.  For example, the calculated value of τ will be identical to the calculated value 
for log-transformed variables.  See the discussion at the end of Paragraph O-2.5 for more  
details.  It should also be noted that for the same data, the value for Kendall’s τ is generally 
lower than for Spearman’s r (Conover, 1980).  However, statistical tests for γ = 0 are gener-
ally in agreement between the two. 
 
 O-2.7.1.2.  Kendall’s τ  for small sample sizes is appropriate for data with fewer than 
40 samples (Gilbert, 1987); the EPA suggests using this method with data sets fewer than 10 
samples.  Tied observations (when two or more measurements are equal) degrade the statisti-
cal power and should be avoided, if possible, by recording the data to sufficient accuracy.  If 
the number of samples becomes too large, the calculations become cumbersome to do by 
hand.  Directions for calculating Kendall’s τ for a small sample size (less than 10 samples) 
are presented in Paragraph O-2.7.2 and an example is presented in Paragraph O-2.7.3.  Ex-
tensions of Kendall’s τ for larger sample sizes are explained with the Mann-Kendall test for 
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trends in Appendix P.  In that Appendix, the time variable corresponds to the X variable here, 
and the X variable in Appendix P corresponds to the Y variable here. 
 
 O-2.7.2.  Directions for Kendall’s Coefficient of Rank Correlation.  Let 
( ) ( ) ( )nn yxyxyx ,,,,,, 2211   represent pairs of measurements of variables X and Y. Order  
the pairs from least to greatest by the x value ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( )
nxnxx yxyxyx ,,,,,,

21 21  .  Here the 
notation 

( )ixy  indicates the Y measurement that corresponds to the ith X measurement ordered 
from least to greatest.  The test statistic S is then calculated:  
 
 −+ −= SSS  
 
where +S  is the number of positive (“concordant”) pairs: 

( ) ( )
( )

ji xx yy ,  with ji <  and 
( ) ( )ji xx yy < .  Likewise, −S  is the number of negative (“discordant”) pairs: 

( ) ( )
( )

ji xx yy ,  with 
ji <  and  

 
 

( ) ( )ji xx yy > .  
 
It can be shown that there are a total of ( ) 21−nn  possible pairwise comparisons for a set of 
n pairs 

( ) ( )
( )

ji xx yy , .  The sample statistic Kendal1’s τ, is: 
 

 ( ) 21−
=

nn
Sτ  . 

 
Note that differences of zero are not included in the test statistic (and should be avoided, if 
possible, by recording data to sufficient accuracy).  However, an adjustment for ties may be 
made by calculating Kendall’s τb (“tau b”)   
 







 ′−

−






 ′−

−
=

YX

b

nnnnnn
S

2
)1(

2
)1(

τ  . 

 
The quantities Xn′  and Yn′ denote the number of ties for the X variable and Y variable, respec-
tively.  In particular, if there are n pairs of values ( )ji yx , , so that the measured values of X 
are nxxx ...,, 21 , then Xn′  is the number of pairs ( )ji xx , , where i > j, for which ( ) 0=− ji xx  or 
for which this difference cannot be determined to be either positive or negative because of 
data censoring.  For example, assume that there are multiple censoring limits for non-detects 
(e.g., < 3 and < 5), and X is the set of n = 5 values {< 1, < 3, < 5, 2, 10} with the correspond-
ing Y values {2, 4, 5, 7, 9}, so that, for example, the first pair of results ( )11 , yx  is ( )2,1< .  
There are five tied pairs for the measured values of X: (< 1, < 3), (< 1, < 5), (< 3, < 5), (< 3, 
2), and (< 5, < 2).  Therefore, 5=′Xn .  As there are no tied values for Y, 0=′Yn .  Note that 
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when ττ ==′=′ bYX nn ,0 .  Tied values tend produce larger values for τb relative to the corre-
sponding values for τ. 
 
 O-2.7.2.1.  Table O-1 presents the resulting matrix of differences when applying the 
steps above.  Fill in the blank spaces with a 1 if the value at the top of the column exceeds 
the value at the left of the row.  Fill in 0 if they are equal, and fill in –1 otherwise.  Then sum 
the values across rows and add up the sums to get S. 
 
Table O-1. 
Matrix of Differences for Kendall’s τ 

Y Measurements ( )2xy  
( )3xy  … ( )nxy  Sum of Row 

( )1xy       

( )2xy       

….      
( )1−nxy       

     S 
 
 O-2.7.2.2.  Use Table B-10 of Appendix B to determine the probability (p) using the 
sample size (n) and the absolute value of the statistic S if 10≤n .  
 
 O-2.7.2.3.  For testing H0: 0=γ  against HA: 0≠γ  at significance level α, reject H0 if 

2α<p . 
 
 O-2.7.3.  Example of Kendall’s Rank Correlation Coefficient.  Consider the same data 
set presented in Paragraphs O-2.4.2 and O-2.5.2 for chromium and lead in subsurface soil 
background (in mg/kg).  Although these data are for continuous variables, it is possible to de-
termine the rank correlation between chromium and lead using Kendall’s τ. 
 
 O-2.7.3.1.  First the data must be ordered by the chromium measurements as shown be-
low. 

Sample Chromium Lead 
EPC-BG08 3.84 3.35 
EPC-BG03 4.26 4.19 
EPC-BG05 4.53 3.66 
EPC-BG01 4.60 3.50 
EPC-BG04 5.28 3.91 
EPC-BG02 5.29 4.16 
EPC-BG06 5.74 4.31 
EPC-BG07 5.86 4.19 
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 O-2.7.3.2.  Then, create Table O-2 for the lead measurements as described in Paragraph 
O-2.7.2. 
 

O-2.7.3.3.  From Table O-2, S = 15.  There are n = 8 pairs of lead and chromium meas-
urements.  Therefore, Kendall’s tau is: 

 

( ) ( ) 0.536
2188

15
21

=
−

=
−

=
nn

Sτ .  

 
As there is one tie for the lead measurements (two measurements equal 4.19) 
 

=







 −

−






 −

−
=







 ′−

−






 ′−

−
=

1
2

)18(80
2

)18(8
15

2
)1(

2
)1(

YX

b

nnnnnn
Sτ 0.546. 

 
 O-2.7.3.4.  To test whether the population correlation coefficient differs from 0 with 
90% confidence (α = 0.05), look up the value of p corresponding to S = 15 for n = 8 in Table 
B-10.  Owing to the tied value for lead, S = 15 does not appear in the table.  Ideally, the data 
should have been recorded with more accuracy to break the tie.  In this case, the value for  
S = 14 will be used to give p = 0.054 > α/2 = 0.05.  We conclude that the population correla-
tion coefficient does not differ significantly from zero with 90% confidence although further 
study may be needed. 
 
 O-2.8.  Covariance.  A statistic related to the correlation coefficient is covariance.   
Covariance is a measure of the linear association between two random variables, X and Y.  If 
covariance is positive, large values of X tend to be associated with large values of Y and vice 
versa.  If covariance is negative, large values of X tend to be associated with small values of 
Y and vice versa.  The sample covariance is calculated as  
 

 ( )( )
)1(1

1 1

1 −

−
=−−

−
=

∑
∑ =

= n

yxnyx
yyxx

n
s

n

i
iin

i
iixy .  

 
 O-2.8.1.  Pearson’s correlation coefficient is derived from the covariance by dividing 
covariance by the sample standard deviations of X and Y. 
 
 O-2.8.2.  Covariance is rarely used because the magnitude of its value is difficult to in-
terpret.  In particular, changes in scale cause changes to the covariance; that is, covariance is 
not invariant to changes in scale.  For example, if X is multiplied by 100, its covariance with 
Y will also go up by a factor of 100, while its correlation with Y will remain the same. 
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Table O-2. 
Matrix of Differences for Kendall’s τ for Data in O-2.7.3.1 

Lead Measurements 4.19 3.66 3.50 3.91 4.16 4.31 4.19 Sum of Row 
( )

35.3
1
=xy  1 1 1 1 1 1 1 7 

( )
19.4

2
=xy   –1 –1 –1 –1 1 0 –3 

( )
66.3

3
=xy    –1 1 1 1 1 3 

( )
50.3

4
=xy     1 1 1 1 4 

( )
91.3

5
=xy      1 1 1 3 

( )
16.4

6
=xy       1 1 2 

( )
31.4

7
=xy        –1 –1 

        S = 15 
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APPENDIX P 
Comparing Laboratory and Field Data 

 
P-1.  Introduction.  Interpreting field data may arise in the SI and RI phases of a CERCLA 
project.  The following discussion applies to comparing field data results to laboratory re-
sults. 

 P-1.1.  As previously discussed, there is an inherent relationship among variability, the 
statistical decision confidence required, and the number of data points one must have to 
make the decision.  There is a trade-off between cost and data quality (level of confidence for 
the decision-making).  In general, cost and the level of confidence increase as the number of 
samples increases.  In fact, a small set of very high quality individual measurements (e.g., 
from a fixed-laboratory analytical method) is frequently not as desirable as a large number of 
lower quality measurements (e.g., from a field analytical method).  If rapid and inexpensive 
methods of sampling and analysis were available for the SI, a larger number of samples 
could be used to characterize the study area, reducing both cost and decision uncertainty.  
However, such methods with sufficient reliability are not always available. 

 P-1.2.  There are many innovative field-based sampling and analysis techniques and 
technologies available to environmental scientists.  Because of the ability to reproduce these 
sampling techniques with an acceptable level of accuracy and at relatively low cost, investi-
gators can still make decisions with confidence based on field analyses. 

 P-1.3.  When applying field analytical technologies to a given site, the project team  
often collects larger sample aliquots for a percentage of the field samples to ensure that the 
field methods are providing reasonably precise, accurate, and representative results.  Each  
aliquot is thoroughly homogenized (i.e., unless VOCs are being analyzed) and split into a 
pair of duplicate samples; one sample is analyzed by the field method and the remaining 
sample of the duplicate pair is sent to a fixed laboratory for analysis.  The results of the  
laboratory and field analyses are then compared to assess the usability of the field results. 

 P-1.4.  Although the EPA has generally specified splitting 10% of screening samples 
with a fixed laboratory for confirmation analysis, this is an arbitrary criterion.  Furthermore, 
there is little guidance on how to compare field and fixed laboratory results and the criteria 
for acceptable agreement.  Therefore, a number of possible approaches are available and  
discussed here, including the following. 

 P-1.4.1.  Relative percent difference (RPD). 

 P-1.4.2.  Correlation analysis. 

 P-1.4.3.  Regression analysis. 

 P-1.4.4.  Group comparisons. 
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 P-1.4.5.  Percent decision match. 

 P-1.5.  Project planners should be sensitive to the possible comparison methods so that 
sampling design is appropriate for the data collected and the decision to be made at their  
particular site. 

P-2.  Relative Percent Difference.  The RPD for a duplicate pair of measurements (x1, x2) is 
the absolute value of the difference between the measurements divided by the mean of the 
measurements x , expressed as a percentage: 

 10021 ×
−

=
x

xx
RPD  . 

 P-2.1.  The RPD is simple to calculate and has historically been used to compare two 
sets of data.  The field values and the corresponding laboratory values are treated as duplicate 
pairs, and an RPD is calculated for each pair.  It should be noted that, as it is usually used for 
environmental applications, the RPD is not a statistically based measure of agreement.  The 
approach is semi-quantitative at best, and, in general, is not recommended.  Acceptance lim-
its for the RPDs tend to be arbitrarily defined and unrelated to acceptable tolerances for un-
certainty (i.e., the RPD acceptance limits are not derived from statistically based data quality 
objectives for the project).  Furthermore, the EPA has not established fixed acceptance limits 
for the RPDs of field duplicates, though EPA Region II has specified field duplicate accep-
tance limits for metals for data review. 

 P-2.2.  The RPD limit for field duplicates is 50% for water and 100% for soils.  RPD 
values from intra-laboratory studies are available for most SW-846 methods, but the values 
represent only the analytical component of the variability.  As the RPD is proportional to  
the absolute difference, it is not useful for evaluating bias.  Moreover, in terms of project  
decision-making, a process has not been developed to readily quantify the uncertainty  
associated with field results, nor has a range of acceptable RPD results been developed to  
determine whether field results are within decision limits. 

P-3.  Correlation Analysis. 

 P-3.1.  Field data can be compared to confirmation data, typically fixed laboratory data, 
using correlation analysis.  In this case, the data are paired and plotted on a graph, and a 
Pearson’s r,* which is a measure of the degree of linear association between the two sets of 
data, is calculated.  Paired statistical tests are useful because they can be used to determine 
whether a screening-level method is producing data that are significantly different from a de-
finitive method.  Higher values of Pearson’s r are preferred, as this indicates increasing simi-
larity between the field and confirmation data.  For sufficiently high values of Pearson’s r, 
the field data can reliably be used as a proxy for the confirmation data.  As previously stated, 
                                                 

* Appendices O and Q. 
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there are no fixed limits for comparison, but Appendix O provides some guidance for as-
sessing correlation results in terms of values of Pearson’s r.  

 P-3.2.  However, there are a number of problems with using correlation analysis as a 
comparison tool.  A principal problem is that correlation does not imply a cause-and-effect 
type of relationship or provide predictive capabilities.  In other words, correlation analysis 
cannot be relied upon to show how variable X affects variable Y, or how X is a predictor of 
unknown values of Y.  Thus, correlation analysis is intended as a statistical tool to simply 
show how two variables are linearly related and the strength of this relationship.  An addi-
tional problem, or complexity, with correlation analysis is that the principal statistic reported 
in the analysis, Pearson’s r, requires the X and Y variables to possess a bivariate normal dis-
tribution* (not only must X and Y be normal but the “joint variation” must also be normal; 
that is, if every possible (x, y) pair were available, Y must be normal for every fixed value X 
= x and X must be normal for every fixed value Y = y).  Finally, it is entirely possible that  
data sets paired in order of concentration will show linear correlation when the absolute dif-
ferences between them are very large, but in some manner proportional.  Thus, along with 
other measures, if the data give a good linear or curvilinear fit with strong correlation, this 
may be taken to support but not prove confirmation between results. 

P-4.  Regression Analysis.  Field data are often compared to confirmation data, typically 
fixed laboratory data, using regression analysis.  In this case, the data are paired and plotted 
on a graph and a best-fit line is created.  The regression model can provide information re-
garding the magnitude of the difference or the functional relationship between the screening-
level and definitive methods, so that screening-level data can be converted to definitive data. 

 P-4.1.  However, functional relationships between screening-level and definitive data 
are often inappropriately established.  Classical linear regression analysis, as presented in 
Appendix O, is not appropriate for this analysis because both screening-level data (the  
“dependent” variable) and laboratory concentrations (the “independent” variable) are meas-
ured values, and because the laboratory concentrations (the “independent” variable) has more 
than a negligible amount of variability.  For example, the laboratory concentrations could be 
selected as the “independent” variable X to generate a regression line of the form, 

 01 bxby += .  

 P-4.2.  This implies  

 )/()/1( 101 bbybx −+= . 

 P-4.3.  However, the alternative selection of Y as the “independent” variable would 
produce a regression line,  

                                                 

* Appendix O. 
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 01 bybx ′+′=  . 

 P-4.4.  Unfortunately, 11 /1 bb ≠′  and )/( 100 bbb −≠′ .  In other words, the classic or  
ordinary least squares (OLS) line produced from X and Y measurement data depends upon 
whether X or Y is arbitrarily selected as the independent variable.  Therefore, it would be in-
appropriate to generate a regression line to “convert” screening level measurements to labor-
atory concentrations (or vice versa). 

 P-4.5.  In place of OLS linear regression, reduced major axis (RMA) regression is a 
reasonable parametric approach, while the Kendall-Theil line is a desirable non-parametric 
approach for establishing a linear relationship.  Advantages to reduced major axis regression 
are the following. 

 P-4.5.1.  While a classic (OLS) regression line of the form y = b1x + b0 minimizes the 
sum of the distances in the y-direction from the regression line to each observed point yi, the 
RMA line minimizes error for both X and Y by minimizing the sum of the areas of right tri-
angles formed by horizontal and vertical lines extending from each observation ( )ii yx ,  to the 
best-fit straight line (Helsel and Hirsch, 1992, p. 276). 

 P-4.5.2.  Unlike OLS regression, RMA regression produces a unique line regardless of 
which variable, X or Y, is used as the response or independent variable. 

 P-4.6.  RMA regression is used to model the correct functional relationship between 
two variables when both variables possess comparable measurement error.  It is commonly 
used to evaluate biological data.  All of the assumptions required for OLS regression are  
required for RMA regression (e.g., the residuals must be normally distributed).  RMA  
regression has also been called “line of organic correlation,” “geometric mean functional  
regression,” and “Maintenance of Variance-Extension” (Helsel and Hirsch, 2003).  Reduced 
major axis regression should not be confused with an alternative approach referred to as  
“major” or “principal axis” regression.  Major axis regression is often used in lieu of RMA 
regression as it is conceptually similar; the best fit line minimizes the sum of the squares of 
the perpendicular distances between the line and each plotted observation (rather than the  
areas of right triangles).  Both reduced major axis and major axis regression are often  
referred to as “model II” regression (OLS regression is “model-I” regression). 

 P-4.7.  The slope )( 1b ′′  and intercept )( 0b ′′  of the RMA regression line 01 bxby ′′+′′=  are 
as follows: 

 ( )xy ssrsignb /][1 =′′  

 xbyb 10 ′′−=′′  

where ][rsign is the algebraic sign of Pearson’s r; ys and xs are the sample standard devia-
tions of Y and X , respectively; and y and x  are the sample arithmetic averages of Y and X , 
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respectively.  Like an OLS regression line, the RMA regression line passes through the point 
( )yx, , but (unlike an OLS regression line) the slope does not depend upon the magnitude of 
the regression coefficient r.  Given the OLS regression lines 01 bxby += and 01 bybx ′+′= , an 
alternative expression for the major axis regression slope is: 

 111 /][ bbrsignb ′=′′ . 

 P-4.8.  Thus, the slope of the RMA regression line is essentially the geometric mean 
of the OLS slopes b1 and 1/1 b′  (hence the use of the terminology “geometric mean regres-
sion”).  An equivalent expression for the RMA slope is: 

 rbb 11 =′′  

Note that, because r ≤ 1, the RMA slope will be equal to or greater than the slope of the cor-
responding OLS regression line. 

 P-4.9.  Confidence limits can be calculated for the slope and intercept of the RMA  
regression line.  The (1 – α)100% confidence interval for the slope is as follows (Warton, 
2005)  

 ( ) ( )[ ]BBbBBb ++′′−+′′ 1,1 11  (P-1) 

where 

 
2

)1( 2
2,1,1

−

−
= −−

n
rF

B nα  

2,1,1 −− nF α  is the critical value of the F-distribution with 1 degree of freedom in the numerator 
and n – 2 degrees of freedom in the denominator.  The confidence limits for the intercept are: 

 02,210 stb n −−±′′ α  . (P-2) 

 P-4.10.  The quantity s0 denotes the estimated standard deviation of the intercept of the 
OLS regression line 01 bxby += , which may be determined from the equation: 

 2
1

2

0 sx
n
ss +=  . 

 P-4.11.  The quantity s2 denotes the estimated variance of residuals of the OLS  
regression line 01 bxby +=  and 2

1s  the estimated variance of slope of the OLS slope 
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 P-4.12.  The reader is referred to software that can be used to calculate RMA regression 
lines as well as confidence limits for the slopes and intercepts (Bohonak, 2004), though the 
software does not calculate the confidence limits of the slope using Equation P-1 but using 
an approximation that produces a similar result: 

 12,211 stb n −−±′′ α  . 

 P-4.13.  A non-parametric approach for establishing a linear relationship is the Kendall-
Theil line.  The line takes the form: 01

ˆˆ bxby += .  The slope )ˆ( 1b  is computed by comparing 
each data pair to all others in a pairwise fashion.  A data set of n (x, y) pairs will result in  
n(n – 1)/2 pairwise comparisons.  For each of these comparisons, a slope is computed by  

 
( )
( )ij

ij
ij xx

yy
m

−

−
=  for all ji < ; )1(,,2,1 −= ni  ; and nj ,,3,2 = .  

 P-4.14.  Note that ijm is the value of the random variable, M .  The slope )ˆ( 1b  and inter-
cept )ˆ( 0b  are estimated as follows: 

 mb ~
1̂ = , where m~ is the median of M  

and 

 xbb ~ˆ-y~ˆ
10 = , where y~ and x~ are the medians of Y and X , respectively. 

 P-4.15.  Therefore, the line passes through the point )y~,~(x , analogous to the ordinary 
least squares regression line, which passes through the point ),( yx .  The Kendall-Theil line 
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is closely related to the Kendall’s τ (see Appendix O) because the hypothesis test that 1̂b is 
equal to zero is the same as the hypothesis test that τ is equal to zero.  The Kendall-Theil line 
has the desirable property of a nonparametric estimator: it is almost as efficient as the para-
metric estimator when all assumptions of normality are met, and is much better when those 
assumptions are not met (Helsel and Hirsch, 2003).  A confidence limit for the slope of the 
line can be calculated by ordering the slopes ijm  for all ji < ; )1(,,2,1 −= ni   and 

nj ,,3,2 =  from smallest to largest, and selecting the rth and sth slopes such that the follow-
ing inequality holds true: 

 ( ) .1)()( α−≥<< sr mMmP   

 P-4.16.  For more details about this confidence limit, see “Statistical Methods in Water 
Resources” (Helsel and Hirsch, 2003) or “Practical Nonparametric Statistics” (Conover, 
1980).  

P-5.  Group Comparisons.  In a manner similar to the comparison between background and 
on-site data, screening and definitive confirmation data can be compared as groups.  After 
verifying that the minimum assumptions of the various tests are met, group means and  
variances can be compared using t- and F-tests or their non-parametric equivalents (See  
Appendices M and N).  In this case, the project team must decide on the decision confidence 
required, most likely α will be 0.2 or less.  Methods for determining decision confidence  
levels are discussed in Appendix K. 

 P-5.1.  The following provides a review of issues that must be considered when apply-
ing the method of group comparisons; the review primarily focuses on comparing distinctly 
different groups of data.  Consider a site that contains areas of both high and low contamina-
tion.  Given the extreme divergence in contamination levels, there will be different popula-
tion means across the sampled areas.  Sample data analyzed using Field Method A cannot 
simply be compared to the entire set of sample data using Laboratory Method B with a two-
sample t-test (refer to Appendix N) because of the different mean levels of the measured con-
taminant.  For this approach to be viable (i.e., two sample t-test based on field and laboratory 
methods), the underlying population would need to be relatively homogeneous.  If this condi-
tion is not met, statistical tests for paired data would need to be used.  

 P-5.2.  Paired statistical tests are recommended to determine whether Field Method A 
and Laboratory Method B are significantly different.  To conduct these tests, an aliquot is 
homogenized and split into duplicates (it is possible the sample extracts would be split as 
well).  One duplicate is analyzed by Method A and the other analyzed by Method B.  For 
each data pair, the researcher evaluates the difference in results provided between Methods A 
and B.  If the results from Method A are not different from corresponding results provided by 
Method B and the differences are normally distributed, then on the average, the difference 
between the two methods is zero.  However, it should be noted that, as the differences are 
usually calculated over a range of concentrations (rather than at a single concentration), an 
average difference of zero does not necessarily demonstrate that Methods A and B are com-
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parable.  For example, it would be possible for Method A to produce much smaller values 
than Method B at low concentrations but much larger values at high concentrations so that, 
on the average, the differences between Method A and Method B over the entire concentra-
tion range is nearly zero.  If Methods A and B are different, then the researcher should estab-
lish a functional relationship (XB = f(XA)) using regression analysis to “convert” the Field 
Method A results (XA) to the corresponding laboratory Method B results (XB) (see Paragraph 
P-4 for a discussion of regression analysis).  The computed relationship, though, would need 
to quantify the uncertainty associated with the conversion.  If this uncertainty is small rela-
tive to the uncertainty contributed by the field component, then the conversion uncertainty 
can be ignored and the “converted results” (XB) used directly (i.e., can be treated as if they 
were directly obtained from a definitive laboratory method). 

P-6.  Percent Decision Match (PDM).  The PDM may be a practical and useful approach to 
confirmation testing.  The PDM is a qualitative evaluation strategy, as opposed to a more 
traditional statistical or quantitative strategy.  For example, in the PDM, the decision error is 
not quantified and the variability in PDM results for a study area is not incorporated into the 
analysis.  The PDM approach may be useful certain data quality objectives, namely to deter-
mine whether site contamination exceeds a specified decision limit.  

 P-6.1.  The PDM is calculated as the number of times both data points in a data pair 
lead to the same conclusion divided by the total number of data pairs, expressed as a percent-
age: 

 PDM Number of Decision Matches
Number of Data Pairs

= . 

 P-6.1.2.  For example, suppose the regulatory threshold to which the data will be com-
pared is fixed at 100 ppm.  Suppose further that 100% of the data points from the screening 
technology are less than the threshold and the mean concentration is 50 ppm.  Now, let us 
suppose that the definitive method of analysis systematically produces lower results and the 
mean concentration is 10 ppm.  If both the screening data and the definitive data lead to the 
same conclusion, namely, that all of the samples are less than the threshold, is the difference 
between the absolute values of the screening and definitive analyses of any real significance?  
A PDM greater than 90% has historically been found to be acceptable to regulators in a 
number of differing jurisdictions. 
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APPENDIX Q 
Trend Analysis 

 
Q-1.  Introduction. 
 
 Q-1.1.  This Appendix presents tools for detecting and estimating trends in environmen-
tal data.  Trends may be spatial or temporal and can take various forms, including steady  
increases or decreases or a steep increase or decrease at a point in time or space.  Detecting 
and estimating temporal or spatial trends are important for many environmental studies or 
monitoring programs.  In cases where temporal or spatial patterns are strong, simple proce-
dures such as time plots or linear regression over time can reveal trends.  In more complex 
situations, sophisticated statistical models and procedures may be needed.  The detection of 
trends may be complicated by the overlaying of long- and short-term trends, cyclical effects 
such as seasonal or weekly systematic variations, autocorrelations, or impulses or jumps 
from interventions or procedural changes.  Trend is just one of several aspects of time series, 
the study of data with respect to time.  Time series consists of trends, seasonal variation or 
seasonality, cyclical variation or repetitive trends, and irregular activity (Kvanli et al., 1996). 
 
 Q-1.2.  The following subparagraphs present methods for detecting seasonal or tem-
poral repetitive trends, correcting for seasonality, and testing procedures for trends using  
regression techniques and more robust trend estimation procedures.  The investigations of 
trends in this Appendix are limited to one-dimensional domains, trends in a constituent con-
centration over time.  This Appendix does not address spatial trends (with two- and three-
dimensional domains) and trends over space and time (with three- and four-dimensional  
domains), which may involve sophisticated geostatistical techniques such as kriging  
(Appendix R).  Gilbert (1987) and Gibbons (1994) provide additional resources for trend 
analysis. 
 
Q-2.  Identifying Seasonality and Other Repetitive Trends.  Seasonality is one factor that ac-
counts for changes in concentrations over time.  Environmental monitoring data are likely to 
exhibit seasonality.  According to Kvanli, et al. (1996), seasonality is a predictable, periodic 
increase or decrease that occurs within a time period or cycle, such as 1 year.  The key to 
identifying such trends is the repetition of the same pattern for each cycle.  Identifying sea-
sonality or other repetitive trends (i.e., persistent cyclic variations) is necessary before long-
term increasing or decreasing temporal trends can be evaluated in environmental data.  To 
identify these, a project team should visually inspect plots of data across time for seasonal or 
repetitive trends.  Project teams should justify all seasonal trends identified visually with re-
spect to site history, geology, chemistry, and professional judgment. 
 
 Q-2.1.  Overview of Seasonal Trends.   

 Q-2.1.1.  Generally, seasonality is not the primary focus of evaluating monitoring data 
for temporal trends.  As such, data should be adjusted to remove the seasonal effects so that 



 
 
 
 
EM 200-1-16 
31 May 13 

 

Q-2 

other temporal trends may be studied.  For instance, if groundwater concentrations are dilut-
ed every spring by high recharge, true changes in groundwater may be masked by this effect.  
Likewise, if low water flow in fall leads to higher concentrations in groundwater that do not 
represent more leaching from a source area, then these effects should be accounted for in da-
ta evaluation.  Seasonal effects may be removed by adjusting the sample data or using statis-
tical methods unaffected by such relations.  Adjustments to the sample data are described in 
this Paragraph.  The subsequent Paragraph provides details about statistical tests that account 
for data with seasonal variability. 
 
 Q-2.1.2.  There are various methods to de-seasonalize data.  If the seasonal pattern is 
regular, it may be modeled with a sine or cosine function.  Moving averages can be used, or 
differences (of order 12 for monthly data, for example) can be used.  However, time series 
models may include rather complicated methods for de-seasonalizing the data.  A simpler 
method is presented in EPA 530-SW-89-026 for applications to any seasonal cycle.  For en-
vironmental data, seasonal cycles typically occur annually, monthly, or quarterly.  Directions 
for the EPA method are presented in Paragraph Q-2.2, followed by an example in Paragraph 
Q-2.3.  Although EPA’s method assigns seasonality as a monthly cycle, this method can be 
applied with other seasonal or repetitive cycles by replacing “monthly” with the appropriate 
cycle. 
 
 Q-2.2.  Directions for Correcting Seasonality in Data.  To correct seasonality with time 
series data, directions are provided for monthly data that demonstrate a yearly cycle. 
 
 Q-2.2.1.  Assume n years of monthly data are available. 
 
 Q-2.2.2.  Let xij denote the unadjusted observation for the ith month and the jth year. 
 
 Q-2.2.3.  Compute the average concentration for month i over the n-year period: 
 

 
n

xx
x ini

i
)...( 1 ++

= . 

 
This average represents the average of all observations taken in different years, but  
during the same month.  
 
 Q-2.2.4.  Calculate the grand mean, x , of all 12 n observations: 
 

 ∑
=

=
12

1 12i

ix
x . 

 
 Q-2.2.5.  Compute the adjusted concentrations,  
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xxxy iijij +−= . 
 
 Q-2.2.6.  The difference iij xx −  removes the average effect of month i from the month-
ly data.  The grand mean ( x ) must be added (on the right hand side of the equation) so that 
the mean of the adjusted yij values, y , is equal to the grand mean ( x ) of the unadjusted val-
ues. 
 
 Q-2.3.  Correcting Seasonality with Time Series Data (Based on Monthly Data with a 
Yearly Cycle).  Consider evaluating seasonality for the monthly average temperature (in de-
grees Fahrenheit) in Austin, Texas, from 1995 through 1998 (Table Q-1).  A time plot of the 
data is presented in Figure Q-1. 
 
Table Q-1. 
Monthly Average Temperature (°F) in Austin, Texas, from 1995 through 1998 
Month-

Year 
Temper-

ature  
Month-

Year 
Tempera-

ture  
Month-

Year 
Tempera-

ture  
Month-

Year 
Tempera-

ture 
Jan-95 50.03  Jan-96 47.10  Jan-97 46.00  Jan-98 53.06 
Feb-95 53.00  Feb-96 53.38  Feb-97 50.15  Feb-98 52.21 
Mar-95 57.00  Mar-96 52.84  Mar-97 60.68  Mar-98 55.90 
Apr-95 62.23  Apr-96 62.77  Apr-97 59.57  Apr-98 62.70 
May-95 71.94  May-96 73.67  May-97 67.87  May-98 73.68 
Jun-95 74.23  Jun-96 77.13  Jun-97 74.97  Jun-98 79.60 
Jul-95 79.26  Jul-96 81.06  Jul-97 78.45  Jul-98 82.10 

Aug-95 78.45  Aug-96 77.42  Aug-97 77.94  Aug-98 80.19 
Sep-95 74.07  Sep-96 72.93  Sep-97 75.03  Sep-98 78.73 
Oct-95 66.06  Oct-96 66.13  Oct-97 65.84  Oct-98 68.10 
Nov-95 55.77  Nov-96 56.55  Nov-97 53.83  Nov-98 60.37 
Dec-95 51.37  Dec-96 51.93  Dec-97 47.50  Dec-98 49.81 
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 Q-2.3.1.  The plot indicates the seasonality plays a role in this data.  There are n=4 
years of monthly data.  The average temperature for each month and the grand average for all 
months are presented below. 
 

Month Average Temperature 
January 49.05 
February 52.19 

March 56.61 
April 61.82 
May 71.79 
June 76.48 
July 80.22 

August 78.50 
September 75.19 

October 66.53 
November 56.63 
December 50.15 

Grand Average 64.60 
 

 

 

 
     Figure Q-1.  Monthly Average Temperature (°F) in Austin, 
     Texas, from 1995 through 1998. 
 
 Q-2.3.2.  The average January temperature is simply the average of all the January tem-
peratures, no matter the year: 
 

 05.49
4

06.5300.4610.4703.50
=

+++
=Januaryx . 
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 Q-2.3.3.  The other monthly averages are estimated in the same fashion.  The grand av-
erage is simply the average of all of the monthly averages:  
 

60.64
12

15.5063.5653.6619.7550.7822.8048.7679.7182.6161.5619.5205.49
=

+++++++++++
=x  

 
 Q-2.3.4.  The adjusted averages are presented in Table Q-2.  The adjusted Jan-1995 
temperature, for example, was estimated by the following: adjusted temperature = 50.03 – 
49.05 + 64.60 = 65.58.  Figure Q-2 is a plot of the adjusted temperatures.  The vertical scale 
of the plot is the same as the plot of the adjusted data to emphasize that the seasonal variation 
has been smoothed out. 

 

Table Q-2. 
Adjusted Monthly Average Temperature (°F) in Austin, Texas, from 1995 through 1998 

Month-
Year 

Tempera-
ture 

Monthly 
average 

tempera-
ture 

Grand 
average 

tempera-
ture 

Adjust-
ed tem-
peratur

e 

Month-
Year 

Tem-
peratur

e 

Monthly 
average 
temper-

ature 

Grand 
average 
temper-

ature 

Adjusted 
tempera-

ture 

Jan-95 50.03 49.05 64.60 65.58 Jan-97 46.00 49.05 64.60 61.55 
Feb-95 53.00 52.19 64.60 65.41 Feb-97 50.15 52.19 64.60 62.56 
Mar-95 57.00 56.60 64.60 64.99 Mar-97 60.68 56.60 64.60 68.67 
Apr-95 62.23 61.82 64.60 65.01 Apr-97 59.57 61.82 64.60 62.35 
May-95 71.94 71.79 64.60 64.74 May-97 67.87 71.79 64.60 60.68 
Jun-95 74.23 76.48 64.60 62.35 Jun-97 74.97 76.48 64.60 63.08 
Jul-95 79.26 80.22 64.60 63.64 Jul-97 78.45 80.22 64.60 62.83 

Aug-95 78.45 78.50 64.60 64.55 Aug-97 77.94 78.50 64.60 64.03 
Sep-95 74.07 75.19 64.60 63.47 Sep-97 75.03 75.19 64.60 64.44 
Oct-95 66.06 66.53 64.60 64.13 Oct-97 65.84 66.53 64.60 63.90 
Nov-95 55.77 56.63 64.60 63.73 Nov-97 53.83 56.63 64.60 61.80 
Dec-95 51.37 50.15 64.60 65.81 Dec-97 47.50 50.15 64.60 61.95 
Jan-96 47.10 49.05 64.60 62.64 Jan-98 53.06 49.05 64.60 68.61 
Feb-96 53.38 52.19 64.60 65.79 Feb-98 52.21 52.19 64.60 64.62 
Mar-96 52.84 56.60 64.60 60.83 Mar-98 55.90 56.60 64.60 63.89 
Apr-96 62.77 61.82 64.60 65.55 Apr-98 62.70 61.82 64.60 65.48 
May-96 73.67 71.79 64.60 66.47 May-98 73.68 71.79 64.60 66.49 
Jun-96 77.13 76.48 64.60 65.25 Jun-98 79.60 76.48 64.60 67.71 
Jul-96 81.06 80.22 64.60 65.44 Jul-98 82.10 80.22 64.60 66.47 

Aug-96 77.42 78.50 64.60 63.52 Aug-98 80.19 78.50 64.60 66.29 
Sep-96 72.93 75.19 64.60 62.34 Sep-98 78.73 75.19 64.60 68.14 
Oct-96 66.13 66.53 64.60 64.20 Oct-98 68.10 66.53 64.60 66.16 
Nov-96 56.55 56.63 64.60 64.52 Nov-98 60.37 56.63 64.60 68.33 
Dec-96 51.93 50.15 64.60 66.37 Dec-98 49.81 50.15 64.60 64.25 

 
 Q-2.4.  Summary.  Corrections for seasonality should be used with great caution be-
cause they represent extrapolation into the future.  There should be good scientific  
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explanation and good empirical evidence for the seasonality before corrections are made.  
For instance, larger than average rainfalls for two or three Augusts in a row does not justify 
the belief that there will never be a drought in August, and this idea extends directly to any 
monitoring system.  In addition, the quality (bias, robustness, and variance) of the estimates 
of the proper corrections must be considered even in cases in which corrections are called 
for.  If seasonality is suspected, adjusting for seasonality may not be necessary to evaluate 
long-term trends when appropriate statistical methods are utilized.  Such methods will be 
discussed in the following Paragraph. 
 

 

 

 
 Figure Q-2.  Adjusted Monthly Average Temperature (°F)  
 in Austin, Texas, from 1995 through 1998. 
 
Q-3.  Methods for Trend Assessment. 
 
 Q-3.1.  Introduction.  As a first step in evaluating trends, graphical representations are 
recommended to identify possible trends.  A plot of the data versus time is recommended for 
temporal data, as it may reveal long-term trends and show other major types of trends, such 
as cycles or impulses. 
 
 Q-3.1.1.  A posting plot is recommended for spatial data to reveal spatial trends  
such as areas of high concentration or areas that were inaccessible.  (See Appendix J for  
further discussion of posting plots.)  Gilbert (1987) recommends smoothing time series to 
identify cycles and long-term trends that may be obscured by natural variation in the data.  
Gilbert also mentions using control charts as an effective graphical tool of trends.   
Control charts are presented at the end of this section. 
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 Q-3.1.2.  Most of the statistical tools presented below are applicable to environmental 
data; the focus is on monotonic, long-term trends (i.e., trends that are exclusively increasing 
or decreasing, but not both), as well as other sources of systematic variation, such as season-
ality. 
 
 Q-3.1.3.  There are numerous tests for trends.  Trend tests, like other statistical tests, 
can be divided in terms of distributional assumptions.  Parametric trend tests, which assume 
data follow a normal distribution, involve regression-based methods for estimating trends 
and determining if a significant trend exists.  Nonparametric trend tests, which do not make 
assumptions about the underlying data distributions, are based on the Mann-Kendall trend 
test. 
 
 Q-3.1.4.  Independence is crucial for parametric and nonparametric tests.  The 
departure from independence (if data are correlated) can result in incorrect conclusions  
(Gibbons, 1994).  To minimize the possibility that samples are not independent, Gibbons 
recommends a sampling frequency of no more than one sample per quarter.  In practice, 
sampling frequency may be based on knowledge of site conditions such as groundwater  
flow rates. 
 
 Q-3.1.5.  Regression-based methods usually are not recommended for environmental 
studies as a general tool for estimating and detecting trends, although they may be useful as a 
quick and easy-to-use screening tool for identifying strong linear trends.  Regression anal-
yses can be misleading if seasonal cycles are present, the data are not normally distributed, or 
the data are serially correlated (Gilbert, 1987).  In such cases, Gilbert suggests that the non-
parametric seasonal Kendall test is preferable to regression methods.  Non-parametric trend 
tests are more appropriate when data do not conform to a particular distribution and when 
there are data below the detection limit.  For groundwater monitoring, Gibbons (1994) states 
that non-parametric analyses are the most  
reasonable estimators of trend. 
 
 Q-3.2.  Regression-Based Methods.  Classic procedures for assessing linear trends use 
regression.  Linear regression is a common procedure in which calculations are performed on 
a data set containing pairs of observations (xi, yi).  For temporal trends, the xi values represent 
time and the yi values represent the observations, such as contaminant concentrations.  “If 
plots of data versus time suggest a simple linear increase or decrease over time, a linear re-
gression of the variable against time may be fit to the data.  A t-test may be used to test that 
the true slope is not different from zero (Gilbert, 1987).” 

 Q-3.2.1.  Regression procedures are easy to apply but entail several limitations and  
assumptions.  For example, simple linear regression (the most commonly used method)  
is designed to detect linear relationships between two variables; other types of regression 
models generally are necessary to detect non-linear relationships, such as cyclical or non-
monotonic trends.  Regression is also very sensitive to extreme values (outliers) and presents 
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difficulties in handling data below the detection limit, which are commonly encountered in 
environmental studies. 
 
 Q-3.2.2.  A regression model is of the form: 
 
 εββ ++= XY 10  

 
where: 
 
 Y = response/dependent variable 
 X = independent/explanatory variable (e.g., time) 
 β0 = “true” intercept 
 β1 = “true” slope 
 ε  = random error. 

 Q-3.2.3.  If not for the random error, ε, all of the points ),( ii yx would lie precisely on 
the line XY 10 ββ += .  The regression model assumes that the error is a normally distributed 
random variable (ε) with a mean of zero and constant variance (i.e., the variance does not 
depend on X).  In practice, β0 and β1 are unknown quantities and a set of n measured values 

),( ii yx  is used to estimate a regression line of the form: 
 
 iii exbby ++= 10  
 
where b0 is an estimate of β0, b1 is an estimate of β1, and ei estimates εi.  The slope and inter-
cept can be estimated as follows: 
 

 1

0 1  .

y

x

s
b r

s

b y b x

 
=  

 
= −

 

 
 Q-3.2.4.  The estimated “residuals” (ei) are calculated from the equation: 
 
 ei = yi – (b0 + b1 xi). 

 Q-3.2.5.  Tests for normality (for example, normal probability plots as discussed in Ap-
pendix J) are required to verify the normality of the set of results {ei}.  A plot of ei versus xi 
is required to verify that the variance of the residuals is constant (i.e., not dependent upon X).  
Figure Q-3 shows two commonly seen residual patterns.  In Figure Q-3a, the residuals show 
no pattern, so the assumption of constant variance is met.  In Figure Q-3b, the variance of the 
residuals increases as the independent variable (X) increases so the assumption of constant 
variance is not met.  Statistical software is often used to verify the normality of the residuals 
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and constant variance because it is burdensome to do so manually.  Moreover, the analyst 
must ensure that time plots of the data do not possess any cyclical patterns, outlier tests show 
no extreme data values, and data validation reports indicate that nearly all of the measure-
ments are above detection limits.  
 
 Q-3.2.6.  Because of these limitations, regression is not recommended as a general tool 
for estimating and detecting trends, although it may be useful as a screening tool for identify-
ing strong linear trends.  For situations in which regression methods can be applied appropri-
ately, a solid body of literature on hypothesis testing is available that uses the concepts of 
statistical linear models as a basis for inferring the existence of temporal trends. 
 
 Q-3.2.7.  For simple linear regression, the statistical test of whether the slope is signifi-
cantly different from zero is equivalent to testing if the correlation coefficient is significantly 
different from zero; that is, if r = 0, the slope b1 = 0 (for more details on the correlation coef-
ficient test see Appendix O).  Directions are provided in Paragraph O-2.2, followed by an ex-
ample in Paragraph O-2.3. 
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Figure Q-3.  Residuals Versus the Independent Variable. 

 
 Q-3.2.8.  This test assumes a linear relation between X and Y with independent, normal-
ly distributed errors and constant variance across all X and Y values.  Censored values (below 
the detection limit) and outliers may invalidate the tests. 
 
 Q-3.2.9.  If a linear trend is present, based on visual inspection or results from testing 
for trends, the true slope (change per unit time) may be estimated.  An estimate of the magni-
tude of trend can be obtained by performing a regression of the data versus time (or some 
function of the data versus some function of time) and using the slope of the regression line 
that best fits the data as a measure of strength in the trend. 
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 Q-3.3.  Non-parametric Methods.   
 
 Q-3.3.1.  Introduction.  Kendall’s tau (Appendix O) can be used to evaluate trends.  An 
alternative method is presented here to use for a single set of observations, x1, x2,..., xn, which 
have been ordered by time of measurement.  The test statistic S is calculated by:  
 
 −+ −= SSS  
 
where +S  is the number of pairs ( )ji xx ,  with ji <  and ji xx < .  Likewise, −S  is the  
number of pairs ( )ji xx ,  with ji <  and ji xx > .  
 
 Q-3.3.1.1.  It can be shown that there are a total of ( ) 21−nn  possible pairwise  
comparisons for a set of n pairs ( )ji xx , .  The sample statistic Kendal1’s tau,τ , is: 

 ( ) 21−
=

nn
Sτ  

 
Note that differences of zero are not included in the test statistic (and should be avoided, if 
possible, by recording data to sufficient accuracy).  However, an adjustment for ties may be 
made (i.e., when many ties occur), for a series of measurements x1, x2,..., xn performed  
sequentially in time, by calculating Kendall’s tau-b, τb: 
 







 −







 ′−

−
=

2
)1(

2
)1( nnnnn

S

X

bτ  . 

 
The quantity Xn′  is the number of tied pairs (xi, xj), where j > i, for i  = 1, 2, … n.  The tie  
adjustment increases the magnitude of Kendall’s tau and is useful for evaluating trends (or 
correlation) when measurements are censored. 

 Q-3.3.1.2.  The Mann-Kendall test does not assume any particular data distribution and 
accommodates censored values.  Non-detected results should be assigned a value smaller 
than the lowest measured value when the detection limit is small.  Otherwise, when calculat-
ing S, pairs of results such as (3, <10), (<3, <10), and (<3, <3) should be considered to be ties 
and assigned a value of zero.  For example, for the set of n = 4 sequential measurements  
{30, <10, < 20, <25}, the number of tied pairs 3=′Xn  for the calculation of τb: (<10, <20), 
(<10, <25), and (<20, <25).  As the test only depends upon signs of differences between data 
points (or the ranks), information about magnitude of these differences is not used.  As such, 
the test possesses less power than its parametric counterpart, Pearson’s r (i.e., a larger num-
ber of data points are required to identify a correlation using Kendall’s tau).  However, 
Mann-Kendall is advantageous because assumptions about the underlying data distribution 
are not required, and it is more robust (i.e., insensitive) than a parametric test to outliers and 
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censored values.  Kendall’s tau is also invariant with respect to monotonic transformations of 
the variable X.  For example, the value of τ calculated for X will be identical to that calculat-
ed for Ln(X). 
 
 Q-3.3.1.3.  Conducting the Mann-Kendall test for small sample sizes is appropriate for 
data with fewer than 40 samples (Gilbert, 1987); the EPA suggests using this method with 
data sets having fewer than 10 samples.  If the number of samples becomes too large, the 
calculations become cumbersome by hand.  Directions for the Mann-Kendall trend test for a 
small sample size (less than 10 samples) are presented in Paragraph  
Q-3.3.2, followed by an example in Paragraph Q-3.3.3. 
 
 Q-3.3.1.4.  The Mann-Kendall test is essentially a significance test under the hypothesis 
γ = 0 (refer to Appendix O).  A trend exists if the sample statistic τ  is significantly different 
from zero at some specified level of confidence.  If there is an underlying upward trend, the 
differences will tend to be positive (S will be a large value), so a sufficiently large positive 
value of the sample statistic τ (e.g., a value near 1) suggests an upward trend.  Conversely,  
if the differences tend to be negative (S will be a large negative value), a sufficiently large 
negative value of τ  (e.g., a value near –1) suggests a downward trend.  If the statistic τ  is 
nearly zero (i.e., not significantly different from zero), there is no evidence of a trend.  The 
slope of the time-ordered data plotted versus time is zero.  The significance test for γ = 0 is a 
nonparametric test for zero slope (Gilbert, 1987).  For a two-sided test the null and alterna-
tive hypotheses are:  
 
 0:0 =γH : No upward or downward trend. 
 
 0: ≠γAH : An upward or downward trend. 
 
For a one-sided test 
 
 0:0 ≤γH  (or 0≥γ ): No upward (or no downward trend). 
 
 0: >γAH  (or 0<γ ): An upward trend (or a downward trend). 
 
 Q-3.3.1.5.  In practice, it is not convenient to calculate a value of τ for the data set and 
to compare this to a critical value of τ for the desired level of significance, τp (so that, for  
example, if τ > τp, there is an increasing trend at the p100% level of confidence).  The calcu-
lations for the Mann-Kendall test are done differently for large versus small data sets.  For 
small data sets (Paragraph Q-3.3.2), the value of S for the data set (rather than τ) is calculated 
and compared to a critical value of S taken from a statistical table.  For large data sets, the 
standard normal distribution is used to determine the statistical significance of τ (Paragraph 
Q-3.3.4). 
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 Q-3.3.1.6.  Note that irregularly spaced measurement periods are permitted with the 
Mann-Kendall test (Gibbons, 1994).  The test can also be modified to deal with multiple  
observations per time period and generalized to deal with multiple sampling locations and 
seasonality (Gilbert, 1987).  The Mann-Kendall test for the situation in which one observa-
tion per time period is taken from one sampling location (e.g., groundwater monitoring well) 
is presented in Paragraph Q-3.3.2. 
 
 Q-3.3.1.7.  For large sample sizes, the normal approximation to the Mann-Kendall test 
is used.  If there are more than 10 samples, as long as there are not many tied data values, 
Gilbert (1987) suggests this normal approximation is quite accurate.  Directions for this  
approximation are provided in Paragraph Q-3.3.2.4, followed by an example in Paragraph  
Q-3.3.2.5.  Tied observations (when two or more measurements are equal) degrade the statis-
tical power and should be avoided, if possible, by recording the data to sufficient accuracy.  
If the sample size is 10 or more, a normal approximation to the Mann-Kendall procedure 
may be used. 

 Q-3.3.2.  Directions for the Mann-Kendall Trend Test for a Small Sample Size.   
List the data in the order collected over time: nxxx ,,, 21  where ix  is the datum at time it .  
 
 Q-3.3.2.1.  Assign a proxy value to values reported as below the detection limit (DL).  
Note that this proxy value should be less than any measured value.  Construct a Data Matrix 
similar to the top half of the Table Q-3. 
 
 Q-3.3.2.2.  Determine the sign for each possible difference and compute the Mann-
Kendall statistic, S, which is the number of positive signs minus the number of negative signs 
in the triangular table: S = S + (i.e., total number of + signs) – S – (i.e., total number of – 
signs). 
 
 Q-3.3.2.3.  Use Table B-10 of Appendix B to determine the probability (p) using the 
sample size (n) and the absolute value of the statistic S if 10≤n .  

 
 Q-3.3.2.3.1.  For testing H0, no trend against HA: upward trend, reject H0 if S > 0 and 
 p < α.  
 
 Q-3.3.2.3.2.  For testing H0, no trend against HA: downward trend, reject H0 if S < 0 and 
p < α. 
 
 Q-3.3.2.4.  Table Q-3 presents the resulting matrix of differences when applying the 
steps above.  
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 Q-3.3.2.5.  The number of positive and negative differences are recorded for each row 
(two right most columns) and the values (within the two right most columns) are summed to 
obtain S+ and S–.  Differences equal to zero are ignored. 
 
Table Q-3. 
Basic Mann-Kendall Trend Test with a Single Measurement at Each Time Point 

Time 
xi 

t2 
x2 

t3 
x3 

t4 
x4 

. . . 

. . . 
tn-1 
xn-1 

tn 
xn 

No. of 
Differences 

> 0 

No. of 
Differences 

< 0 
x1 x2 – x1 x3 – x1 X4 – x1 . . . xn-1 – x1 xn – x1   
x2  x3 – x2 X4 – x2 . . . xn-1 – x2 xn – x2   
     . .   
     . .   
.     . .   

xn-2     xn-1 – xn–2 xn – xn-2   
xn-1      xn - xn–1   

Total       (S +) (S –) 
 
 Q-3.3.3.  Example of a Mann-Kendall Trend Test for Small Sample Sizes (n < 10).  
Evaluate the linear trend of benzene taken from quarterly groundwater samples at well 
MW01 in Site A from 2000–2001.  

 Q-3.3.3.1.  Benzene has been detected during all of these sampling events, so no proxy 
concentrations were derived.  At the 90% level of confidence ( 10.0=α ), test: 
 
 H0: No trend; HA: Downward trend. 
 
 Q-3.3.3.2.  Figure Q-4 is a plot of the concentrations over time.  It does appear that a 
downward trend is present.  This test, though, will identify if a statistically significant trend 
is present (Table Q-4). 
 
 Q-3.3.3.3.  The Mann-Kendall test statistic, S = 5 – 16 = –11. 
 
 Q-3.3.3.4.  Using Table B-10 of Appendix B, the p value for n = 7 and |S| = 11 is  
p = 0.068. 
 
 Q-3.3.3.5.  As S < 0 and p < α = 0.10, we reject 0H  and conclude there is significant 
evidence of a downward trend. 
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Figure Q-4.  Trend for Benzene in Groundwater (small sample size). 

 
 Q-3.3.4.  Directions for a Normal Approximation to the Mann-Kendall Test  
Procedure.  List the data in the order collected over time.  Assign a proxy value to values  
reported as below the DL.  Note that this proxy value should be lower than any measured 
value.  Construct a Data Matrix similar to the top half of the data table below (Table  
Q-5). 
 
 Q-3.3.4.1.  Compute the sign of all possible differences as shown in the bottom  
portion of Table Q-5. 
 
 Q-3.3.4.2.  Compute the Mann-Kendall statistic, S, as shown in Paragraph Q-3.3.2.  S is 
the number of positive signs minus the number of negative signs in the triangular  
table: −+ −= SSS . 
 
 Q-3.3.4.3.  If there are no ties, calculate the variance of S: 
 

 18
)52)(1()( +−

=
nnnSV

. 

 
 Q-3.3.4.4.  If ties occur, let g represent the number of tied groups and wj represent the 
number of data points in the jth tied group.  For ties, the variance of S is: 
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Table Q-4. 
"Upper Triangular" Data for Basic Mann-Kendall Trend Test with a Single Measurement 
at Each Time Point—Data Table 

Time 7/00 10/00 1/01 5/01 7/01 11/01 No. of  
Differences  

> 0 

No. of  
Differences  

< 0 xi 2.68 6.17 0.64 2.19 1.72 1.15 
x1 = 4.3 –1.62 1.87 –3.66 –2.11 –2.58 –3.15 1 5 

x2 = 2.68  3.49 –2.04 –0.49 –0.96 –1.53 1 4 
x3 = 6.17   –5.53 –3.98 –4.45 –5.02 0 4 
x4 = 0.64    1.55 1.08 0.51 3 0 
x5 = 2.19     –0.47 –1.04 0 2 
x6 = 1.72      –0.57 0 1 

Total       5 16 
 
.  Q-3.3.4.5.  Calculate the following statistic: 
 

 















<
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=

>
−

=

0,
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1
0,0

0,
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1

S
SV

S
S

S
SV

S

z  

 
 Q-3.3.4.6.  Note that tied values do not affect the calculation of S but affect only V(S) 
and the calculation of z using the large sample approximation. 
 
 Q-3.3.4.7.  Use Table B-15 of Appendix B to find the critical value α−1Z  (if testing H0: 
No trend against HA: Upward trend) or the critical value α−− 1Z  (if testing H0, no trend 
against HA: downward trend) such that (1 – α )100% of the normal distribution lies to the left 
of α−1Z .  
 
 Q-3.3.4.7.1.  For testing H0, no trend against HA: upward trend, reject H0 if z > α−1Z . 

 Q-3.3.4.7.2.  For testing H0, no trend against HA: downward trend, reject H0 if  
z < α−− 1Z . 
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Table Q-5. 
Data for Example Q-3.3.5 

Jun-
98 

Apr-
98 

Jul-
98 

Oct-
98 

Apr-
99 

Jul-
99 

Oct- 
99 

Apr- 
00 

Jul-
00 

Oct- 
00 

Jan- 
01 

May-
01 

Jul-
01 

Nov- 
01 

Time: 
 earliest to  

latest 

xi 

 
3.79 
 

3.42 
 

5.47 
 

0.81 
 

1.78 
 

7.56 
 

4.3 
 

2.68 
 

6.17 
 

0.64 
 

2.19 
 

1.78 
 

1.15 
 

Benzene  
concentrations 
#of + 
Diff. 

#of – 
Diff. 

12.2 –8.41 –8.78 –6.73 –11.4 –10.4 –4.6 –7.9 –9.52 –6.0 –11.6 –10.0 –10.4 –11.1 0 13 
3.79  –0.37 1.68 –2.98 –2.01 3.77 0.51 –1.11 2.38 –3.15 –1.6 –2.01 –2.64 4 8 
3.42   2.05 –2.61 –1.64 4.14 0.88 –0.74 2.75 –2.78 –1.23 –1.64 –2.27 4 7 
5.47    –4.66 –3.69 2.09 –1.17 –2.79 0.7 –4.83 –3.28 –3.69 –4.32 2 8 
0.81     0.97 6.75 3.49 1.87 5.36 –0.17 1.38 0.97 0.34 8 1 
1.78      5.78 2.52 0.90 4.39 –1.14 0.41 0.00 –0.63 5 2 
7.56       –3.26 –4.88 –1.39 –6.92 –5.37 –5.78 –6.41 0 7 
4.3        –1.62 1.87 –3.66 –2.11 –2.52 –3.15 1 5 
2.68         3.49 –2.04 –0.49 –0.90 –1.53 1 4 
6.17          –5.53 –3.98 –4.39 –5.02 0 4 
0.64           1.55 1.14 0.51 3 0 
2.19            –0.41 –1.04 0 2 
1.78             –0.63 0 1 
1.15            Total 28 62 

 
 
 Q-3.3.5.  Example of The Mann-Kendall Procedure Using Normal Approximation for 
Larger Samples.  Consider evaluating whether or not there is a significant trend for benzene 
using a set of samples taken from quarterly groundwater samples at well MW01 in Site A 
from 1998–2001.  Benzene has been detected during all of these sampling events, so no 
proxy concentrations were derived.  
 
 Q-3.3.5.1.  Test H0, no trend against HA: downward trend based on a 90% level of con-
fidence ( 10.0=α ). 
 
 Q-3.3.5.2.  Figure Q-5 is a plot of the concentrations over time.  It does appear that a 
downward trend is present (Table Q-5).  

 Q-3.3.5.3.  The Mann-Kendall statistic, S = 28 – 62 = –34. 
 
 Q-3.3.5.4.  Since there are two observations with a value of 1.78, there are g = 1 tied 
groups and w1 = 2.  The calculated variance of S is 
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 Q-3.3.5.5.  Because S < 0, the approximate z test statistic is  
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 Q-3.3.5.6.  Using Table B-15 of Appendix B, find the critical value 28.190.0 −=− Z .  
 
 –1.809 < –1.28, so we can reject H0. 
 
 Q-3.3.5.7.  That means there is significant evidence of a downward trend.  
 

 

 
 
 
 
 
 
 
 
 
 
 

Figure Q-5.  Trend for Benzene in Groundwater (large sample size). 
 
 Q-3.3.6.  Multiple Observations.  Often, more than one sample is collected for each 
time period.  There are two ways to deal with such multiple observations.  One method is to 
compute a summary statistic, such as the median, for each time period and to apply one of 
the Mann-Kendall trend tests to the summary statistic.  The summary statistic would be used 
instead of the individual data points in the triangular table.  The steps given for the Mann-
Kendall for small sample sizes or larger samples could then be applied to the summary  
statistics.  
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 Q-3.3.6.1.  An alternative approach is to consider all of the multiple observations within 
a given time period as being essentially equal (tied) values within that period.  The S statistic 
is computed as before, with n being the total of all observations.  The variance of the S statis-
tic is changed to: 
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where g represents the number of tied groups (i.e., number of groups that have tied observa-
tions), wj represents the number of data points in the tied jth group, h is the number of time 
periods that contain multiple data, and uk is the sample size in the kth time period where k = 
1, 2, …, h.  For example, let four X measurements be made for the first time period, three for 
the second, two for the third, and one for each of the subsequent time periods.  The value of  
h will be 3 for the three time periods with multiple measurements, and the value of uk will be 
4, 3, and 2 for k = 1, 2, and 3 respectively.  The values of g and wj will depend on actual X 
measurements.  For the special case of ties and multiple measurements for a time period, the 
reader is referred to Gilbert (1987). 
 
 Q-3.3.6.2.  The preceding variance formula assumes that the data are not correlated.  If 
correlation within single time periods is suspected, it is preferable to use a summary statistic 
(i.e., the median) for each period and then apply either the Mann-Kendall for small sample 
sizes or larger samples to the summary statistics. 
 
 Q-3.3.6.3.  The preceding methods involve a single sampling location (station).  How-
ever, environmental data often consist of sets of data collected at several sampling locations 
(e.g., groundwater monitoring wells).  For example, data are often systematically collected at 
several fixed sites on a lake or river, or within a region or basin.  The data collection plan (or 
experimental design) must be systematic in the sense that approximately the same sampling 
times should be used at all locations.  In this situation, it may be desirable to simultaneously 
evaluate all of the sampling locations for the presence of a common characteristic or “region-
al trend.”  However, there must be consistency in behavioral characteristics across sites over  
time for a single summary statement to be valid across all sampling locations.  A useful plot 
to assess the consistency requirement is a single time plot of the measurements from all  
stations in which a different symbol is used to represent each station.  Paragraph Q-3.3.7  
illustrates such data sets. 

 Q-3.3.6.4.  If the stations exhibit approximately steady trends in the same direction 
(upward or downward), with comparable slopes, a single summary statement across stations 
is valid, implying that two relevant sets of hypotheses should be investigated. 
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 Q-3.3.6.4.1.  Comparability of Stations.  
 
 H0: The trends at all K stations are homogeneous.  
 
 HA: At least two stations exhibit different dynamics. 
 
 Q-3.3.6.4.2.  Testing for Overall Monotonic Trend.  
 
 :0

∗H Contaminant levels do not change over time.  
 
 ∗

AH : There is an increasing or decreasing trend consistently exhibited across all  
stations. 
 
 Q-3.3.6.5.  Therefore, the analyst must first test for homogeneity of stations and then, if 
homogeneity is confirmed, test for an overall monotonic trend. 
 
 Q-3.3.6.6.  Ideally, the stations should have equal numbers.  However, the numbers of 
observations at the stations can differ slightly because of isolated missing values, but the 
overall time periods spanned must be similar.  The EPA recommends that an equal number 
of observations (a balanced design) be required for fewer than three time periods.  For four 
or more time periods, up to one missing value per sampling location may be  
tolerated. 
 
 Q-3.3.6.7.  When only one measurement is taken for each time period for each  
station, a generalization of the Mann-Kendall statistic can be used to test the above  
hypotheses.  Directions for this condition are presented in Paragraph Q-3.3.8, followed  
by an example in Paragraph Q-3.3.9. 
 
 Q-3.3.6.8.  Gilbert (1987) states: “The validity of these chi-squared tests depends  
on each of the zk values having a standard normal distribution.  [T]his implies that the num-
ber of data (over time) for each station should exceed 10.  Also, the validity of the tests  
requires that the zk values be independent, meaning data from different stations  
must be uncorrelated.” 
 
 Q-3.3.6.9.  If multiple measurements are taken at some time and station, the previous 
approaches are still applicable.  However, the variance of the statistic Sk must be calculated 
using the equation for calculating V(S) based on multiple observations within a given time 
period.  Note that Sk is computed for each station, so n, wj, g, h, and uk are all station-specific. 
 
 Q-3.3.7.  Illustration of Data Taken from Multiple Stations and Multiple Times.  Let  
i = 1, 2,..., n represent time, let k = 1, 2,..., K represent sampling locations or stations, and xi,k 
represent the measurement at time i for location k.  These data can be summarized in matrix 
form, as shown below: 
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 Station 
  1 2 … K 
 1 x1,1 x2,1 … xK,1 
 2 x1,2 x2, 2 … xK,2 

Time . . . … . 
 . . . … . 
 . . . … . 
 n x1,n x2,n … xK,n 
  S1 S2 … SK 
  V(S1) V(S2) … V(SK) 
  z1 z2 … zK 

where 

 Sk, = Mann-Kendall statistic for station k 
 V(Sk) = variance for S statistic for station k 

 zk = ( )k kS V S . 
 
 Q-3.3.8.  Directions for the Mann-Kendall Statistic Used to Test a Monotonic Trend.  
Let i = 1, 2,..., n represent time, k = 1, 2,..., K represent sampling locations or stations, and xi,k 
represent the measurement at time i for location k.  Let α represent the significance level for 
testing homogeneity and α* represent the significance level for testing an overall trend. 
 
 Q-3.3.8.1.  Calculate the Mann-Kendall statistic Sk and its variance V(Sk) for each of the 
K stations using the methods for larger sample sizes. 

 Q-3.3.8.2  For each of the K stations, calculate  
 
 )( kkk SVSz = . 
 
 Q-3.3.8.3  Calculate the average 
 

 ∑
=

=
K

k
k Kzz

1

. 

 
 Q-3.3.8.4.  Calculate the homogeneity chi-square statistic  
 

 ∑
=

−=
K

k
kh zKz

1

222 )(χ . 

 
 Q-3.3.8.5.  Using a chi-squared table, find the critical value, 2

,1 ναχ −  the (1 – α)100th per-
centile of the chi-squared distribution with 1−= Kν  degrees of freedom. 
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 Q-3.3.8.5.1.  If 2
,1

2
ναχχ −>h , the stations are not homogeneous (have different dynamics 

at different stations) at the significance level α.  Therefore, individual α*-level Mann-Kendall 
tests should be conducted at each station using the methods presented previously.  That is, 
test each of the K wells individually as described in Paragraphs Q-3.3.3 or  
Q-3.3.5. 
 
 Q-3.3.8.5.2.  If 2

,1
2

ναχχ −≤h , there are comparable dynamics across stations at signifi-
cance level α . Using a chi-squared table, find the critical value for the chi-squared distribu-
tion with 1 degree of freedom at the *α  significance level, 2

1*,1 αχ − .  
 
 Q-3.3.8.6.  If 2

1*,1
2

αχ −>zK , then reject ∗
0H  and conclude that there is a significant (up-

ward or downward) monotonic trend across all stations at significance level *α .  The signs 
of the Sk indicate whether increasing or decreasing trends are present.  
 
 Q-3.3.8.7.  If 

2
1*,1

2
αχ −≤zK , there is not significant evidence at the *α  level of a mono-

tonic trend across all stations; that is, the stations appear approximately stable over time.  
 
 Q-3.3.9.  Example of Comparability of Stations and an Overall Monotonic Trend.  The 
following wells at Site A are to be evaluated to determine if the benzene concentrations show 
decreasing trends consistently across these wells based on a 95% level of confidence.  Data 
for benzene at these wells are shown in the Table Q-6.  The flag “ND” is applied to sample 
for which benzene was not detected.  For non-detected concentrations, proxy values are pre-
sented in the table and are set to the sample’s detection limit. 
 
 Q-3.3.9.1.  For this example, 3=K . 
 
 Q-3.3.9.2.  The average of the z values is  
 
 2737.03/)135.2040.1916.1( −=+−−=z . 
 
 Q-3.3.9.3.  The homogeneity chi-square statistic is  
 

 [ ] 086.9)2737.0(3)135.2()040.1()916.1()( 2222

1

222 =−−+−+−=−= ∑
=

K

k
kh zKzχ . 

 
 Q-3.3.9.4.  The critical value is 991.52

2,95.0 =χ , with 21 =−= Kν degrees of freedom 
and 95% level of confidence (from Table B-2 of Appendix B).  
 
 Q-3.3.9.5.  Because 2

2,95.0
2 χχ ≥h , the stations are not homogeneous based on a 95% level 

of confidence, and each should be tested using the technique presented in Paragraph Q-3.3.5 
as n > 10.  
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Table Q-6. 
Benzene Data for Example Q-3.3.9 

 
Time 

Well (Site A) 
MW01 MW03 MW05 

1 12.2  0.062 ND 2.17  
2 3.79  1.78  2.75  
3 3.42  0.04 ND 6.91  
4 5.47  2.31  8.64  
5 0.81  7.24  11.0  
6 1.84  1.85  14.1  
7 7.56  0.31  3.45  
8 4.30  2.00  36.7  
9 2.68  0.14  20.2  

10 6.17  0.23  8.34  
11 0.64  0.065 ND 17.0  
12 2.19  0.76  21.8  
13 1.72  0.22  2.01  
14 1.15  0.05 ND 29.1  
Sk –35 –19 39 

V(Sk) 333.7 333.7 333.7 
zk –1.916 –1.040 2.135 

 
 Q-3.3.10.  Multiple Observations over Extended Time Periods.  Temporal data are often 
collected over extended time periods.  Within the time variable, data may exhibit periodic 
cycles, patterns in the data that repeat over time.  For example, temperature and humidity 
may change with the season or month and affect environmental measurements.  For this dis-
cussion, the term “season” represents one time point in the periodic cycle, such as a month 
within a year or an hour within a day.  There are two approaches for testing for trends—the 
seasonal Kendall test and Sen’s test for trends—if seasonal cycles are anticipated.  The sea-
sonal Kendall test may be used for large sample sizes, and Sen’s test for trends may be used 
for small sample sizes.  In either case, the data are analyzed separately by season, and the re-
sults are compared among seasons.  Both of these estimation techniques are described below.  
If different seasons manifest similar slopes (rates of change) but different intercepts, the 
Mann-Kendall technique for multiple sampling locations with multiple observations is appli-
cable, replacing station by season.  For example, Figure Q-6 shows a time plot of a series that 
appears to be decreasing although it is somewhat masked by a seasonal cycle that repeats 
every four time periods.  The data could be analyzed by the Mann-Kendall technique pre-
sented in Paragraph Q-3.3.8 if they are broken out by season (e.g., data points 1, 5, 9, 13, and 
17 would constitute one season series). 
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Figure Q-6.  Time Plot of Seasonal Series with Decreasing Trend. 

 
 Q-3.3.10.1.  For data with seasonality, the seasonal Kendall test, an extension of the 
Mann-Kendall test, involves calculating the Mann-Kendall test statistic, S, and its variance 
separately for each “season” (e.g., month of the year, day of the week).  The sum of the S’s 
and the sum of their variances are then used to form an overall test statistic that is assumed to 
be approximately normally distributed for larger size samples. 
 
 Q-3.3.10.2.  For data at a single site, collected at multiple seasons within multiple years, 
the techniques for multiple sampling locations with multiple observations can be used to test 
for homogeneity of time trends across seasons.  The methodology follows the explanation 
below of Sen’s slope estimator exactly, except “station” is replaced by “season” and the in-
ferences refer to seasons. 
 
 Q-3.3.10.3.  If a linear trend is observed when some variable of interest is plotted 
against time, based on a visual inspection or the results of a statistical test for a trend, the 
magnitude of the slope of the line is a measure of the “strength” of the trend and the sign of 
the slope provides the direction of the trend.  The true slope (change per unit time) may be 
estimated using a parametric or non-parametric method.  Linear regression analysis is a  
parametric method for estimating a slope.  Sen’s slope estimator is a non-parametric method 
for estimating the slope of a line.  
 
 Q-3.3.10.4.  This approach involves computing slopes for all pairs of ordinal time 
points and using the median of these slopes as an estimate of the overall slope.  As such, it is 
insensitive to outliers and can handle a moderate number of values below the detection limit 
and missing values. 
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 Q-3.3.10.5.  Directions are presented in Paragraph Q-3.3.11, followed by an example in 
Paragraph Q-3.3.12. 
 
 Q-3.3.11.  Directions for a Sen’s Slope Estimator.  Assume that there are n time points 
(or n periods of time), and let xi denote the data value for the ith time point.  If there are no 
missing data, there will be 2/)1(' −= nnN possible pairs of time points (i, j), in which i > j 
(i.e., xi was taken at a time after the measurement xj).  
 
 Q-3.3.11.1.  For non-detected results, the detection limit may be used as the data value 
(Gibbons, 1994) or one-half the detection limit may be used as the data value (Gilbert, 1987).  
Note that this proxy value should be lower than any measured value. 
 
 Q-3.3.11.2.  Define the slope for each pair, called a pairwise slope, as  
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 Q-3.3.11.3.  Sen’s slope estimator is the median of the n(n – 1)/2 pairwise slopes. 
 
 Q-3.3.12.  Example of a Sen’s Slope Estimator.  The Sen’s slope estimate is calculated 
to evaluate the linear trend for benzene in Paragraph Q-3.3.3 (seven groundwater samples 
collected quarterly from 2000–2001 from well MW01 at Site A).  Because benzene was de-
tected for all the sampling events, proxy concentrations were not derived. 
 
 Q-3.3.12.1.  There are 7(6)/2 = 21 possible pairs of time points (i, j) in which i > j.  The 
slope for each pair will be estimated and displayed in a data matrix similar to the one pre-
sented in Paragraph Q-3.3.3, except each cell in the matrix represents the pairwise slope  
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 Q-3.3.12.2.  If there is no underlying trend, then a given xi is just as likely to be above 
another xj as it is to be below.  If there is no underlying trend, there would be an approxi-
mately equal number of positive and negative slopes and Sen’s slope would be near zero. 
 
 Q-3.3.12.3.  If the data exhibit cyclic trends, the Sen’s slope estimator can be modified 
to account for the cycles.  For example, if data are available for each month for a number of 
years and the length of a cycle is one year, 12 separate sets of slopes would be determined 
(one for each month of the year using all of the data for that particular month); similarly, if 
daily observations exhibit weekly cycles, seven sets of slopes would be determined, one for 
each day of the week.  In these estimates, the above pairwise slope is calculated for each time 
period and the median of all of the slopes is an estimator of the slope for a long-term trend.  
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This is known as the seasonal Kendall slope estimator, which is rarely calculated by hand 
owing to the number of calculations required. 
 
Table Q-7. 
Pairwise Slopes Data Table 
 Original 

Time 
Measure 

t1=4/00 
x1=4.3 

t2=7/00 
x2=2.68 

t3=10/00 
x3=6.17 

t4=1/001 
x4=0.64 

t5=5/01 
x5=2.19 

t6=7/01 
x6=1.72 

t7=11/01 
x7=1.15 

 x1=4.3  –1.62 0.935 –1.22 –0.528 –0.516 –0.525 
 x2=2.68   3.49 –1.02 –0.163 –0.24 –0.306 
 x3=6.17    –5.53 –1.99 –1.483 –1.255 
 x4=0.64     1.55 0.54 0.17 
 x5=2.19      –0.47 –0.52 
 x6=1.72       –0.57 
 x7=1.15        
         
Ordered pair-
wise slopes 
(smallest to 
largest): 

–5.53 –1.99 –1.62 –1.483 –1.255 –1.22 –1.02 
–0.57 –0.528 –0.525 –0.52 –0.516 –0.47 –0.306 
–0.24 –0.163 0.17 0.54 0.935 1.55 3.49 

 
 Q-3.3.12.4.  The median of these 21 pairwise slopes is –0.52, the 11th ordered result 
when the results are sorted from smallest to largest. 
 
 Q-3.3.13.  Testing a Trend Using Confidence Limits for Sen’s Slope Estimator.  Gilbert 
(1987) presents a simple method, based on the normal distribution, to estimate the  
(1 – α)100% confidence interval about the true slope.  This “large sample” estimate is  
appropriate for data sets with at least 10 samples.  Directions for estimating such confidence 
intervals are presented below.  Aside from estimating the confidence limits for the slope as-
sociated with a trend that has been previously identified (e.g., using Mann-Kendall’s test), 
this approach can be used to determine if a trend is presented.  If the confidence interval for 
the slope contains zero, there is no evidence of an underlying trend.  However, if the confi-
dence interval does not contain zero, there is evidence to suggest a trend.  Directions are  
presented in Paragraph Q-3.3.14, followed by an example in Paragraph Q-3.3.15. 

 Q-3.3.14.  Directions for Creating Confidence Limits for Sen’s Slope Estimator.   
Compute 2/)1(' −= nnN  if there is just one result in each time period, and ='N  the number 
of possible data pair combinations among the time periods (and results from the time period 
cannot be considered data pairs) if there is more than one result in each time period. 
 Q-3.3.14.1.  Based on the desired two-sided confidence level (1 – α)100%, find 2/1 α−Z . 
 
 Q-3.3.14.2.  Compute the variance of S as  
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when one observation per time period is available (g represents the number of tied groups 
and wj represent the number of data points in the jth group) or  
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when multiple observations per time period are available (g represents the number of tied 
groups, wj represents the number of data points in the jth group, h is the number of time peri-
ods containing multiple data, and uk is the sample size in the kth time period). 
 
 Q-3.3.14.3.  Compute )(2/1 SVZC αα −= . 
 
 Q-3.3.14.4.  Compute 2)'(1 αCNM −= and 2)'(2 αCNM += . 
 
 Q-3.3.14.5  The lower and upper limits of the confidence interval are the M1

th largest 
and (M2 + 1)th largest of the N´ ordered slope estimates (from lowest to highest), respectively.  
If M1 and M2 + 1 are not whole numbers, use linear interpolation (Gilbert, 1987). 
 
 Q-3.3.15.  Example of Confidence Limits for Sen’s Slope Estimator.  Consider  
estimating a two-sided 95% confidence interval for Sen’s slope estimated in Paragraph Q-
3.3.12, where: 
 
 n = 7, 52.0−=S  and 212/)1(' =−= nnN  . 
 
 Q-3.3.15.1.  For α = 0.05, 96.1975.02/1 ==− ZZ α  . 
 
 Q-3.3.15.2.  The following are calculated: 
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 975.32/)05.1321(2)'(1 =−=−= αCNM  
 
 025.172/)05.1321(2)'(2 =+=+= αCNM . 
 
 Q-3.3.15.3.  From the list of ordered results in Paragraph Q-3.3.15 , the interpolated 
value between the 3rd and 4th ordered result is –1.486 and the interpolated value between the 
18th (17 + 1) and 19th ordered result is 0.550.  Therefore, the confidence interval for the slope 
is (–1.486, 0.550).  As this interval contains zero, there is insufficient evidence of an underly-
ing trend (even though the slope of –0.52 suggests a negative trend). 
 
Q-4.  Control Charts. 
 
 Q-4.1.  Introduction.  Control charts are a quality control procedure that can be applied 
to environmental monitoring data, such as data from air or groundwater monitoring systems.  
Control charts provide a visual means of monitoring constituent concentrations at a given 
well or location over time, identifying slight or sudden fluctuations over time and detecting 
deviations from a “state of control.”  A process is in-control if the observed variation is  
attributable to small, uncontrollable changes.  A process is out-of-control if a relatively large 
variation is introduced that can be traced to an assignable cause (Kvanli et al., 1996).  
 
 Q-4.1.1.  Control charts are most frequently used in groundwater monitoring detection 
programs for intra-well comparisons, in which data are collected for a single well over some 
period of time.  Control charts are useful for areas with no previous contamination because 
detecting contamination may require a significant change.  This is particularly applicable to 
monitoring down-gradient of waste cells or landfills, because it can highlight whether there 
has been a release to groundwater.  If contamination was historically present, it will take  
a significant increase in concentrations relative to historical values to show a detection  
(Gibbons, 1994).  Control charts, however, are not constructed for making precise probability 
statements; they are constructed as a guide for determining when investigative action is 
needed (Gilbert, 1987).  Furthermore, contamination may be present intermittently or may 
increase in a step function.  The absence of an increasing trend does not necessarily support 
that a release has not occurred. 
 
 Q-4.1.2.  Control charts are designed for a given constituent and well in which concen-
trations are plotted against time with horizontal lines called “control limits.”  Control limits 
are based on meaningful and sufficient historical data with no outliers and trends over time.  
As new data become available, those concentrations are also plotted.  The EPA recommends, 
and current RCRA regulations specify, developing control limits with data consisting of at 
least eight independent samples over a 1-year period.  As with most statistical applications, 
more historical data are desirable but, in practical terms, are rarely available.  
 
 Q-4.1.3.  The assumptions underlying control charts are that when the process is in-
control, data are independent and normally distributed with a fixed mean and constant vari-
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ance.  Independence is crucial.  Control charts are not robust with respect to the departure 
from independence (i.e., when data are correlated).  To minimize the possibility that samples 
are dependent, Gibbons (1994) recommends a sampling frequency of no more than one  
sample per quarter.  To identify serial correlation, a sample’s serial correlation coefficient 
can be calculated.  (Details are provided in Appendix O.)  A correlogram may be plotted to 
determine if serial correlation is large enough to create problems.  (Details are provided in 
Appendix J.)  A quick method for determining if serial correlation is large is to compare the 
autocorrelation coefficients to  
 
 n2±  
 
where n is the number of time periods when data were collected.  Autocorrelation  
coefficients that exceed either of these values require further investigation. 
 
 Q-4.1.4.  The assumption of normality is not nearly as crucial, but the data’s distribu-
tion should still be investigated.  To achieve normality, data transformations (such as natural-
log transformations or square-root transformations) should be applied to sample data, as ap-
propriate.  Gilbert (1987) suggests that as long as data are normally distributed and the corre-
lation associated with the data is not too large, control chart methods work well.  Gilbert goes 
on to say that although environmental data are typically non-normal, control charts are still 
useful for indicating where concentrations are not likely to be from the same distribution as 
in the past.  
 
 Q-4.1.5.  Seasonality, a component of the data’s variability, should also be considered 
before control charts are developed.  Seasonality can be addressed by removing seasonal  
effects from the data, if sufficient data are available for at least two seasons of the same type.  
Removing seasonality was previously discussed in Paragraph Q-2.  Gilbert (1987) recom-
mends two other methods to circumvent seasonality issues.  If data are available for a num-
ber of complete cycles, separate control charts for each season can be prepared.  If the data 
do not span a long duration and the magnitude of the cycles is relatively small, a moving-
average control chart may be constructed. 
 
 Q-4.1.6.  In terms of proxy concentrations appropriate for control charts, Gibbons 
(1994) suggests that if at least 25% of samples are detections, a proxy concentration based on 
just the sample-specific method detection limit is adequate for control charts. 
 
 Q-4.1.7.  Several types of control charts are discussed in this section: Shewart control 
charts, CUSUM control charts, and Shewart-CUSUM control charts.  The advantage to 
Shewart control charts is that they are immediately sensitive to large changes.  The ad-
vantage to CUSUM control charts is that they are sensitive to small and gradual changes.  
Shewart-CUSUM control charts are a combination of the other two.  As such, their benefit is 
that they can detect both sudden and gradual changes in concentrations. 
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 Q-4.2.  Shewart Control Charts. 

 Q-4.2.1.  Introduction.  Shewart control charts, which are the oldest and simplest charts 
(Gibbons, 1994), are sensitive to sudden changes and focus on the current monitoring value.  
Current data (not historical data) are first plotted against time.  Control limits are subsequent-
ly placed on the same plot as horizontal lines.  The control limits are calculated using histori-
cal data from a period of time when the system under study was stable.  New data that fall 
outside of the control limits indicate that current conditions have changed from the historical 
ones used to establish the control limits.  Although lower control limits are used in other 
fields, only the upper control limit is typically established for environmental data, as the  
objective is to identify dramatically increasing concentrations.  An upper control limit can be 
developed from historical data using the equation σµ Z+ , where µ  is the population mean, 
σ  is the population standard deviation, and Z  is an upper percentage point of the normal 
distribution.  For this case, Z is typically equal to 3, which corresponds to a confidence level 
of 9987.01 =−α  for a single new comparison.  

 Q-4.2.1.1.  However in most cases, long-run historical data are unavailable and a sam-
ple estimate of the mean ( x ) and standard deviation (s) must be used.  In this case, the equa-
tion for the upper control limit is Zsx + .  When using the sample estimates to calculate an 
upper control limit with as few as eight historical samples, however, the control limit only 
provides an overall 95% confidence for five new comparisons and the overall confidence  
decreases as the number of future observations increases (Gibbons, 1994).  As such, EPA 
530-SW-89-026 recommends setting control limits to sx 5.4+  for routine groundwater mon-
itoring situations.  “Overall confidence levels for this control limit are 95% with n = 8 and 35  
future comparisons; however, verification resampling further reduces false positive rates to 
acceptable levels for most monitoring programs” (Gibbons, 1994), avoiding the problem of 
multiple comparisons discussed in Appendices M and N.  It should be noted that 4.5 is a  
generic value recommended by the EPA to be protective in most monitoring situations.   
Gibbons, 1994 warns “[t]he reader should note that unlike prediction limits which provide a 
fixed confidence level (e.g. 95%) for a given number of future comparisons, control charts 
do not provide explicit confidence levels, and they do not adjust for the number of future 
comparisons.”  See Appendix K for information on developing prediction limits to cover a 
specific number of future observations and tolerance limits to cover an indefinite number of 
future observations. 

 Q-4.2.1.2.  If more than eight historical samples are available, it is reasonable to use  
only the most recent eight.  Once a control limit is developed, the current monitoring value is 
compared to the control limit.  If the value exceeds the control limit, the groundwater system 
should be investigated for causes associated with the increase in concentration.  Directions 
for preparing a Shewart control chart are given in Paragraph Q-4.2.2, followed by an exam-
ple in Paragraph Q-4.2.3. 

 Q-4.2.2.  Directions for Preparing a Shewart Control Chart. 
 
 Q-4.2.2.1.  Verify the following assumptions:  
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 Q-4.2.2.1.1.  For each sampling location (e.g., a well for groundwater monitoring), data 
are available from at least eight independent samples from previous sampling events to  
estimate the mean and standard deviation. 
 
 Q-4.2.2.1.2.  Determine if data are correlated. 
 
 Q-4.2.2.1.3.  Identify if data or transformed data are normally distributed. 
 
 Q-4.2.2.1.4.  Check if seasonality is affecting data, and, if so, remove the  
seasonality. 
 
 Q-4.2.2.2.  At a given location or well, take independent samples over n historical  
sampling events ( 8≥n ).  
 
 Q-4.2.2.3.  Calculate the mean ( x ) and standard deviation (s) of the n samples. 
 
 Q-4.2.2.4.  Calculate an upper control limit by the equation Zsx + , where Z is set to 4.5 
for routine groundwater monitoring programs.  Note that setting 5.4=Z ensures a 95% over-
all confidence level when 8=n and 35 future comparisons are made to this upper control 
limit (Gibbons, 1994). 
 
 Q-4.2.2.5.  Plot the current concentrations with respect to time and superimpose the  
upper control limit. 
 
 Q-4.2.2.6.  Identify if the system is in-control or out-of-control by identifying if con-
centrations are below the upper control limit or above the upper control limit, respectively. 

 Q-4.2.2.7.  Investigate any situation in which a concentration is above the upper control 
limit. 
 
 Q-4.2.3.  Example of a Shewart Control Chart.  Benzene is measured from quarterly 
groundwater samples at well MW01 in Site A from 1998–2000 to develop a control chart to 
compare to the 2001 sampling results (Table Q-8).  
 
 Q-4.2.3.1.  Verifying assumptions are as follows. 
 
 Q-4.2.3.1.1.  10=n .  Samples were taken with at least a 3-month interval; therefore, the 
samples should be independent. 
 
 Q-4.2.3.1.2.  This set of data is the same as that used to calculate the serial correlation 
for the example in Paragraph O-2.6.2.  From that example, the following summary statistics 
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were estimated: 824.4=x  and 284.3=xs , and the serial correlation coefficient = –0.2527.  
The correlogram for these data is shown in Figure Q-7. 
 
 Q-4.2.3.2.  Serial correlation does not appear to be a problem, even though the default 
at k = 0 (where k is the autocorrelation coefficient) is greater than the n2± bounds  
(± 0.632). 
 
Table Q-8a. 
Historical Data for Upper Control Limit in Example Q-4.2.3 
Time Jan-

98 
Apr-
98 

Jul-
98 

Oct-
98 

Apr-
99 

Jul-
99 

Oct-
99 

Apr-
00 

Jul-
00 

Oct-
00 

Time  
Period   

1 2 3 4 5 6 7 8 9 10 

Conc. 
(µg/L)  

12.2 3.79 3.42 5.47 0.81 1.84 7.56 4.32 0.68 6.17 

 
Table Q-8b. 
Current Data to Use to Compare to Control Limit in Example Q-4.2.3 
Time Jan-01 May-01  Jul-01 Nov-01 
Conc. (µg/L) 0.64  2.19  1.72  1.15 
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Figure Q-7.  The Correlogram. 

 
 Q-4.2.3.2.1.  To test the assumption of normality, the Shapiro-Wilk test was performed 
with the data based on a 95% level of confidence.  Results of this test provide evidence to 
suggest that the data follow a normal distribution because the p value is 0.3363, which is 
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greater than the significance level of 05.0=α  (there is not enough evidence to reject the null 
hypothesis of normality). 
 
 Q-4.2.3.2.2.  There are not enough results to adequately identify seasonal trends and no 
obvious trend is visible in the previous time plot.  For this example, we will assume that the 
data are not affected by seasonality. 
 
 Q-4.2.3.3.  There are not enough results to adequately identify seasonal trends and no 
obvious trend is visible in the previous time plot.  For this example, we will assume that the 
data are not affected by seasonality.  Calculate the control limit as follows. 
 
 Q-4.2.3.4.  The upper control limit = 06.19)284.35.4(824.4 =×+=+ sZx .  None of the 
samples taken in 2001 exceeds this upper control limit, as shown in Figure Q-8. 
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Figure Q-8.  Historical Data (1998–2000) and 2001 
Data with Shewart Control limit for benzene 
(SW8260B) in Groundwater at Site A, MW-01. 

 
 Q-4.3.  CUSUM Control Charts.  CUSUM control charts are more sensitive than 
Shewart control charts to small and gradual changes.  They incorporate current and historical 
information by calculating a cumulative sum, S, for the ith sample.  Directions for preparing a 
CUSUM control chart are provided in Paragraph Q-4.3.1, followed by an example in Para-
graph Q-4.3.2.  See Gibbons (1994) for more information. 
 
 Q-4.3.1.  Directions for a CUSUM Control Chart.  Verify that the assumptions required 
for CUSUM charts are met. 
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 Q-4.3.1.1.  Assumptions. 
 
 Q-4.3.1.1.1.  At least eight independent samples (from previous sampling events) were 
collected for each sampling location (groundwater monitoring well) to estimate the mean, x , 
and sample standard deviation, s. 
 
 Q-4.3.1.1.2.  The data cannot be correlated; determine if the data are correlated. 
 
 Q-4.3.1.1.3.  The data must be normal; determine whether the data or transformed data 
are normally distributed. 
 
 Q-4.3.1.1.4.  Determine whether seasonality is affecting the data; if so, remove the  
seasonality. 
 
 Q-4.3.1.2.  Calculate the mean and standard deviation for the historical data results. 
 
 Q-4.3.1.3.  Choose an appropriate value for k (one-half the size of a difference worth 
detecting).  The EPA recommends setting k = 1, which means that a difference of two units 
of standard deviation is meaningful. 
 
 Q-4.3.1.4.  At a given location or well, determine the cumulative sum for each  
independent sample.  Define  
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xx

z i
i

−
= .  The function max[a, b] means to use the value a or b, whichever is  

higher. 
 
 Q-4.3.1.5.  Choose the appropriate control limit, h. EPA recommends setting h = 5.  
The value of 5 is based on simulations and recommendations contained in Lucas (1982), 
Hockman and Lucas (1987), and EPA 600/4-88-/040.  Essentially, h is the upper control  
limit.  (One way to determine whether Si exceeds five is to plot S versus i for the data.)  
 
 Q-4.3.1.6.  Identify if the system is in-control or out-of-control by identifying whether 
each Si is less than h (in-control), or greater than h (out-of-control).  

 Q-4.3.1.7.  Investigate any situation in which a concentration is out-of-control.  Ideally, 
additional samples would determine if the out-of-control condition is real and persistent. 
 
 Q-4.3.1.8.  EPA 530-SW-89-026 recommends detecting a difference of two standard 
deviations, or k = 1.  CUSUM control charts are developed by plotting each Si against the  
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iteration i.  Each Si is compared to an appropriate control limit, h. EPA guidance recom-
mends h = 5.  If any Si value exceeds h, the groundwater system should be investigated for 
causes associated with the increase in concentration.  
 
 Q-4.3.2.  Preparing a CUSUM Control Chart.  Consider evaluating the same data used 
in the example for developing Shewart Control Charts.  Benzene concentrations taken from 
quarterly groundwater samples at well MW01 in Site A from 1998–2000 will be used as a 
basis for comparison to the 2001 sampling results.  
 
 Q-4.3.2.1.  The assumptions for developing CUSUM control charts are the same as  
developing Shewart control charts.  As explained in Paragraph Q-4.2.3, all of these  
assumptions have been met. 
 
 Q-4.3.2.2.  Set 1=k , 00 =S , and .5=h  
 
 Q-4.3.2.3.  For each of the current results in 2001, iS  is calculated as  
 
 ],0max[ 1−+−= iii SkzS   
 
where 
 

 
σ

µ−
= i

i
x

z  

 
µ  is estimated by 824.4=x , and σ  is estimated by 284.3=xs .  (Specify what data are  
being used to calculate the mean and standard deviation.)  Each iS value is then compared to 

5=h ; cases in which hSi ≥  are defined as samples out-of-control.  (Note: Both the mean 
and standard deviation come from 10 historical samples.) 
 
 Q-4.3.2.4.  Results are presented in Table Q-8 and show that none of the current results 
are out-of-control. 
 
 Q-4.3.2.5.  As an example of these calculations, consider the July 2001 concentration, 
where 3=i : 
 

 945.0
284.3

824.472.1
3 −=

−
=z  

 
 0]945.1,0max[)]01945.0(,0max[3 =−=+−−=S . 
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 Q-4.3.2.6.  Because 503 =<= hS , the sample is in-control.  In this example, there are 
no out-of-control events because Si < 5 for all i. 
 
 Q-4.4.  Combined Shewart-CUSUM Control Charts.  Combined Shewart-CUSUM con-
trol charts can be used to detect sudden and gradual changes in concentrations.  These control 
charts combine the benefits of the Shewart and CUSUM charts, as illustrated in Paragraph Q-
4.4.1.  
 
 Q-4.4.1.  Consider evaluating the same data used in the example for developing the 
Shewart and CUSUM control charts.  Benzene concentrations taken from quarterly ground-
water samples at well MW01 in Site A from 1998–2000 will be used to develop a control 
chart to compare to the 2001 sampling results.  
 
 Q-4.4.2.  The assumptions for developing Shewart-CUSUM control charts are the same 
as for developing Shewart and CUSUM control charts.  As explained above, all of these  
assumptions have been met. 
 
 Q-4.4.3.  Set 5=h , 1=k , and use the Shewart chart control limit SCL 4.5=  as  
recommended by the EPA. 
 
 Q-4.4.4.  The standardized values for each of the current results are estimated, as shown 
in Table Q-9.  The standardized values, iz , are developed using the historical average and 
standard deviation of 824.4=x  and 284.3=s .  
 
 Q-4.4.5.  Then, each iz value is compared to SCL 4.5= , and each iS value is compared 
to 5=h .  If SCLiz >  or hSi > , the result is out-of-control.  
 
 Q-4.4.6.  Results are presented in Table Q-9 and indicate that none of the current results 
are out-of-control. 
 
 Q-4.4.7.  As an example of these calculations, consider the July 2001 concentration, 
where 3=i : 
 

 945.0
284.3

824.472.1
3 −=

−
=z  . 

 Q-4.4.8.  0]945.1,0max[)]01945.0(,0max[3 =−=+−−=S . 
 
 Q-4.4.9.  As 5.4945.03 =<−= SCLz  and 503 =<= hS , this sample is in-control. 
 
 Q-4.4.10.  A plot of the standardized results )( iz  versus the time interval (i) can be  
designed to illustrate this information, as shown in Figure Q-9. 
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Table Q-9. 
Results for Combined Shewart-CUMSUM Control Chart 

Time Jan-01 May-01 Jul-01 Nov-01  
Concentration (µg/L) 0.64 2.19 1.72 1.15  

i  1 2 3 4  
iz  –1.274 –0.802 –0.945 –1.119 Compare zi to SCL = 4.5. 

iS  0 0 0 0 Compare Si to h = 5. 
Out-of-control? (i.e., iz > 
SCL = 4.5 or, iS > h =5 )? 

No No No No  

 
 
 

 

 

 
Figure Q-9.  Combined Shewart-CUSUM Control Chart 
(mean = 4.824, standard deviation = 3.284, k =  
1, h = 5, SCL = 4.5). 
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APPENDIX R 
Geostatistics 

 
R-1.  Introduction.  Geostatistics is a method for analyzing spatially correlated data.  It  
is used to identify spatial patterns and to interpolate values at unsampled locations.  Sam-
pling and mapping in the earth sciences are complicated by spatial and temporal patterns.  
The structure and intensity of such patterns often cannot be reliably predicted with  
deterministic models of fate and transport or with classical statistical methods applied to 
sample observations.  Geostatistics is a way of interpreting patterns from sample observa-
tions taking advantage of spatial correlation.  In geosciences, spatial correlation arises when 
samples taken close to one another are more likely to have similar values than samples taken 
far apart Clark (1979). 
 
 R-1.1.  Appendix O explains that covariance is a statistical measure of the association 
between two variables.  If two variables are independent, the covariance is zero.  For 
geostatistical analysis conducted on a regionalized variable, the auto-covariance between 
nearby samples is considered to be possibly not equal to zero.  If the auto-covariance be-
tween two measurements taken close to each other is not zero, then the application of classi-
cal statistical methods may impart a substantial bias to the estimate. 
 
 R-1.2.  Classical statistical methods rely on data being independent over distance  
or time.  Hence, in many environmental problems, the use of classical statistics is not  
entirely accurate, because variables are frequently spatially controlled.  Geostatistics  
recognizes the spatial correlation and provides methods for the following. 
 
 R-1.2.1.  Calculating predictions (such as the concentration of a metal at a specific  
location in soil). 
 
 R-1.2.2.  Quantifying the accuracy of the predictions. 
 
 R-1.2.3.  Selecting optimal locations to sample given an opportunity to collect more  
data. 
 
 R-1.3.  A geostatistician’s main task is to predict a regionalized variable (e.g.,  
hydraulic gradient or metal concentration in soil) from a set of measurements.  More  
detailed treatment of geostatistical methods can be found in Cressie (1993) and Goovaerts 
(1997). 
 
R-2.  Semivariogram.  The characteristic tool in geostatistics is the semivariogram to quanti-
fy and model the spatial correlation structure.  A semivariogram is essentially a plot of the 
variance of groups of paired sample measurements as a function of the distance between 
samples.  Typically, for the situation in which the variance depends only upon distance (and 
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not direction), all possible sample pairs a fixed distance apart (h) are used to calculate a vari-
ance for h: 
 

 
h

N

ji ji
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xx
hs

h∑ −
= ,

2

2
)(

)(  

 
where xi and xj represent the value (i.e., concentration) at a pair of sample points i and j; the 
summation is over all possible pairs of points within a subgroup of the data that are a dis-
tance h apart (where i < j); and Nh denotes the total number of pairs that are h units part.  For 
example, h is typically defined as increasing along constant intervals (h = {1d, 2d, 3d, …}, 
where d is a distance interval such as 5 feet.)  In practice, a window of allowable distances is 
used so that many points will be included in each calculation of s2(h).  For example, a group 
of samples used to calculate s2 (3 feet) may have inter-point distances that are between 2 feet 
to 4 feet apart, rather than exactly 3 feet apart.  This window is defined using a tolerance δ 
for h, so that all points within h ± δ of each other are grouped into the subset from which 
s2(h) is calculated.  The user chooses this tolerance and other grouping parameters to define 
how the data will be grouped into subsets to calculate the s2(h) for each h. Different experi-
mental variograms can be calculated for a given data set by varying the grouping parameters 
used to control the spatial geometry of the data subsets at each distance h. 
 
 R-2.1.  With grouping parameters defined, computer software is used to do the inten-
sive computations involved in calculating the variance s2(h) for different values of h.  The 
quantity γ(h) = (1/2)s2(h) is plotted as a function of increasing distance, i.e., 1h, 2h, etc., and 
is referred to as the experimental or empirical semivariogram.  Although the variogram is, by 
definition, twice the semivariogram, the terms variogram and semivariogram are often used 
interchangeably. 
 
 R-2.2.  After experimental semivariograms are reviewed, a continuous mathematical 
curve, called a model semivariogram, is then fit to the experimental semivariogram.  Exam-
ples of model semivariograms are displayed in Figure R-1.  The model semivariogram (Fig-
ure R-1a) is assumed to characterize the relationship of how variance in neighborhoods 
increases as the neighborhoods get larger.  This relationship must be estimated for each site 
application.  In practice, 20 or more sample locations are necessary to construct a useful em-
pirical semivariogram, and often geological site knowledge and statistical judgment are im-
portant considerations in estimating the model semivariogram. 
 
 R-2.3.  Figures R-1b and R-1c illustrate two model forms that have a sill, or maximum 
variance.  A sill is the upper limit of any semivariogram model that levels off at large dis-
tances.  In physical terms, the sill is the variance of concentrations at the site that are at a 
large enough distance from each other to be statistically independent.  The distance at which 
spatial correlation becomes insignificant is called the range.  Sample points separated by this 
distance or more are considered statistically independent and can be analyzed using a classic 
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statistical approach.  Another feature of a semivariogram illustrated in Figure R-1c is the 
nugget.  In a model having a nugget, γ(h) does not approach zero as h approaches zero but 
rather a positive value that is generally attributed to such things as measurement error for a 
single observation or small-scale variability. 
 
R-3.  Kriging.  The geostatistical interpolation method of kriging uses the concepts and mod-
el established in a semivariogram data evaluation to develop both an unbiased estimate of the 
expected value at any specified location, as well as the uncertainty associated with this esti-
mate.  Typically, estimates are derived along a regularly spaced grid.  With relatively dense 
grids, the estimate at each grid point is also the estimate of the mean value within the block 
centered on the grid point. 
 
 R-3.1.  The kriging estimate is a weighted mean of the neighboring samples, where 
each weight reflects the amount of unique (non-redundant) information contained about the 
location to be estimated that is in a given sample.  The assignment of weights to each neigh-
boring sample is based on the model semivariogram, and includes consideration of the inter-
point distance between the sample and the location to be estimated, as well as the inter-point 
distances between this sample and its neighboring samples.  Neighboring samples, if close 
together, are spatially correlated and, therefore, contain redundant (non-independent) infor-
mation about the location to be estimated.  Kriged estimates are more accurate than an un-
weighted arithmetic mean; that is, they are unbiased (the bias from clustered samples is re-
moved), and they have a lower variance.  
 
 R-3.2.  Some types of kriging that may be encountered are ordinary kriging, indicator 
or probability kriging, and block kriging.  Ordinary kriging is used to predict the value of 
some variable at a specific location.  In block kriging, the technique allows the prediction of 
a variable mean within a block or area.  
 
 R-3.3.  The required assumptions for kriging are that the sample to be estimated  
lie within the neighborhood for which the model semivariogram has been estimated, that 
there be adequate empirical evidence (sample data) or scientific support (e.g., source  
history) for the appropriateness of the model semivariogram, and that the neighborhood be 
homogeneous, with no distinct trends in the data values.  For kriging, a trend is a  
deterministic gradient that can be modeled (such as an exponential decrease in deposition 
with distance from a point release).  Such trends should be characterized and then subtracted 
from the regionalized variable being modeled.  Kriging can then be run on the residuals to 
account for local patchiness and clustered sample data.  Alternatively a release or plume of 
contamination can often be divided into strata in which the conditions are approximately 
homogenous (e.g., geological strata, differing source areas).  The blocks of each neighbor-
hood are then kriged using their corresponding semivariogram. 
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Figure R-1.  Types of Semivariograms. 
 
 R-3.4.  Any estimation procedure has an associated estimation variance.  The special 
property of kriging is that it selects the set of weights that minimizes the estimation variance 
and produces the best linear unbiased estimator. 
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 R-3.5.  The assessment of uncertainty in geostatistics is highly quantitative; interpolated 
concentrations are estimated on the basis of an underlying model of correlation and variabil-
ity.  As such, the estimates themselves are directly linked to estimates of uncertainty.  A pre-
dicted value may be expressed as a quantity plus or minus some quantity representing the 
uncertainty (X ± ε), or the predicted value may be associated with a probability (X, p = 0.9).  
Specific methods of estimating the uncertainty are beyond the scope of this document; they 
are usually calculated using computer software. 
 
 R-3.6.  Geostatistics can be used to evaluate and manage the uncertainty associated 
with remedial activities for a study area.  Even with ample site characterization data (borings 
or wells), the boundaries of the treatment zone are imperfectly defined.  Geostatistics allows 
us to evaluate the risk that the size, and, therefore, cost, of the remediation may be larger or 
smaller than expected.  First, the site is characterized and adequate data are collected.  Se-
cond, the data are transformed by assigning a value of 1 or 0 (indicator values), depending on 
whether the value is above or below, respectively, a given cleanup value or other criterion.  
Third, the transformed data are used to construct a variogram.  Fourth, the variogram is mod-
eled as previously described.  This model is then used to perform kriging with the indicator 
values.  The kriging estimates reflect a probability that the concentration at the points of es-
timation exceed the cleanup value or other standard.  These kriging estimates can be con-
toured to define areas or volumes of material that have a certain likelihood of exceeding 
some cleanup value.  The contour value is essentially the probability of exceedance.  Last, 
the size of the area defined by different probabilities of exceedance can be determined and, 
using a unit cost or similar approach, a cost-versus-risk curve can be developed.  
 
 R-3.7.  This can be used in programming money for the project, as a basis for negotiat-
ing cleanup levels with regulators, or to help determine if the cost and time of additional 
characterization work will be offset by less risk during construction.  Alternatively, rather 
than transforming the data to ones and zeros, the actual values can be kriged, and the kriging 
variances can be used to determine prediction intervals for each estimated value.  In the vi-
cinity of the point estimate, these prediction intervals can be used to define the spread of po-
tential values expected within a given probability.  This assumes the data are normally 
distributed or have been transformed to be normally distributed. 
 
R-4.  Software for Geostatistics.  There are a number of software applications to assist in 
geostatistical calculations.  Two older applications developed by the U.S. Environmental 
Protection Agency (EPA) are GeoPack and Geo-EAS (EPA 600/4-88/033). 
 
 R-4.1.  Repack conducts analysis of variability for one or more random functions.  
GeoPack includes basic statistics, such as mean, median, variance, standard deviation, skew, 
and kurtosis.  The package also does regressions, distribution testing, and percentile calcula-
tions.  Sample semivariograms, cross-semivariograms, or semivariograms for combined 
random functions for a two-dimensional, spatially dependent random function can also be 
determined.  GeoPack includes ordinary kriging and co-kriging estimators in two  
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dimensions, along with their associated estimation variance and the conditional probability 
that the value is greater than a user-specified cutoff level.  Graphical tools include linear or 
logarithmic line plots, contour plots, and block (pixel) diagrams. 

 R-4.2.  Geo-EAS was also developed by the EPA and is a collection of interactive 
software tools for doing two-dimensional geostatistical analyses of spatially distributed data.  
Programs are provided for data management, data transformations, univariate statistics, 
semivariogram analysis, cross-validation, kriging, contour mapping, post plots, and line-and-
scatter graphs.  The application is DOS-based. 
 
 R-4.3.  A publicly available package of geostatistical software that is more comprehen-
sive than these EPA packages is GSLIB, available at http://www.gslib.com.  The DOS-
executable freeware may be downloaded from this site.  Alternatively, the software source 
code and a supporting textbook may also be purchased at the site for a nominal fee.  
 
 R-4.5.  Commercial software for Windows, Sun, or Macintosh systems include 
WinGSLIB, Environmental Visualization System, and Groundwater Modeling System 
(GMS), which is currently available to all USACE, U.S. Department of Defense, EPA, and 
U.S. Department of Energy personnel. 
 
R-5.  Case Study: Geostatistical Analysis of Remediation by In Situ Ozonation. 
 
 R-5.1.  Introduction.  An application of geostatistics to environmental remediation will 
be explored in this case study.  Three-dimensional kriging was used to support the Remedial 
Investigation/Feasibility Study, Remedial Action Plan, Confirmation Sampling, and Remedi-
al Action Report (site closure) for a former manufactured gas plant (MGP) located in Long 
Beach, California.  The former MGP operated from approximately 1901 to 1913 and pro-
duced gas from coal and crude oil feedstocks.  The project was conducted pursuant to an 
agreement with the California Environmental Protection Agency Department of Toxic Sub-
stances Control under their Expedited Remedial Action Program.  In-situ ozonation was used 
to lower levels of polycyclic aromatic hydrocarbons (PAHs) to meet the selected risk-based 
cleanup levels for this site.  The kriging results played an important role in several estimation 
and decision processes, including:  
 
 R-5.1.1.  Contouring the original distribution of PAH. 
 
 R-5.1.2.  Defining the footprint and depths for the treatment zone. 
 
 R-5.1.3.  Supporting decisions regarding placement for the ozone-injection well  
system.  
 
 R-5.1.4.  Selecting quarterly monitoring locations for soil samples during the  
treatment process as well as for post-treatment confirmation samples. 
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 R-5.1.5.  Contouring the final post-treatment distribution. 
 
 R-5.1.6.  Estimating the site-wide exposure concentration used for risk assessment and 
site closure.  

 R-5.2.  Post-Treatment Modeling.  Quarterly monitoring results indicated substantial 
reductions in PAH levels early in the treatment, which began in 1998.  However, within 2 
years, monitoring indicated that the reductions had reached an asymptote, reflecting the di-
minishing return of continued ozonation and the recalcitrant nature of the residual PAHs.  In 
2000, confirmation samples were taken from random locations within the defined treatment 
zone.  Kriging was then used to model the post-treatment spatial distribution of PAHs and 
compare it to the pre-treatment distribution (Figure R-2).  Kriging uncertainty was estimated 
and used to determine whether cleanup goals had been met.  
 
 R-5.3.  Reporting.  The reporting of the kriging analysis was included in the Remedial 
Action Report as an appendix with an organization and level of detail consistent with guide-
lines given in “Standard Guide for the Contents of Geostatistical Site Investigation Report” 
(ASTM D5549-94e1).  To enhance the practical value of this case study, the following parts 
of the ASTM outline are used below: software, data sources, exploratory analysis (and con-
ceptualization), spatial continuity analysis, estimation, and uncertainty.  
 
 R-5.4.  Software.  The analysis was conducted using the three-dimensional kriging utili-
ties of the GMS software mentioned in Paragraph R-4.  
 
 

         
a. Pre-ozonation. b. Post-ozonation. 

Figure R-2.  Comparison of Krige-Interpolated Benzo(a)pyrene 
Concentrations before and after Treatment by In Situ Ozonation. 
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  R-5.5.  Data Sources.  The variable of interest was benzo(a)pyrene equivalents (a 
weighted sum of carcinogenic PAHs in each sample).  The first kriging analysis (pre-
remediation) was conducted on sample data dispersed over approximately 75 soil borings 
primarily from the remedial investigation (RI) program that was completed in 1997.  In con-
trast, the post-remediation kriging was conducted on a composite data set that consisted of 
1997 RI samples that were outside the treatment area, together with the latest samples avail-
able for the treatment area taken in 2002.  Thus, the post-remediation data set reflected the 
assumption that soil concentrations in the untreated areas were stable over time (reasonable 
for the PAHs involved) and, therefore, well represented by older data, while soil concentra-
tions in the treatment zone were expected to change over time so that older samples were not 
included in the kriging analysis.  
 
 R-5.6.  Exploratory Analysis and Site Conceptualization.  The recommended Explora-
tory Analysis section in the ASTM guidelines is expanded here to be a conceptual discus-
sion, deemed important for all sites, that considers all relevant qualitative and quantitative 
information about the site.  The integration of these different types of information is crucial 
for explicitly identifying a conceptual model of the contamination distribution that will guide 
a number of assumptions and decisions throughout the analysis.  Beyond the analytical sam-
ple results, such information includes topography, stratigraphy, observations made in boring 
logs, site history, and other qualitative and semi-quantitative information.  For the MGP site, 
all examples from the above list were applied in some way during formulation of the 
geostatistical analysis.  The following description of some of the qualitative information 
about the site is included before the transition into the exploratory data analysis. 
 
 R-5.6.1.  Well-established site history provided engineering process information, as 
well as maps of potential source structures, that could be used to compare with the posted 
analytical results.  An additional factor at the site is that its current condition includes an en-
gineered soil levee along the Los Angeles River as well as soil fill set around large concrete 
supports for a bridge and on-ramp built across the site in 1953–1963 (subsequent to decom-
missioning of the MGP).  Thus, the topography is quite varied and includes imported soil 
brought in to cover large parts of the site.  Topography, native or fill, definitely influenced 
soil volumes and, therefore, had to be incorporated explicitly into the kriging estimation.  
Furthermore, the three-dimensional visualization of the topography and sample data (Figure 
R-3) indicated that spatial correlation occurred along a relatively level elevation rather than 
following the highs and lows of the present surface topography.  (An approximate two-fold 
vertical exaggeration is used to aid the visualization of data points within a boring.)  This is 
consistent with the expected pattern produced by an originally flat plant site.  Because the 
subsequent mixing and earth movement are somewhat uncertain, the large volume of soil 
covering the former plant was sampled, along with the native soil, as part of the RI and was 
included in the site-wide model and calculations.  
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Figure R-3.  Surface Topography with Benzo(a)pyrene 
 Concentrations and a Kriged Isovolume. 
 
 R-5.6.2.  The additional exploration of the analytical data, in the form of a histogram 
and descriptive statistics, indicated a high degree of skewness with suggestions of a compo-
site of two different populations: one with low concentrations (i.e., “background”) that were 
found in the outlying areas, and the other with moderate-to-relatively high concentrations 
that still presumably reflected some varying amount of impact from the historical contamina-
tion (even after treatment).  Samples in the outlying areas were sparser than in the central ar-
ea, but still provided ample evidence to confirm the central positioning of the impacted soil 
in and around former MGP structures.  Therefore, this potentially distinct population of low 
values was considered important to keep in the data set so that it would help define the out-
ward extent of the residual contamination. 
  
 R-5.6.3.  Including the low concentrations together with the more central data had the 
following implications. 
 
 R-5.6.3.1.  Site Mean.  The site-wide estimate of exposure concentration would reflect a 
site mean that included, in accordance with the defined site boundaries, both background and 
impacted volumes of soil.  The site-wide mean to be calculated based on the kriging analysis 
would have contributions from both parts of the site in a manner that was “volume-
weighted.”  Given that any future redevelopment of the site would require the removal of the 
bridge support structures and intensive mixing of soil across the entire site, this site-wide 
mean was considered a realistic assumption for the conservative residential risk scenario. 
 
 R-5.6.3.2.  Spatial Pattern or Lateral Extent.  The lower concentrations confirm site his-
torical information regarding the “edges” of the impacted zone.  Given this confirmation, the 
sparse outlying data can and should be supplemented with “soft data” to fill in areas of low 
data density and create a well-controlled boundary condition for the edges of the site.  Such 
soft data, termed the “extended data set,” were added to the kriging for the estimation phase 
conducted after development of the variogram. 
 
 R-5.7.  Spatial Continuity Analysis.  It is reasonable to estimate soil concentrations 
across the site based on the underlying kriging assumption of spatial continuity.  The fate and 
transport processes, involved in both the contamination and the ozone dispersion and effect, 
are presumably spatially continuous on some scale.  Although soil structure and sample  
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concentrations are notoriously variable or even discrete on a small scale, the resolution re-
quirements implied by both risk assessment and remediation allow a broader focus.  The 
view from risk assessment is one of exposure accumulated over time and space (a spatial av-
erage), and the view from remediation might be described as akin to the scoop size of a 
backhoe or some other scale useful for feasibility and cost estimation of the specific treat-
ment.  This larger scale of variability is more forgiving in the sense that an interpolation of 
the mean concentration in a cubic-yard block of soil has a lower uncertainty than an interpo-
lation of any particular shovel-full of soil in the same block.  
 
 R-5.7.1.  Therefore, the search for evidence and range of spatial continuity need not be 
a matter of finely tuned research for many sites although the level of rigor must be consistent 
with the site conceptualization.  For example, one might argue that the outlying data, if they 
are truly background, may be a different population altogether than the central data, with dif-
ferent continuity ranges to be found by analyzing the two sets separately.  On the other hand, 
there is no bright line around the site to delineate these two populations spatially (at least “a 
priori,” before the spatial analysis was done).  More realistically, there is likely to be a gradi-
ent of soil impacted by some level of contamination and also some level of remediation, such 
that the net impact, or probability of impact, on the soil decreases with distance from the cen-
tral area and individual injection wells.  The spatial range of correlation that is defined for 
the kriging variogram should ideally be appropriate for this transition zone, as well as for the 
obvious central or outlying areas of the site.  In other words, practicality points to the sim-
plest assumptions that will “work.” 
 
 R-5.7.2.  Spatial continuity was investigated on the entire post-remediation data set us-
ing a general relative variogram, which automatically adjusts for the proportional effect 
commonly found in contaminant concentration data and lognormal tending data in general.  
The variances calculated for a relative variogram were modified by dividing the group vari-
ances by the square of the local mean, which can be calculated in several ways.  This im-
proved the structure of the experimental variogram and, specifically for the case study data, 
allowed the modeler to observe lower relative variances (stronger correlations) at inter-point 
distances of about 5 to 10 feet (in the laterally direction), moderate variances at about 30 to 
40 feet, and highest variances reaching a plateau at about 50 to 60 feet (see Figure R-4a).   
 
 R-5.7.3.  Horizontal anisotropy was reviewed by limiting vertical and angular grouping 
parameters (depends on software package) to create different directional  
“horizontal variograms.”  No horizontal anisotropy was present.  However, the comparison 
between the horizontal variograms and vertical variograms, created by limiting horizontal 
grouping parameters, indicated that the vertical range of spatial correlation was approximate-
ly one-fourth that of the horizontal range.  A spherical model variogram with vertical anisot-
ropy was selected, with a horizontal range of 49 feet and a vertical range of 12.4 feet (Figure 
R-4b).  
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a. Directional Horizontal Variograms. b. Horizontal and Vertical Variograms. 
 

Figure R-4.  Two Sets of Experimental Variograms Used to Define  
 the Krige Variogram Model. 
 
 R-5.8.  Estimation.  A concentration estimate was developed for every cell center of a 
three-dimensional grid with cell dimensions 6 by 6 by 3 feet.  Cell dimensions were chosen 
to be consistent with earlier modeling work, but also were considered to provide an adequate 
balance between the resolution needs of risk and remediation resolution and the increased 
run-time and overall unwieldiness of denser grids.  The three-dimensional contour map could 
be compared to the pre-remediation maps in plan view by layers, or by cross sections or ren-
dered iso-volumes in GMS.  The site-wide mean was then simply a matter of calculating the 
arithmetic average of all cell mid-points that were defined as “soil” (as opposed to “above 
ground”).   
 
 R-5.9.  Uncertainty.  Kriging standard error estimates are automatically produced for 
each cell at the time the concentration estimate is assigned.  They reflect uncertainty in a par-
ticular cell estimate and cannot be used directly to estimate uncertainty for the site-wide 
mean, which is the standard error term required for a 95% upper confidence limit (95% 
UCL), i.e., the exposure concentration.  The standard error for the site-wide mean was con-
servatively estimated by using the kriging error resulting when the variogram model was run 
on a new grid consisting of one large three-dimensional cell encompassing the entire site.  
The intuitive definition of this error term is that it represents the uncertainty implied by using 
the available 233 spatially correlated sample points to estimate the mean concentration of the 
entire block of soil containing the 233 correlated samples.  As the site boundaries and espe-
cially the topography result in an irregularly shaped zone of soil within this large rectangular 
block, the “block type” of uncertainty results in an overestimate for the actual soil subzone 
within the block.  This is because the block uncertainty reflects large regions of “air” that are 
not properly distinguished from soil, and these regions have no sample data and are relatively 
far from the nearest sample datum.  This method was conservative but was considered rea-
sonable for use in the risk assessment.  Detailed discussions of the many uncertainty ap-
proaches for kriging can be found in Meyers (1997), which focuses on environmental 
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contamination, and other geostatistical texts (e.g., Goovaerts, 1997).  Thus, the 95% UCL on 
the mean was calculated as 
 
 95% UCL = UE + 1.645 KSE 
 
where 

 UE = unbiased estimate of the mean (obtained from the high resolution model)  
 KSE = kriging standard error (conservative estimate) 
 1.645 = 95th percentile of the standard normal distribution 
 
R-6.  Conclusion. 
 
 R-6.1.  Although several conservative analysis assumptions were built into the model 
and uncertainty formulation, the site-wide volume-weighted exposure concentration (95% 
UCL) was reduced by 37 to 58% compared to that calculated from the most commonly used 
non-spatial formulas identified in numerous risk assessment guidances (e.g., t-based, Land, 
bootstrap).  The reduction in the exposure concentration came from the more rigorous use of 
spatial correlation and soil volume when kriging rather than the classical assumption that all 
sample points were identically distributed, i.e., without spatial correlation.  Thus, the lower 
kriged exposure concentration was important in determining the attainment of risk-based 
cleanup goals. 
 
 R-6.2.  The kriged model contours of the post-treatment spatial distribution allowed the 
visual comparison of the estimated pre- and post-remediation distributions, and were instru-
mental in concluding the effectiveness of in situ ozonation for this site.  
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APPENDIX S 
Geochemical Trend Analysis 

 
S-1.  Introduction.  An overview of the “geochemical” approach is presented from a statistical 
perspective via illustrations, and existing geochemical guidance (primarily from the Navy) is 
supplemented.  The geochemical approach is an effective strategy for distinguishing anthro-
pogenic from naturally occurring metal concentrations, particularly when it is used with 
traditional quantitative statistical evaluations.  The approach often identifies naturally occurring 
metal concentrations that are erroneously identified as site- related by traditional evaluations 
(i.e., comparisons of study area metal concentrations to background 95% UTLs).  The 
geochemical approach can not only be used to determine whether a study area has been 
impacted by anthropogenic metal contamination but can also identify the individual sampling 
locations that are suspected to possess the elevated metal concentrations. 

S-1.1.  Although the geochemical approach is typically extremely useful, the limitations 
of the approach should be noted.  Its primary disadvantage is that it is subjective because it is 
predominately qualitative.  In particular, decision errors are not quantified and well-defined 
criteria for distinguishing native from anthropogenic metal concentrations are not specified.  In 
addition, although the approach distinguishes anthropogenic metal contamination from 
naturally occurring concentrations, it does not distinguish site-related contamination from non-
site-related anthropogenic metal contamination.  In other words, elevated contamination 
relative to background identified by the geochemical approach may be consistent with 
anthropogenic background.  Statistical comparisons using a background study area would 
typically be needed to distinguish site-related contamination from total background metal 
concentrations (from anthropogenic and non-anthropogenic sources).  Lastly, an additional 
limitation of the approach is that it implicitly assumes that, at most, only a portion of the site 
has been impacted by anthropogenic metal releases.  This assumption is typically reasonable 
but can be violated if the study area is too small (i.e., is predominately limited to a “hot spot”). 

S-1.2.  Geochemical evaluations may be categorized as “association” and “enrichment” 
analyses.  Both are qualitative strategies used to distinguish anthropogenic from naturally 
occurring metal concentrations and rely upon the assumption that metal releases from waste 
handling activities impact only a portion of the study area.  Geo-chemical “association” 
analysis primarily uses scatter plots to distinguish anthropogenic from naturally occurring 
metal concentrations.  The approach exploits and relies upon the ability to observe correlations 
between different naturally occurring metals, while geochemical “enrichment” analysis 
primarily uses probability plots to accomplish this objective.  Typically (for both geochemical 
approaches), at least 20 samples are collected for some environmental medium of interest at the 
study area (i.e., surface soils or groundwater that has been potentially impacted by metal 
contamination) and the samples are analyzed for TAL (target analyte list) metals (i.e., the set of 
23 metals listed in the Contract Laboratory Program Statement of Work).  Because metals such 
as Al, Mg, Ca, and Fe are major components of naturally occurring minerals in rocks and soils 
in the earth’s crust, these metals are typically considered to be non-site related. 



 
 
 
 
EM 200-1-16 
31 May 13 

 

S-2 

S-1.3.  When geochemical association analyses are done, correlations between suspected 
site-related metals (e.g., Cd, Pb, and Cu) and non-site related metals (e.g., Al, Fe, or Ca) are 
investigated by generating scatter plots.  Typically, the concentrations of some potential site-
related metal are plotted on the y-axis and the corresponding concentrations of some non-site-
related metal are plotted on the x-axis.  A strong correlation suggests that detected metal 
concentrations are native rather than a result of site-related waste handling activities.  Metal 
concentrations that are not consistent with the correlations in the scatter plots appear as 
“anomalies” or “outliers” that are attributed to anthropogenic contamination.  When 
geochemical enrichment analysis is performed, probability plots are generated.  Native metal 
concentrations give rise to continuous monotonic curves (i.e., straight lines).  An abrupt 
increase in the slope of a curve, appearing as an inflection point in the upper portion of the 
curve, indicates anthropogenic contamination. 

S-1.4.  The strategies used to select the particular native metals of interest are beyond the 
scope of this document, which focuses upon only the statistical evaluation of the data once the 
metals of interest have been selected.  The metals and the correlations of interest will depend 
on the nature of the environmental population being sampled.  Native metals concentrations in 
soils and sediment depend on factors such as the nature of the parent rocks and component 
minerals, and organic material content.  Metal concentrations tend to be directly proportional to 
total organic carbon and inversely proportional to particle size.  Dissolved metal concentrations 
in groundwater tend to be greater at low pH and reducing conditions.  It should be noted that 
metals usually exist as anions (negatively charged species) and cations (positively charged 
species) in environmental media such as groundwater, soil, and sediments.  For example, 
metals such as As, Sb, Se, V, and Mo tend to form anionic species (i.e., containing oxygen 
atoms); metals such as Ba, Cu, Pb, Ni, and Zn tend to form cations, while certain metals such 
Cr form either as cationic or anionic species.  At neutral pH, clays, which typically contain Al, 
possess strong negative surface charges that attract cationic metals such as Cu, Zn, and Pb.  
Therefore, for soils rich in clay or groundwater containing suspended clay particles, Al will 
often be strongly correlated with cationic metals.  Similarly, at neutral pH, environmental 
matrices containing iron oxides and iron oxyhydroxides possess positive surface charges that 
attract anionic metal species. 

S-2.  Geochemical Association Approach.  To illustrate the geochemical association approach, 
assume that soils at some study area contain significant concentrations of native Fe and the area 
is suspected to have been impacted by site-related Pb contamination.  The concentration of Pb 
in each sample is plotted against the corresponding concentration of Fe to generate a “Pb-Fe” 
scatter plot for the study area (i.e., as discussed in Paragraph J-9).  When a scatter plot is 
generated for a geochemical evaluation, the x-axis is usually the concentration of the non-site-
related metal (Fe), but this is merely a convention (e.g., a comparable scatter plot may be 
generated if the y-axis were the concentration of the non-site related metal).  Also note that 
when the scatter plot is produced, the values for the X variable and those for the Y variables 
are not ordered prior to plotting the data, rather a set of paired measurements  (xi, yi), where i = 
1, 2, …, n (n denotes the number of environmental samples) is plotted.  A strong positive 
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correlation between naturally occurring concentrations of Fe and Pb (i.e., where the 
concentration of Pb tends to increase as the concentration of Fe increases) would suggest that 
Pb is not an anthropogenic contaminant.  Figure S-1 is an example of a Fe-Pb scatter plot. 

 

Figure S-1.  Scatter Plot of Pb and Fe.  Copyright 
2004 From "Identifying Metals Contamination In Soil: A 
Geochemical Approach,” Soil & Sediment Contamination, 
Vol. 13, No. 1, pp. 1–16, by Myers, J. and K. Thorbjornsen.  
Reproduced by permission of Talyor & Francis Group, LLC. 

 
S-2.1.  The relatively strong linear relationship between Pb and Fe for the points that 

appear as blue diamonds suggests that these samples contain only native concentrations of Pb 
and Fe.  Samples containing Pb in excess of naturally occurring concentrations appear as 
“outlying” points (e.g., the three red circles) above the linear trend (the blue diamonds), 
suggesting that these samples contain anthropogenic Pb contamination. 

S-2.2.  Two major advantages of the geochemical approach relative to classic statistical 
approaches are immediately apparent.  A background study area (and the expense associated 
with doing a separate background study) is not required to identify study area concentrations 
that are elevated relative to native metal concentrations.  Furthermore, the approach readily 
identifies the samples (locations) suspected to contain the elevated metal concentrations.  
Classic statistical evaluations do not readily provide this information.  (Because classic 
statistical evaluations rely upon the assumption that samples are independent of one another, 
the presence of a correlation or contamination “pattern” would violate this assumption and 
compromise the validity of the evaluation.)  For example, a typical statistical approach would 
entail comparing the mean concentration of Pb at the site study area to the mean concentration 
of Pb at a background study area.  Although the evaluation may indicate that the mean site Pb 
concentration is statistically greater than the mean background Pb concentration, the evaluation 
itself would not (at least directly) identify the sampling locations associated the elevated lead 
concentrations (though a geostatistical approach could potentially evaluate contamination that 
is spatially correlated). 
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S-2.3.  It should also be noted that, although background data are not required to perform 
geochemical evaluations, background data can be plotted with site data to determine if site 
metals are elevated relative to native concentrations.  This is illustrated in Figures S-2 and S-3. 

S-2.4.  In Figure S-2, the Cu surface soil samples (blue non-shaded triangles) generally 
plot above the background samples (green circles).  Similarly, in Figure S-3, Pb surface soil 
samples (blue non-shaded triangles) plot above the background samples (green circles).  This 
suggests that the site has been contaminated by both Pb and Cu.  These plots were generated 
from soil samples collected from an artillery firing range, where Cu and Pb are frequently 
potential contaminants of concern.  The scatter plots also indicate that Pb and Cu in the site 
surface soils are elevated relative to the subsurface soils, which, given the nature of the site, is 
consistent with the manner in which one would expect site-related contamination to be spatially 
distributed. 

 
Figure S-2.  Log Scale Cu-Fe Scatter Plots of Site 
and Background Soil Samples.  Figure provided by J. 
Myers of Shaw Environmental, Inc., Knoxville, TN. 
 

S-2.5.  An additional advantage of the geochemical approach is that multiple scatter plots 
between different metals (i.e., using site or a combination of site and background data) can 
potentially be used to determine whether or not a site has been contaminated by metals.  In this 
example, the anthropogenic Cu and Pb contamination identified in the Cu-Fe and Pb-Mn scatter 
plots, respectively, can be further evaluated by generating a scatter plot for Pb and Cu, as 
shown in Figure S-4.  The moderate to strong correlation between Cu and Pb for the site 
surface soil samples but the poor correlation between Pb and Cu for the background samples 
suggests that the Cu and Pb are site-related contaminants from a common anthropogenic 
source. 
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Figure S-3. Log S cale Pb-Mn Scatter P lot for 
S ite and B ackground Soil S amples.  Figure 
provided by J. Myers of Shaw Environmental, Inc., 
Knoxville, TN. 

 

 
Figure S-4.  Log Scale Cu-Pb Scatter Plot of 
Background and Site soils.  Figure provided by J. 
Myers of Shaw Environmental, Inc., Knoxville, TN. 

 

S-2.6.  As stated previously, the primary disadvantage of the geochemical approach is that 
it is predominately qualitative and, therefore, subjective.  The degree of correlation that is 
required to conclude the study area has not been affected by anthropogenic contamination and 
what constitutes an “outlier” when a correlation is observed is typically is not well defined (i.e., 
quantitatively criteria are not specified).  To illustrate, consider the As-Fe scatter plot presented 
below in Figure S-5. 

S-2.7.  There appears to be a large of amount of dispersion in the scatter plot shown in 
Figure S-5.  A qualitative visual evaluation of this plot does not clearly indicate whether or not 
As and Fe are strongly correlated with one another.  However, as illustrated in Figure  
S-6, the same scatter plot could potentially be interpreted in a different way: Arsenic 
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concentrations less than about 4 mg/kg could be viewed as strongly correlated with Fe (as 
shown by the red line in Figure S-6), and the As concentrations larger than 4 mg/kg (i.e., the set 
of circled points) could be interpreted as anthropogenic contamination.  Unlike classical 
statistical strategies that are used to distinguish anthropogenic contamination from background 
values, decision errors for geochemical evaluations are not quantifiable.  As geochemical 
evaluations are subjective, they can produce erroneous conclusions and are more vulnerable to 
challenge (e.g., by regulators) than quantitative statistical approaches. 

 
Figure S-5.  As-Fe scatter plot with a large amount 
of scatter.  Copyright  2004  From  "Identifying  Metals 
Contamination In Soil: A Geochemical Approach,” Soil & 
Sediment Contamination, Vol. 13, No. 1, pp. 1–16, by Myers, 
J. and K. Thorbjornsen.  Reproduced by permission of Talyor 
& Francis Group, LLC. 

 
Figure S-6.  Misidentified trends for the scatter plot in 
Figure S-5.  Copyright 2004 From "Identifying Metals 
Contamination In Soil: A Geochemical Approach,” Soil & 
Sediment Contamination, Vol. 13, No. 1, pp. 1–16, by Myers, J. 
and K. Thorbjornsen.  Reproduced by permission of Talyor & 
Francis Group, LLC. 
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S-2.8.  However, the As results in Figure S-5 are probably naturally occurring.  As shown 
in Figure S-7, a scatter plot of As versus the ratio Ln(As/Fe) exhibits a fairly strong linear 
relationship, suggesting that the As is natural. 
 

 

 
Figure S-7.  Scatter Plot of As and Logarithm 
of As/Fe Using the Data set Plotted in Figure S-5. 
Copyright 2004 From "Identifying Metals Contamination 
In Soil: A Geochemical Approach,” Soil & Sediment 
Contamination, Vol. 13, No. 1, pp. 1–16, by Myers, J. and 
K. Thorbjornsen.  Reproduced by permission of Talyor & 
Francis Group, LLC. 

 
S-2.9.  The scatter plots presented above were generated using soils data, but similar 

geochemical association analyses may also be conducted for groundwater.  Some scatter plots 
using log rather than linear scales for the x- and y-axes are presented below for groundwater 
data. 

S-2.10.  There is a relative good correlation between Al and Fe in Figure S-8, which 
suggests that both metals are non-site-related.  The correlation between As and Fe in Figure S-9 
suggests that As is not a site-related contaminant. 

S-2.11.  The scatter plots may also be used to examine the relationship between filtered 
and unfiltered samples, as well as between metal concentrations and parameters such as 
turbidity and oxidation-reduction potential (e.g., in single monitoring well over time or for a set 
of monitoring wells).  Figure S-10 illustrates the relationship between filtered and unfiltered 
samples analyzed for Cr.  There is an apparent linear relationship between the concentration of 
Cr in unfiltered groundwater and the ratio of filtered to unfiltered Cr, which could indicate 
naturally occurring Cr in suspended particles from the surrounding soils. 
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Figure S-8.  Al-Fe log-scale Scatter Plot for a Set 
of Groundwater Monitoring Wells.  Figure provided by 
J. Myers of Shaw Environmental, Inc., Knoxville, TN. 

 

 

 
Figure S-9. Log-scale As-Fe Scatter Plot Using 
Fe Groundwater Data for Figure S-8.  Figure 
provided by J. Myers of Shaw Environmental, Inc., 
Knoxville, TN.
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Figure S-10.  Log-scale Scatter Plot of Filtered 
and Unfiltered Groundwater Analyzed for Cr. 
Figure provided by J. Myers of Shaw Environmental, 
Inc., Knoxville, TN. 

 
S-3.  Geochemical Enrichment Analysis.  Geochemical enrichment analysis entails 
constructing quantile plots or normal probably plots (e.g., as discussed in Appendix J).  To 
construct a quantile plot, the values of some variable are ordered from smallest to largest and 
the percentage or faction of the values less than or equal to each data point is then calculated.  
The measured values are then plotted on one axis (y-axis) and the corresponding percentages or 
proportions are plotted on the remaining axis x-axis).  The approach is so named because the 
measured variable being plotted is called an “enrichment factor.”  An enrichment factor is 
calculated from an equation of the form: 

Y ′ = (CM  / C X ) Site  / µ Parent Rock   . 

S-3.1.  The quantity (CM /CX)Site is the concentration of some site related metal (e.g., 
Cr) CM divided or “normalized” by the corresponding concentration of some non-site- related 
metal (e.g., Al) CX.  The term µParent Rock is the true mean concentration of (CM /CX) 
concentration in the “parent rock” (i.e., the rock from which the site soil was geologically 
derived) and is typically obtained from the literature.  However, as this term is simply a 
constant, it does not alter the shape of the quantile plots and is unnecessary for their evaluation.  
Quantile plots may be generated using the ratios 

Y = (CM  / C X ) Site 

or the logarithms of these ratios 

Ln(Y ) = Ln {(CM  / CX )Site } . 
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S-3.2.  The quantile plot is evaluated for trends indicative of naturally occurring metal 
concentrations and “deviations” that indicate anthropogenic contamination.  Because 
environmental data are frequently normal or lognormal, it is usually convenient to construct 
normal probably plots for Y or Ln(Y) (i.e., the values of (Cm /Cx)Site are plotted against the 
corresponding quantiles of a standard normal distribution or their associated probabilities).  For 
normally distributed data, “deviations” appear as “breaks” in a straight line.  This is illustrated 
in Figure S-11. 

 
Figure S-11. Probability Plot of Y = (CM/CX) 
Site When a Portion of the Study Area has been 
Heavily Impacted by Anthropogenic Contamination. 

 
S-3.3.  The plot is predominately linear from about 700 to 1300, where there appears to 

be either a “break” or inflection point in the graph.  After this region, the graph is essentially 
linear from about 1800 to 2200.  The linear portion of the plot from 700 to 1300 would be 
attributed to native background concentrations and the values greater than about 1300 would be 
attributed to anthropogenic contamination.  It should also be noted that the probably plots may 
contain more than one inflection point.  Multiple populations (i.e., differences in concentration 
between background soils, surface soils, and subsurface soils) will potentially give rise to 
multiple inflection points.  Ideally, the total number of inflection points plus one will be equal 
the number of different populations. 

S-3.4.  There are two apparent inflection points for the probability plot in Figure  
S-12 (one near 120 and one near 180), which suggests that there are three distinct populations.  
For example, there may be a background data set and two different concentration regions for 
site-related waste handling activities, or there may be two distinct background data sets and one 
data set for sampling locations impacted by anthropogenic contamination.  However, the 
identification of the background “trend” and the “deviations” are subjective components of the 
evaluation.  The value at which the “break” or inflection point occurs cannot be precisely 
determined, and accuracy decreases as the variability increases and the average native 
concentrations approaches the average concentrations of anthropogenic contamination. 
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Figure S-12. Probability P lot of Y = (CM/CX) Site 
for Three Different Populations. 

 
S-3.5.  Two different known data sets were actually combined to produce the plot in 

Figure S-13.  The “background data set” consisted of 100 points from a normally distributed 
population with a mean of 1000 and standard deviation of 100.  The second set, which 
represents the anthropogenic contamination, consisted of 10 points from a normally distributed 
population with a mean of 2000 and a standard deviation of 100.  As the difference between the 
means is large, an inflection point can be easily obtained from the probability plot in Figure  
S-13.  However, a very different probability plot would result if the means of the two data sets 
were more similar.  Consider the probability plot that would have been produced by combining 
the following data sets: i) a “background” data set, consisting of 100 points from a normally 
distributed “background” population with a mean of 1000 and standard deviation of 200, and ii) 
a “site” data set, consisting of 10 points (representing the anthropogenic contamination) from a 
normally distributed population with mean of 1300 and standard deviation of 200. 

S-3.5.  An inflection point is not apparent in the probably plot though the plot 
contains 10 data points from a population with a mean that is significantly greater than the 
background mean.  Descriptive statistics for the two data sets are presented below: 

Variable Mean Std. Dev. Minimum Maximum 
YBackground 1004.3 212.2 548.9 1592.3 

YSite 1306.6 211.6 837.9 1512.9 
 
S-3.6.  Assuming that the background areas are known, a two-sample Student’s t- test 

could show that there is a significant difference between the means for the “background” and 
“site” data sets at well over the 95% level of confidence.  Unlike the geochemical approach, 
this test would conclude that the “site” is elevated relative to “background.”  As in the 
geochemical association approach, the qualitative nature of enrichment factor approach can 
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produce decision errors.  Geochemical evaluations should typically be done with quantitative 
statistical evaluations to determine whether or not a study area has been impacted by metal 
contamination. 
 

 
Figure S-13.  Probability Plot of Y = (CM/CX) Site  

When a Portion of the Study Area has been Slightly 
Impacted by Anthropogenic Contamination. 

S-4.  Recommendation for Performing Geochemical Evaluations.  Relatively detailed 
guidance for evaluating background concentrations using classic statistical as well as 
geochemical evaluations is available from the Navy for soil, sediment, and groundwater at 
the following web link:  http://web.ead.anl.gov/ecorisk/related/.  However, some modifications 
to the Navy’s approach are recommended as listed below. 

S-4.1.  In the Navy guidance, Ordinary Least Squares (OLS) (linear regression) is used 
to evaluate geochemical relationships (e.g., correlation), outliers that present contamination, 
and is used to estimate background concentrations.  It is recommended that OLS 
calculations not be performed.  The underlying assumptions required to perform linear 
regression of typically violated (as discussed in Paragraph P-4 ). 

S-4.1.1.  As discussed in Appendix P, when a regression line of the form Y = b1 X + b0   
is calculated, it is being assumed that X is an “independent” variable that possesses negligible 
uncertainty relative to the “dependent” variable Y.  A change in X produces “explained” 
variation in Y; the “unexplained” variation is attributable to random error associated with the 
measurement of Y alone.  However, this assumption is routinely violated for geochemical 
evaluations.  In the Navy’s guidance, non-site-related metals such as Al and Fe are plotted on 
the x-axis and potential site-related metals are plotted on the y-axis, but this is merely a 
convention.  The variables X and Y are both measured quantities possessing comparable levels 
of uncertainty.  In this context, there is no a prior justification for treating the two variables 
differently.  Furthermore, other underlying assumptions required for regression fits are often 
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(but not necessarily) violated (e.g., the residuals must be normally distributed and the variance 
cannot be a function of X or Y). 

S-4.1.2.  The violation of the underlying assumptions required to calculate the regression 
lines can produce erroneous conclusions.  For example, when regression lines are calculated, 
the Navy guidance quantifies their certainty to calculate predication intervals, which are used 
to identify outliers indicative of anthropogenic contamination.  (Points that lie outside the 
prediction intervals are suspected to be elevated relative to native concentrations.)  However, 
when the assumptions required for the regression lines are violated, the prediction intervals 
will not necessary be valid, which may result in incorrect decisions. 

S-4.2.  Geochemical evaluations should focus (at least initially) on correlation rather 
than OLS regression.  A correlation coefficient is a measure of the degree of association 
between two variables.  Unlike regression, it does not require a “dependent” and 
“independent” variable.  Three common measures of correlation are Pearson’s r, Kendal’s 
tau, and Spearman’s rho (refer to Appendix O).  However, Pearson’s r is recommended only 
to screen the results for correlations (e.g., to generate the correlation matrix in Table 3-1 of 
the Navy’s soil guidance). 

S-4.2.1.  Pearson’s r measures only linear associations; is not appropriate when the data 
are not normal (a bivariate normal distribution is actually required), and is not invariant under 
logarithm transformations (e.g., Pearson’s r calculated for an X-Y scatter plot will differ from 
that calculated for a Ln(X)-Ln(Y) scatter plot).  Furthermore, it is not appropriate when a 
significant number of non-detects are reported (i.e., not robust to data censoring).  In contrast, 
Kendal’s tau and Spearman’s rho are non-parametric correlation coefficients (i.e., normality is 
not required) that measure the degree of association for monotonic (linear and non-linear) 
relationships.  They are invariant with respect to monotonic transformation, such as logarithm 
transformation, and are relatively robust to data censoring. 

S-4.2.2.  A statistical hypothesis test should be performed for a correlation coefficient 
calculated for two sets of measured variables (metals), X and Y, to determine if it is 
statistically different from zero at the 95 or 99% level of confidence.  If the correlation 
coefficient is not statistically different from zero, there is insufficient evidence to conclude 
that two variables (metals) are correlated with one another.  If the coefficient is statistically 
different from zero, then we may conclude that some degree of associate exists.  
Unfortunately, there is no quantitative criterion for the degree of association.  Two metals 
may exhibit a statistically significant correlation, but the degree of correlation may be so 
weak that it is not of practical importance.  However, some “rule-of-thumb” guidance for 
the degree of correlation is presented in Paragraph O-2.  It is recommended that at least a 
weak to moderate relationship be required for geochemical associations. 

S-4.2.3.  When non-detects are reported (especially when the non-detects are 
reported at different detection limits), it is recommended that correlation be evaluated 
using Kendal’s τ-b:Kendal’s τ-b would typically be calculated using statistical software 
and is essentiallyKendal’s tau adjusted for tied values (see Appendix O). 



 
 
 
 
EM 200-1-16 
31 May 13 

 

S-14 

S-4.3.  A Kendal-Theil or “line of organic correlation” (LOC) should be plotted with 
scatter plots to help identify linear relationships (refer to Appendix P).  A Kendal-Theil line 
passes through the medians of both variables X and Y that are linearly related.  The slope of 
the Kendal-Theil line is not significantly different from zero if Kendal’s tau is not significantly 
different from zero.  Unlike the least-squares regression line, the Kendal- Theil line is non-
parametric and is relatively robust to outliers and censored data.  The calculation of a LOC 
constitutes an alternative parametric approach to examine a linear relationship that would be 
more appropriate than OLS.  A LOC is appropriate to evaluate linear relationships for the 
geochemical approach because the uncertainty associated with both sets of metal measure-
ments is taken into account.  The LOC is calculated in a similar manner as OLS lines, but the X 
and Y variables are treated in the same manner (i.e., the approach does not require “dependent” 
and “independent” variables).  The same LOC will be obtained whether Y is plotted against X 
or X is plotted against Y. 

S-4.4.  The Navy guidance recommends that only Ln(X)-Ln(Y) scatter plots be 
generated.  However, X-Y (or Ln(X)-Y, and X-Ln(Y)) scatter plots can also be generated and 
may be useful for identifying associations between variables, as shown by the X-Y scatter 
plot in Figure S-1.  Associations can also be identified by generating scatter plots of the form: 
“X versus X/Y” (e.g., where X denotes the concentration of a potential site- related metal and 
X/Y is the ratio of the metal to a non-site-related metal concentrations).  A linear relationship 
between X and X/Y implies that a linear relationship will be obtained when Y is plotted 
against Ln(X).  (If Y is proportional to Ln(X), then the first derivative dY/dX is proportional 
to 1/X and dX/dY is proportional to X.) 

S-4.5.  The Navy’s groundwater guidance document does not promote the geochemical 
evaluations presented for soils and sediments in the Navy’s soil and sediment background 
guidance documents.  The geochemical evaluations for soils and sediments can substantively 
be applied to groundwater, as shown by groundwater scatter plots presented above. 

 
Figure S-14.  Scatter plot for censored data. 
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S-4.6.  For the geochemical enrichment approach, it is recommended that both the 
ratios (Cm/Cx)Site and the logarithms of the ratios be plotted to identify trends charac- 
teristic of anthropogenic contamination.  The normalization factor (Cm/Cx)Parent Rock is 
not required and may be omitted if convenient to do so. 

S-4.7. Censored data (non-detects) should be included in scatter plots for the 
geochemical association analyses when only one of the variables is censored.  The uncensored 
variable (which would typically be a non-site-related metal such as Fe or Al) should be plotted 
along the x-axis and the censored variable (the suspected site-related metal) should be plotted 
on the y-axis.  To illustrate, a Pb and Al scatter plot is presented in Figure S-14 for a small data 
set.  The black circles represent detected results and the red squares are the reporting limits for 
non-detects.  The dashed lines indicate that the actual Pb concentration lies somewhere 
between the reporting limit and the zero.  One the basis of the detected results alone, there 
appears to be a strong correlation between Pb and Al.  However, the correlations appears to be 
rather weak when the non-detects are also plotted. 
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GLOSSARY 

 
Acronym Definition 
 
%R Percent recovery 
2-D Two-dimensional 
3-D Three-dimensional 
ACLs Alternate concentration limits 
ANOVA Analysis of variance 
ARARs Applicable or Relevant and Appropriate Requirements 
ASAP Adaptive Sampling and Analysis Program 
ASTM American Society for Testing and Materials 
CERCLA Comprehensive Emergency Response, Compensation, and Liability Act 
CFR Code of Federal Regulations 
CI Confidence interval 
COPCs Contaminants of potential concern 
CTE Central tendency exposure 
CUSUM Cumulative summation 
CV Coefficient of variation 
DCA Dichloroethane 
DDT Dichloro-diphenyl-trichloroethene 
DEFT Decision error feasibility trial 
df Degrees of freedom 
DLs Detection limits 
DO Dissolved oxygen 
DQI Data quality indicator 
DQO Data quality objectives 
EPA U.S. Environmental Protection Agency 
EPCs Exposure point concentrations 
EQL Estimated quantitation limit 
FSP Field sampling plan 
Geo-EAS Geostatistical Environmental Assessment Software 
GIS Geographic Information System 
GPS Global Positioning System 
HRS Hazard ranking system 
HTRW Hazardous, toxic, and radioactive waste 
IAA Immunoassay analysis 
ICV Initial calibration verification 
IDL Instrument detection limit 
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IDW Inverse distance weighted 
IQR Interquartile range 
K-S Kolmogorov-Smirnov 
Lc Critical level 
LCL Lower confidence limit 
LD Limit of detection 
LS Least squares 
LSD Least significant difference 
MCLs Maximum contaminant levels 
MDL Method detection limit 
MQL Method quantitation limit 
MQO Measurement quality objective 
MRL Method reporting limit 
MSDS Material safety data sheet 
MTCA Model Toxics Control Act 
ND Not detected 
NPDES National Pollutant Discharge Elimination System 
NPL National Priorities List 
OC Organochlorine 
PA Preliminary Assessment 
PAHs Polynuclear aromatic hydrocarbons 
PARCC Precision, accuracy, representativeness, comparability, and completeness 
PCBs Polychlorinated biphenyls 
PCD Project controlling document 
PCE Tetrachloroethene 
PDM Percent decision match 
PE Performance evaluation 
PQL Practical quantitation limit 
PRGs Preliminary remediation goals 
QA Quality assurance 
QC Quality control 
QL Quantitation limit 
RA  Remedial Action 
RAGS Risk Assessment Guidance for Superfund 
RBCs Risk-based concentrations 
RCRA Resource Conservation and Recovery Act 
RD Remedial Design 
Redox Oxidation-reduction potential 
RFI RCRA Facility Investigation 
RI/FS Remedial Investigation/Feasibility Study 
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RL Reporting limit 
RME Reasonable maximum exposure 
RPD Relative percent difference 
RPM Remedial project manager 
RSD Relative standard deviation 
RT Regulatory threshold 
SAD Sum of absolute deviations 
SAPs Sampling and analysis plans 
SI Site Investigation 
SQL Sample quantitation limit 
SSS Sample sum of sequences 
TCE Trichloroethene 
TCLP Toxicity characteristic leaching procedure 
TIN Triangular irregular network 
TNT Trinitrotoluene 
TPH Total petroleum hydrocarbons 
TPP Technical project planning 
TSCA Toxic Substance Control Act 
UCL Upper confidence limit 
USACE U.S. Army Corps of Engineers 
UTL Upper tolerance limit 
VOCs Volatile organic compounds 
WLS Weighted least squares 
 
Symbols and Notations 
 
Symbol Description 

α  Significance level of a statistical test 

ji,∀  All i and j 

0b  Intercept estimate for linear regression 

1b  Slope estimate for linear regression 

β−1  Power of a statistical test 

0β  True intercept of a regression equation 

1β  True slope of a regression equation 

C Target contaminant concentration or fixed-threshold value 
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Symbol Description 

CV Coefficient of variation 

ie  Sample residual 

ε  Population residual 

qkpF ,,  Critical value of the F distribution with k numerator degrees of freedom 
and q denominator degrees of freedom where 100p% of the distribution 
lies below this value 

γ  Population correlation coefficient 

( )hγ  Semivariogram function 

IQR  Sample interquartile range 

0H  Null hypothesis of a statistical test 

AH  Alternative hypothesis of a statistical test 

Ln Natural logarithm 

Log Base ten logarithm 

µ  Population mean 

1µ̂  Minimum variance unbiased estimate (MVUE) of the population mean 
of a lognormal distribution 

n  Number of observations in a sample 

ν  Degrees of freedom (df) 

p  Sample proportion or probability of an event for the binomial 
distribution 

P  Population proportion of a random variable 

( )XP  Probability density function of random variable X 

( )ba XXXP ≤≤  Probability that the random variable X lies between Xa and Xb 

r  Pearson’s sample correlation coefficient 

R  Sample range 

( )ixR  Rank of the ith observation with respect to the other observations 

ρ  Spearman’s rank order sample correlation coefficient 

s  Sample standard deviation 
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Symbol Description 
2s  Sample variance 

σ  Population standard deviation 
2σ  Population variance 

ν,pt  Critical value of the t distribution with ν  degrees of freedom where 
100p% of the distribution lies below this value 

τ  Kendall’s rank order sample correlation coefficient 

Θ  A population parameter 

θ  A population parameter 

iw  Number of ties in the ith group or ith weighting factor 

x  Sample arithmetic mean 

x~  Sample median 

ix  A vector ( )imii xxx ,,, 21   

nxxx ,,, 21   A set of n observations, a sample 

( ) ( ) ( )nxxx ,,, 21   A set of n observations ordered from least to greatest 
2

,νχ p  Critical value of the chi-squared distribution with ν  degrees of freedom 
where 100p% of the distribution lies below this value 

px  100pth percentile or p quantile of a sample 

pX  100pth percentile or p quantile of random variable X 

.,, etcYX  Random variables representing populations 

pZ  Critical value of the standard normal distribution where 100p% of the 
distribution lies below this value 
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