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ENGINEERING AND DESIGN :
HYDROLOGIC FREQUENCY ANALYSIS
CHAPTER |
INTRODUCTION
1-1. Purpose and Scope. This manual provides guidance in applying statistical principles

to the analysis of hydrologic data for Corps of Engineers Civil Works activities. The text
illustrates, by example, many of the statistical techniques appropriate for hydrologic
problems. The basic theory is usually not provided, but references are provided for those
who wish to research the techniques in more detail.

1-2. References. The techniques described herein are taken principally from "Guidelines
for Determining Flood Flow Frequency"” (46)1, "Statistical Methods in Hydrology” (1), and
"Hydrologic Frequency Analysis® (41). References cited in the text and a selected
bibliography of literature pertaining to frequency analysis techniques are contained in
Appendix A.

1-3. Definitions. Appendix B contains a list of definitions of terms common to
hydrologic frequency analysis and symbols used in this manual.

1-4. Need for Hvdrologic Frequency Estimates.

a. Applications. Frequency estimates of hydrologic, climatic and economic data are
required for the planning, design and evaluation of water management plans. These plans
may consist of combinations of structural measures such as reservoirs, levees, channels,
pumping plants, hydroelectric power plants, etc., and nonstructural measures such as flood
proofing, zoning, insurance programs, water use priorities, etc. The data to be analyzed
could be streamflows, precipitation amounts, sediment loads, river stages, lake stages,
storm surge levels, flood damage, water demands, etc. The probability estimates from
these data are used in evaluating the economic, social and environmental effects of the
proposed management action. '

b. Qbjective. The objective of frequency analysis in a hydrologic context is to infer
the probability that various size events will be exceeded or not exceeded from a given
sample of recorded events. Two basic problems exist for most hydrologic applications.
First the sample is usually small, by statistical standards, resulting in uncertainty as to the
true probability. And secondly, a single theoretical frequency distribution does not always
fit a particular data-type equally well in all applications. This manual provides guidance
in fitting frequency distributions and construction of confidence limits. Techniques are
presented which can possibly reduce the errors caused by small sample sizes. Also, some
types of data are noted which usually do not fit any theoretical distributions.

c. General Guidance. Frequency analysis should not be done without consideration
of the primary application of the results. The application will have a bearing on the type
of analysis (annual series or partial duration series), number of stations to be included,

' Numbered references refer to Appendix A, Selected Bibliography.

1-1
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whether regulated frequency curves will be needed, etc. A frequency study should be
well coordinated with the hydrologist, the planner and the economist.

1-5. Need for Professional Judgment. It is not possible to define a set of procedures that

can be rigidly applied to each frequency determination. There may be applications where
more complex joint or conditional frequency methods, that were considered beyond the
scope of this guidance, will be required. Statistical analyses alone will not resolve all
frequency problems. The user of these techniques must insure proper application and
interpretation has been made. The judgment of a professional experienced in hydrologic
analysis should always be used in concert with these techniques.
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CHAPTER 2
FREQUENCY ANALYSIS

2-1. Definition.

a. Frequency. Many of the statistical techniques that are applied to hydrologic data
(to enable inferences to be made about particular attributes of the data) can be labeled
with the term "frequency analysis” techniques. The term "frequency" usually connotes a
count (number) of events of a certain magnitude. To have a perspective of the importance
of the count, the total number of events (sample size) must also be known. Sometimes the
number of events within a specified time is used to give meaning to the count, e.g., two
daily flows were this low in 43 years. The probability of a certain magnitude event
recurring again in the future, if the variable describing the events is continuous, (as are
most hydrologic variables), is near zero. Therefore, it is necessary to establish class
intervals (arbitrary subdivisions of the range) and define the frequency as the number of
events that occur within a class interval. A pictorial display of the frequencies within
each class interval is called a histogram (also known as a frequency polygon).

b. Relative Freguency. Another means of representing the frequency is to compute
the relative frequency. The relative frequency is simply the number of events in the class
interval divided by the total number of events:

fi = ni/N (2-1)

where:
f P = relative frequency of events in class interval i
n, = number of events in interval i

N = total number of events

A graph of the relative frequency values is called a frequency distribution or histogram,
Figure 2-1a. As the number of observations approaches infinity and the class interval size
approaches zero, the enveloping line of the frequency distribution will approach a smooth
curve. This curve is termed the probability density function (Figure 2-1a).

c. Cumulative Frequency. In hydrologic studies, the probability of some magnitude
being exceeded (or not exceeded) is usually the primary interest. Presentation of the data
in this form is accomplished by accumulating the probability (area) under the probability
density function. This curve is termed the cumulative distribution function. In most
statistical texts, the area is accumulated from the smallest event to the largest. The
accumulated area then represents non-exceedance probability or percentage (Figure 2-1b).
It is more common in hydrologic studies to accumulate the area from the largest event to
the smallest. Area accumulated in this manner represents exceedance probability or

percentage.

2-1
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Potomac River at Point of Rocks, MD
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Figure 2-1a. Histogram and Probability Density Function.
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Figure 2-1b. Sample and Theoretical Cumulative Distribution Functions.
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2-2. Duration Curves.

a. Computation. The computation of flow-duration curves was probably the first
attempt to analyze hydrologic data by statistical techniques. The events for flow-duration
curves are usually mean daily flow values. One of the first steps in preparation of a
duration curve is dividing the range of the data into class intervals. Table 2-1 shows the
class intervals of daily flows input into the computer program STATS (58) for a duration
analysis of Fishkill Creek at Beacon, New York. The flows tend to be grouped near the
low end with very few large flows. Therefore, the relative frequency curve is skewed to
the right. It has been found that making the logarithmic transform reduces the skewness
of the curve. The class intervals in Table 2-1 are based on a logarithmic distribution of
the flows. Plotting the data in Table 2-1 on log-probability paper, Figure 2-2, provides a
plot that is easily read at the extremities of the data. The daily flow-duration curve
cannot be considered a frequency curve in the true sense, because the daily flow on a
particular day is highly correlated with the flow on the preceding day. For this reason,
the abscissa is labeled "percent of time."

Fishkill Cresk at Beacaon, NY 1946-1968
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Figure 2-2. Daily Flow-Duration Curve.
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Table 2-1. Daily Flow-Duration Data and Interpolated Values.

-DURATION DATA- FISHKILL CR AT BEACON, NY - DAILY FLOWS

AR AR A A A4 Sl A A d A A dd I A A D A I A d i Al a il il Al A i Al il ddddt izt llezy ey

- LOWER NUMBER PERCENT + LOWER NUMBER PERCENT
* CLASS CLASS IN ACCUM EQUAL OR * CLASS CLASS IN ACCUM EQUAL OR *
* NUMBER LIMIT CLASS NUMBER EXCEED * NUMBER LIMIT CLASS NUMBER EXCEED
. FLOW,CFS L FLOW,CFS *
L bbbt R A e L L L epges W e ot o o e e = - ——— - L 4
. 1 1.00 S 8766 100.00 * 16 100.00 sas 5606 63.95 »
- 2 2.00 [ 8761 99.94 * 17 150.00 783 4718 53.82 ~
- 3 3.00 8 8757 99.90 * 18 200.00 1246 3935 44.89
- 4 4.00 22 8748 89.81 19 300.00 822 2689 30.68 *
b 5 5.00 37 8727 99.56 * 20 400.00 484 1867 21.30
- 6 6.00 66 8680 99.13 » 21 500.00 340 1383 15.78 =
- 7 8.00 95 8624 98.38 22 600.00 465 1043 11.80 =~
- 8 10.00 254 8529 97.30 ~ 23 800.00 239 578 6.59 =~
* 9 15.00 261 8275 94 .40 * 24 1000.00 251 339 3.87 ~
- 10 20.00 423 8014 91.42 25 1500.00 47 88 1.00 +
- 11 30.00 405 7591 86.60 26 2000.00 32 41 0.47 *
- 12 40.00 358 71886 81.98 » 27 3000.00 ] 2] 0.10 *
- 13 50.00 332 6827 77.88 28 4000.00 0 3 0.03 *
- 14 60.00 480 6495 74.08 29 6000.00 3 3 0.03 ~
»* 15 80.00 408 6015 68.62 =« 30 7000.00 0 0 0.00 *

LA A A Al g A d A 2l 2 A dadd DIl 2 Pl a2 22222223221 22222222222 2222222222 2.)

-INTERPOLATED DURATION CURVE- FISHKILL CR AT BEACON, NY - DAILY FLOWS

AR A Al Al DL A2l d g s d a2 Al il el 2l el edss sty

- PERCERT  INTERPOLATED PERCERT  INTERPOLATED b

*

hd EQUAL OR MAGNITUDE - EQUAL OR MAGNITUDE *
* EXCEED FLOW,CFS hd EXCEED FLOW,CFS *
W o e o i - L C T - »
* 0.01 6870.0 A 60.00 118.0 .
d 0.05 3480.0 - 70.00 74.5 *
* 0.10 3020.0 - 80.00 &4.7 -
* 0.20 2530.0 - 85.00 33.4 »*
* 0.50 1960.0 ol 90.00 22.7 *
* 1.00 1500.0 * 85.00 14.0 hd
* 2.00 1230.0 * 98.00 8.8 *
* 5.00 803.0 hd $9.00 6.3 hd
* 10.00 658.0 - 99.50 5.2 d
d 15.00 518.0 * 99.80 4.0 *
b 20.00 420.0 - 99.90 2.9 b
* 30.00 306.0 - 99.85 1.9 -
* 40.00 230.0 " 99.99 1.5 o
* 50.00 171.0 - 100.00 1.1 *
Ladd A A A A4 a4 A aaad e a2 a2 i el a2l il tad a2 tas il lileyly

Output from HEC computer program STATS.

b. Uses. Duration curves are useful in assessing the general low flow characteristics
of a stream. If the lower end drops rapidly to the probability scale, the stream has a low
ground-water storage and, therefore, a low or no sustained flow. The overall slope of the
flow-duration curve is an indication of the flow variability in the stream. Specific uses
that have been made of duration curves are: 1) assessing the hydropower potential of
run-of -river plants; 2) determining minimum flow release; 3) water quality studies; 4)
sediment yield studies; and 5) comparing yield potential of basins. It must be
remembered that the chronology of the flows is lost in the assembly of data for duration
curves. For some studies, the low-flow sequence, or persistence, may be more important
(see Chapter 4).
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c. Monthlv Curves. Occasionally the distribution of the flows during particular
seasons of the year is of interest. Figure 2-3 illustrates a way of presenting
daily-flow-duration curves that were computed from the daily flows during each month.

d. Stage-Duration. Stage-duration curves are often used to establish vertical
navigation clearances for bridges. If there have been no changes in the discharge versus
stage relationship (rating curve), then the stages may be used instead of flows to compute
a stage-duration curve. But, if there have been significant changes to the rating curve
(because of major levee construction, for instance) then the stage-duration curve should
be derived from the flow~duration curve and the latest rating curve. The log
transformation is not recommended for stages.

FISHKILL CREEK

ioooo 'V"!'T"!I"ll!l"lr‘r"jﬁl‘!"l']ll"l!"'"!"'l!ﬁ'W"
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Figure 2-3. Daily Flow-Duration Curves for Each Month.
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e. Future Probabilities. A duration curve is usually based on a fairly large sample
size. For instance, Figure 2-2 is based on 8766 daily values (Table 2-1). Even though the
observed data can be used to make inferences about future probabilities, conclusions
drawn from information at the extremities can be misleading. The data indicate there is a
zero percent chance of exceeding 6970 cfs, however, it is known that there is a finite
probability of experiencing a larger flow. And similarly, there is some chance of
experiencing a lower flow than the recorded 1.1 cfs. Therefore, some other means is
needed for computing the probabilities of infrequent future events. Section 2-4 describes
the procedure for assigning probabilities to independent events.

2-3. Selection of Data for Frequency Analysis.

. ion of Results. The primary question to be asked
before selection of data for a frequency study is: how will the frequency estimates be
used? If the frequency curve is to be used for estimating damage that is related to the
peak flow in a stream, maximum peak flows should be selected from the record. If the
damage is best related to a longer duration of flow, the mean flow for several days’
duration may be appropriate. For example, a reservoir’'s behavior may be related to the
3-day or 10-day rain flood volume or to the seasonal snowmelt volume. Occasionally, it is
necessary to select a related variable in lieu of the one desired. For example, where
mean-daily flow records are more complete than the records of peak flows, it may be
more desirable to derive a frequency curve of mean-daily flows and then, from the
computed curve, derive a peak-flow curve by means of an empirical relation between
mean daily flows and peak flows. All reasonably independent values should be selected,
but only the annual maximum events should be selected when the application of analytical
procedures discussed in Chapter 3 is contemplated.

b. Uniformity of Data.

(1) General Considerations. Data selected for a frequency study must measure the
same aspect of each event (such as peak flow, mean-daily flow, or flood volume for a
specified duration), and each event must result from a uniform set of hydrologic and
operational factors. For example, it would be improper to combine items from old records
that are reported as peak flows but are in fact only daily readings, with newer records
where the instantaneous peak was actually measured. Similarly, care should be exercised
when there has been significant change in upstream storage regulation during the period
of record to avoid combining unlike events into a single series. In such a case, the entire
record should be adjusted to a uniform condition (see Sections 2-3f and 3-9). Data should
always be screened for errors. Errors have been noted in published reports of annual
flood peaks. And, errors have been found in the computer files of annual flood peaks.
The transfer of data to either paper or a computer file always increases the probability
that errors have been accidentally introduced.

(2) Mixed Populations. Hydrologic factors and relationships during a general winter
rain flood are usually quite different from those during a spring snowmelt flood or during
a local summer cloudburst flood. Where two or more types of floods are distinct and do
not occur predominately in mutual combinations, they should not be combined into a
single series for frequency analysis. It is usually more reliable in such cases to segregate
the data in accordance with type and to combine only the final curves, if necessary. In
the Sierra Nevada region of California and Nevada, frequency studies are made separately
for rain floods which occur principally during the months of November through March,

2-6



EM 1110-2-1415
5 Mar 93

and for snowmelt floods, which occur during the months of April through July. Flows for
each of these two seasons are segregated strictly by cause - those predominantly caused by
snowmelt and those predominantly caused by rain. In desert regions, summer
thunderstorms should be excluded from frequency studies of winter rain flood or spring
snowmelt floods and should be considered separately. Along the Atlantic and Gulf Coasts,
it is often desirable to segregate hurricane floods from nonhurricane events. Chapter 10
describes how to combine the separate frequency curves into one relation.

¢. Location Differences. Where data recorded at two different locations are to be
combined for construction of a single frequency curve, the data should be adjusted as
necessary to a single location, usually the location of the longer record. The differences in
drainage area, precipitation and, where appropriate, channel characteristics between the
two locations must be taken into account. When the stream-gage location is different
from the project location, the frequency curve can be constructed for the stream-gage
location and subsequently adjusted to the project location.

d. Estimating Missing Events. Occasionally a runoff record may be interrupted by a
period of one or more years. If the interruption is caused by destruction of the gaging
station by a large flood, failure to fill in the record for that flood would result in a biased
data set and should be avoided. However, if the cause of the interruption is known to be
independent of flow magnitude, the record should be treated as a broken record as
discussed in Section 3-2b. In cases where no runoff records are available on the stream
concerned, it is usually best to estimate the frequency curve as a whole using regional
generalizations, discussed in Chapter 9, instead of attempting to estimate a complete series
of individual events. Where a longer or more complete record at a nearby station exists, it
can be used to extend the effective length of record at a location by adjusting frequency
statistics (Section 3-7) or estimating missing events through correlation (Chapter 12).

e. Climatic Cycles. Some hydrologic records suggest regular cyclic variations in
precipitation and runoff potential, and many attempts have been made to demonstrate that
precipitation or streamflows evidence variations that are in phase with various cycles,
particularly the well established 11-year sunspot cycle. There is no doubt that
long-duration cycles or irregular climatic changes are associated with general changes of
land masses and seas and with local changes in lakes and swamps. Also, large areas that
have been known to be fertile in the past are now arid deserts, and large temperate regions
have been covered with glaciers one or more times. Although the existence of climatic
changes is not questioned, their effect is ordinarily neglected, because the long-term
climatic changes have generally insignificant effect during the period concerned in water
development projections, and short-term climatic changes tend to be self-compensating.
For these reasons, and because of the difficulty in differentiating between stochastic
(random) and systematic changes, the effect of natural cycles or trends during the analysis
period is usually neglected in hydrologic frequency studies.

in Developm n_Frequency Relations.

(1) Hydrologic frequency estimates are often used for some purpose relating to
planning, design or operation of water resources control measures (structural and
nonstructural). The anticipated effects of these measures in changing the rate and volume
of flow is assessed by comparing the without project frequency curve with the
corresponding with project frequency curve. Also, projects that have existed in the past
have affected the rates and volumes of flows, and the recorded values must be adjusted to
reflect uniform conditions in order that the frequency analysis will conform to the basic
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assumption of homogeneity. In order to meet the assumptions associated with analytical
frequency analysis techniques, the flows must be essentially unregulated by manmade
storage or diversion structures. Consequently, wherever practicable, recorded runoff
values should be adjusted to natural (unimpaired) conditions before an analytical
frequency analysis is made. In cases where the impairment results from a multitude of
relatively small improvements that have not changed appreciably during the period of
record, it is possible that analytical frequency analysis techniques can be applied. The
adjustment to natural conditions may be unnecessary and, because of the amount of work
involved, not cost effective.

(2) One approach to determining a frequency curve of regulated or modified
runoff consists of routing all of the observed flood events under conditions of proposed or
anticipated development. Then a relationship is developed between the modified and the
natural flows, deriving an average or dependable relationship. A frequency curve of
modified flows is derived from this relationship and the frequency curve of natural flows.
In order to determine frequencies of runoff for extreme floods, routings of multiples of
the largest floods of record or multiples of a large hypothetical flood can be used.
Techniques of estimating project effects are outlined in Chapter 3-09d.

8. Annual Series Versus Partial Duration Series. There are two basic types of

frequency curves used to estimate flood damage. A curve of annual maximum events is
ordinarily used when the primary interest lies in the larger events or when the second
largest event in any year is of little concern in the analysis. The partial-duration curve
represents the frequency of all independent events of interest, regardless of whether two
or more occurred in the same year. This type of curve is sometimes used in economic
analysis, where there is considerable damage associated with the second largest and third
largest floods that occurred in some of the years. Caution must be exercised in selecting
events because they must be both hydrologically and economically independent. The
selected series type should be established early in the study in coordination with the
planner and/or economist. The time interval between flood events must be sufficient for
recovery from the earlier flood. Otherwise damage from the later flood would not be as
large as computed. When both the frequency curve of annual floods and the
partial-duration curve are used, care must be exercised to assure that the two are
consistent. A graphic demonstration of the relation between a chronologic record, an
annual-event curve and a partial-duration curve is shown on Figure 2-4.

h. Presentation of Data and Results of Frequencv Analysis. When frequency curves

are presented for technical review, adequate information should be included to permit an
independent review of the data, assumptions and analysis procedures. The text should
indicate clearly the scope of the studies and include a brief description of the procedure
used, including appropriate references. A summary of the basic data consisting of a
chronological tabulation of values used and indicating sources of data and any adjustments
should be included. The frequency data should also be presented in graphical form,
ordinarily on probability paper, along with the adopted frequency curves. Confidence
limit curves should also be included for analytically-derived frequency curves to illustrate
the relative value of the frequency relationships. A map of the gage locations and tables
of the adopted statistics should also be included.
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Chronological Sequence of Floods, 1959-1068
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Figure 2-4. Illustration of Chronologic Sequence and Arrayed Flood Peaks.
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2-4. Graphical Fr ncy Analysis.

a. imitations. Every set of frequency data should be plotted
graphically, even though the frequency curves are obtained analytically. It is important to
visually compare the observed data with the derived curve. The graphical method of
frequency-curve determination can be used for any type of frequency study, but
analytical methods have certain advantages when they are applicable. The principal
advantages of graphical methods are that they are generally applicable, that the derived
curve can be easily visualized, and that the observed data can be readily compared with
the computed results. However, graphical methods of frequency analysis are generally less
consistent than analytical methods as different individuals would draw different curves.
Also, graphical procedures do not provide means for evaluating the reiiability of the
estimates. Comparison of the adopted curve with plotted points is not an index of
reliability, but it is often erroneously assumed to be, thus implying a much greater
reliability than is actually attained. For these reasons, graphical methods should be
limited to those data types where analytical methods are known not to be generally
applicable. That is, where frequency curves are too irregular to compute analytically, for
example, stream or reservoir stages and regulated flows. Graphical procedures should
always be to visually check the analytical computations.

. and Arrangemen k Flow . General principles in the selection
of frequency data are discussed in Section 2-3. Data used in the construction of
frequency curves of peak flow consist of the maximum instantaneous flow for each year
of record (for annual-event curve) or all of the independent events that exceed a selected
base value (for partial-duration curve). This base value must be smaller than any flood
flow that is of importance in the analysis, and should also be low enough so that the total
number of floods in excess of the base equals or exceeds the number of years of record.
Table 2-2 is a tabulation of the annual peak flow data with dates of occurrence, the data
arrayed in the order of magnitude, and the corresponding plotting positions.

c. Plotting Formulas. Median plotting positions are tabulated in Table F-1. In
ordinary hydrologic frequency work, N is taken as the number of years of record rather
than the number of events, so that percent chance exceedance can be thought of as the

number of events per hundred years. For arrays larger than 100, the plotting position, P,,
of the largest event is obtained by use of the following equation:

P, =100 (1 - (.5 (2-2a)

The plotting position for the smallest event (P,) is the complement (1-P,) of this value,
and all the other plotting positions are interpolated linearly between these two. The
median plotting positions can be approximated by

P = 100(m -.3)/(N +.4) (2-2b)
where m is the order number of the event.

For partial-duration curves, particularly where there are more events than years (N),
plotting positions that indicate more than one event per year can also be obtained using
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Table 2-2. Annual Peaks, Sequential and Arrayed with Plotting Positions.

-PLOTTING POSITIONS-FISHKILL CREEK AT BEACON, N.Y.

RN AARANNANAANEARSARB AN N AR RN AN AR N ANN RO NN AR TR OR T RN PRI NN AN OO S

oo EVENTS ANALYZED...... . ORDERED EVENTS.......... hd
hd - WATER MEDIAN +
* MON DAY YEAR FLOW,CFS * RANK YEAR FLOW,CFS PLOT POS *
L e L L L L L e L e P e LD Ll Y ettt 2 L L4
hd 3 5 1845 2290 . 1 1955 8800 2.87 *
* 12 27 1945 1470 - 2 1956 8280 6.97 hd
* 3 15 1847 2220 - 3 1961 4340, 11.07 *
* 3 18 1948 2970 - 4 1968 3630. 15.16
hd 1 1 1948 3020 b 3 1853 3aae 19.26 «
* 3 g 1850 1210 - 6 1852 3170. 23.36 «
o 4 1 1851 2490 * 7 1962 3060. 27.46 >
* 3 12 1852 3170. o 8 1949 3020. 31.56 *
o 1 25 19853 3220. * 8 1948 2970. 35.66 *
* 9 13 1854 1760. * 10 1958 2500. 39.75 +
* 8 20 1855 8800. * 11 1851 24890, 43.85 *
* 10 16 1955 8280. * 12 1845 2280. 47.95 *
d 4 10 1857 1310. * 13 1947 2220. 52.05 *
* 12 21 1957 2500. d 14 1860 2140. 56.15 *
* 2 11 1958 1960. o 15 1858 1960. 60.25 *
* 4 6 1960 2140, * 16 1963 1780. 64.34 hd
* 2 26 1861 4340, hd 17 1854 1760. 68,44 -
* 3 13 1862 3060. hd 18 1867 1580. 72.54 hod
* 3 28 1863 1780. hd 19 1946 1470. 76.64 hd
* 1 26 1964 1380. * 20 1864 1380. 80.74 -
* 2 9 1865 980. * 21 1957 1310. 84 .84 -
* 2 15 1866 1040. * 22 1950 1210. 88.93 *
hd 3 30 1867 1580. hd 23 1966 1040. 93.03 *
* 3 19 1868 3630. hd 24 1865 980. 97.13 *

WREERAIARRERTARAAEAEBAATNAARARBRANAINIRAAANAEANIAAARAARRAA A RR RN AR

Output from HEC computer program HECWRC.

Equation 2-2b. This is simply an approximate method used in the absence of knowledge
of the total number of events in the complete set of which the partial-duration data
constitute a subset.

d. Plotting Grids. The plotting grid recommended for annual flood flow events is
the logarithmic normal grid developed by Allen Hazen (ref 13) and designed such that a
logarithmic normal frequency distribution will be represented by a straight line, Figure
2-5. The plotting grid used for stage frequencies is often the arithmetic normal grid. The
plotting grids may contain a horizontal scale of exceedance probability, exceedance
frequency, or percent chance exceedance. Percent chance exceedance (or nonexceedance)
is the recommended terminology.

e. Example Plotting of Annual-Event Frequency Curve. Figure 2-5 shows the

plotting of a frequency curve of the annual peak flows tabulated in Table 2-2. A smooth
curve should be drawn through the plotted points. Unless computed by analytical
frequency procedures, the frequency curve should be drawn as close to a straight line as
possible on the chosen probability graph paper. The data plotted on Figure 2-5 shows a
tendency to curve upward, therefore, a slightly curved line was drawn as a best fit line.

f. Example Plotting of Partial-Duration Curve. The partial-duration curve

corresponding to the partial-duration data in Table 2-3 is shown of Figure 2-6a. This
curve has been drawn through the plotted points, except that it was made to conform with
the annual-event curve in the upper portion of the curve. The annual-event curve was
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developed in accordance with the procedures described in Chapter 3. When
partial-duration data must include more events than there are years of record (see
Subparagraph b) it will be necessary to use logarithmic paper for plotting purposes, as on
Figure 2-6a, in order to plot exceedance frequencies greater than 100 percent. Otherwise,
the curve can be plotted on probability grid, as illustrated on Figure 2-6b.

2-5. Analytical Frequency Analysis.

. neral Pr ures an mmon Distributions. The fitting of data by an
analytical procedure consists of selecting a theoretical frequency distribution, estimating
the parameters of the distribution from the data by some fitting technique, and then
evaluating the distribution function at various points of interest. Some theoretical
distributions that have been used in hydrologic frequency analysis are the normal
(Gaussian), log normal, exponential, two-parameter gamma, three-parameter gamma,
Pearson type III, log-Pearson type 1I1, extreme value (Gumbel) and log Gumbel. Chapter
3 describes the fitting of the log-Pearson type III to annual flood peaks and Appendix C
describes fitting the extreme value (Gumbel) distribution.

Fishkill Creek at Besacon, NY 19465-1968

104
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Figure 2-5. Example of Graphical Frequency Analysis
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Table 2-3. Partial Duration Peaks, Arrayed with Plotting Positions.
FISHKILL CREEK AT BEACON, NY -- PEAKS ABOVE 1500 CFS
LA AR A4 A A a2 a2 22 a2 22222 22222244 4dld (212212122 2dd el ity 2 223
LI ORDERED EVENTS.......... . L ORDERED EVENTS.......... 4
. WATER MEDIAN » . WATER MEDIAN *
* RANK YEAR FLOW,CFS PLOT POS * * RANK YEAR FLOW,CFS PLOT POS *
W o e o = = e . - - * W o o 0 e o e e i - - - *
» 1 1955 8800 2.87 » 26 1952 1820. 105.33 =
* 2 1956 8280 6.97 b - 27 1945 1780 109.43 »
- 3 1961 4340.  11.07 =+ *» 28 1963 1780.  113.52 =+
- 4 1968 3630.  15.16 * » 29 1956 1770,  117.62 *
» 5 1953 3220.  19.26 * *» 30 1854 1760. 121.72 *
» 6 1952 3170.  23.36 * * 31 1952 1730,  125.82 *
»* 7 1962 3060. 27 .46 * - 32 1968 1720 129.92 hd
» 8 1949 3020.  31.56 * » 33 1955 1660. 134.02 *
* 9 1948 2970 35.66 - - 34 1958 1650 138.11 -~
* 10 1948 2750.  39.75 + » 35 1958 1650. 142.21 *
hd 11 1949 2700. 43.85 - - 36 1953 1630 146.31 *
* 12 1958 2500.  47.95 * = 37 19860 1610,  150.41  *
* 13 1951 2490.  52.05 * » 38 1956 1600,  154.51 *
* 14 1952 2460. 56.15 »* b 39 1958 1580 158.61 *
* 15 1945 2290.  60.25 * * 40 1958 1580. 162.70  *
* 16 1953 2290.  64.34 * * 41 1867 1580. 166.80  *
* 17 1958 2290 ‘68. 44 » L 42 1951 1560 170.90 *
* 18 1953 2280. 72.54 * * 43 1859 1560 175.00 *
* 19 1948 2220.  76.64 W * 4k 1955 1550. 179.10
* 20 1951 2210.  80.74 * * 45 1851 1540.  183.20 *
- 21 1960 2140, 84 .84 » " 46 1968 1530 187.30 *
* 22 1953 2080 88.93 + * 47 1960 1520, 191.39 =
* 23 1959 1960. 93.03 * - 48 1958 1520 195.49 *
* 24 1959 1920,  97.13 * * 49 1052 1520.  199.59 *
* 25 1958 1900. 101.23 * - 50 1948 1510, 203.69 *
» . = 51 1963 1510. 207.79 =
A 2242 a2 22222222222ty ldsdlsdd ERARBERARAAAATNRNAAAAAAARREN AR AART RN
b. Advantages. Determining the frequency distribution of data by the use of

analytical techniques has several advantages. The use of an established procedure for
fitting a selected distribution would result in consistent frequency estimates from the same
data set by different persons. Error distributions have been developed for some of the
theoretical distributions that enable computing the degree of reliability of the frequency
estimates (see Chapter 8). Another advantage is that it is possible to regionalize the
parameter estimates which allows making frequency estimates at ungaged locations (see
Chapter 9).

c. Disadvantages. The theoretical fitting of some data can result in very poor
frequency estimates. For example, stage-frequency curves of annual maximum stages are
shaped by the channel and valley characteristics, backwater conditions, etc. Another
example is the flow-frequency curve below a reservoir. The shape of this frequency
curve would depend not only on the inflow but the capacities, operation criteria, etc.
Therefore, graphical techniques must be used where analytical techniques provide poor
frequency estimates.
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CHAPTER 3
FLOOD FREQUENCY ANALYSIS

3-1. Intr ion.

The procedures that federal agencies are to follow when computing a frequency
curve of annual flood peaks have been published in Guidelines for Determining Flood
Flow Frequency, Bulletin 17B (46). As stated in Bulletin 17B, "Flood events ... do not fit
any one specific known statistical distribution." Therefore, it must be recognized that
occasionally, the recommended techniques may not provide a reasonable fit to the data.
When it is necessary to use a procedure that departs from Bulletin 17B, the procedure
should be fundamentally sound and the steps of the procedure documented in the report
along with the frequency curves.

This report contains most aspects of Bulletin 17B, but in an abbreviated form.
Various aspects of the procedures are described in an attempt to clarify the computational
steps. The intent herein is to provide guidance for use with Bulletin 17B. The step by
step procedures to compute a flood peak frequency curve are contained in Appendix 12 of
Bulletin 17B and are not repeated herein.

rson T II Distribution.

a. General. The analytical frequency procedure recommended for annual maximum
streamflows is the logarithmic Pearson type III distribution. This distribution requires
three parameters for complete mathematical specification. The parameters are: the mean,
or first moment, (estimated by the sample mean, X); the variance, or second moment,
(estimated by the sample variance, s? ); the skew, or third moment, (estimated by the
sample skew, G). Since the dlStl’lbUthD is a logarithmic distribution, all parameters are
estimated from logarithms of the observations, rather than from the observations
themselves. The Pearson type III distribution is particularly useful for hydrologic
investigations because the third parameter, the skew, permits the fitting of non-normal
samples to the distribution. When the skew is zero the log-Pearson type IIl distribution
becomes a two-parameter distribution that is identical to the logarithmic normal (often
called log-normal) distribution.

b. Fitting the Distribution.

(1) The log-Pearson type III distribution is fitted to a data set by calculating the
sample mean, variance, and skew from the following equations:

X = — (3-1)

(3-2a)
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IXx2- (TX¥N
= (3'2b)
N-1
N(E x%) N(T (X-X)%)
G = = (3-3a)
(N-1)(N-2)s3 (N-1)(N-2)83
N¥E X3) - 3N XX X?) + 2T X)?
- (3-3b)
N(N-1)(N-2)S3
in which:

X = mean logarithm

X = logarithm of the magnitude of the annual event
N = number of events in the data set

S = unbiased estimate of the variance of logarithms

x = X-X, the deviation of the logarithm of a single event from the mean
logarithm

G unbiased estimate of the skew coefficient of logarithms

The precision of the computed values is more sensitive to the number of significant digits
when Equations 3-2b and 3-3b are used.

(2) In terms of the frequency curve itself, the mean represents the general
magnitude or average ordinate of the curve, the square root of the variance (the standard
deviation, S) represents the slope of the curve, and the skew represents the degree of
curvature. Computation of the unadjusted frequency curve is accomplished by computing
values for the logarithms of the streamflow corresponding to selected values of percent
chance exceedance. A reasonable set of values and the results are shown in Table 3-1.
The number of values needed to define the curve depends on the degree of curvature (i.e.,
the skew). For a skew value of zero, only two points would be needed, while for larger
skew values all of the values in the table would ordinarily be needed.

(3) The logarithms of the event magnitudes corresponding to each of the selected
percent chance exceedance values are computed by the following equation:

log Q = X +KS (3-4)

where X and S are defined as in Equations 3-1 and 3-2 and where
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log Q = logarithm of the flow (or other variable) corresponding to a specified value
of percent chance exceedance

K = Pearson type IIl deviate that is a function of the percent chance exceedance
and the skew coefficient.

c. Example Computation.

(1) As shown in the following example, Equation 3-4 is solved by using the
computed values of X and S and obtaining from Appendix V-3 the value of K
corresponding to the adopted skew, G, and the selected percent chance exceedance (P).
An example computation for P=1.0, where X, S and G are taken from Table 3-1, is:

log Q = 3.3684 + 2.8236 (.2456)
= 4.0619
Q = 11500 cfs

(2) It has been shown (36) that a frequency curve computed in this manner is biased
in relation to average future expectation because of uncertainty as to the true mean and
standard deviation. The effect of this bias for the normal distribution can be eliminated
by an adjustment termed the expected probability adjustment that accounts for the actual
sample size. This adjustment is discussed in more detail in Section 3-4. Table 3-1 and
Figure 3-1 shows the derived frequency curve along with the expected probability
adjusted curves and the 5 and 95 percent confidence limit curves.

Table 3- T rve an isti

-FREQUENCY CURVE- 01-3735 FISHKILL CREEX AT BEACON, NEW YORK

WRAARNARNNARANA AR AR EARRARRERNARTN RN EAAARAANAARRNN AR AN A PR drdr R wrd

" FLOW,CFS........ * PERCENT #.. CONFIDENCE LIMITS....*
- EXPECTED * CHANCE *
* COMPUTED PROBABILITY * EXCEEDANCE * 0.05 LIMIT 0.95 LIMIT *
W om o e o - W mmm—wn-o-—-- Nema—- - -
*  19200. 28300, * 0.2 39100. 12300, *
* 14500, 18000, * 0.5 = 26900. 9740, *
*  11500. 14100, 1.0 w 20100. 8080, *
» 9110. 10500, 2.0 14800, 6640, *
» 7100. 7820, 40 * 10800. 5380, *
» 4960, 5216. =+ 10.0 * 6850. 3950,
- 3650. 3740, <+ 20,0 * 4710. 2990, *
» 2190. 2190, * s0.0 2650. 1780.
- 1440. 1420. ~  80.0 1760. 1110, *
» 1200. 1170. * 90,0 * 1490, 884, ¥
- 1040. 1010, * 95.0 1320. 746, *
- 841, 791, * 99,0 * 1100, 568, *
A e o e s o b e e e o a m e o S e e
*  FREQUENCY CURVE STATISTICS STATISTICS BASED ON *
w T e e e e *
* MEAN LOGARITHM 3.368¢ * HISTORIC EVENIS 0
» STANDARD DEVIATION  0.2456 * HIGH OUTLIERS 0 »
* COMPUTED SKEW 0.7300 * LOW OUTLIERS 0 *
* GENERALIZED SKEW 0.6000 * ZERO OR MISSING 0 »
* ADOPTED SKEW 0.7000 * SYSTEMATIC EVENTS 24w

BERNEEARNTERRTETNAARTARRARINRRARINNARANSREANRTAAA PR RTR RN TR Aw
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Figure 3-1. Annual Frequency Curve.
d. Broken Record. A broken record results when one or more years of annual peaks

are missing for any reason not related to the flood magnitude. In other words, the missing
events were caused by a random occurrence. The gage may have been temporarily
discontinued for budgetary or other reasons. The different segments of the record are
added together and analyzed as one record, unless the different parts of the record are
considered non-homogeneous. If a portion of the record is missing because the gage was
destroyed by a flood or the flood was too low to record, then the observed events should
be analyzed as an incomplete record.

e. Incomplete Record. An incomplete record can result when some of the peak flow
events were either too high or too low. Different analysis procedures are recommended
for missing high events and for missing low events. Missing high events may result from
the gage being out of operation or the stage exceeding the rating table. In these cases,
every effort should be made to obtain an estimate of the missing events. Missing low
floods usually result when the flood height is below the minimum reporting level or the
bottom of a crest stage gage. In these cases, the record should be analyzed using the
conditional probability adjustment described in Appendix 5 of Bulletin 17B and Section
3-6 of this report.



EM 1110-2-1415
5 Mar 93

f. Zero-flood vears. Some of the gaging stations in arid regions record no flow for
the entire year. A zero flood peak precludes the normal statistical analysis because the
logarithm of zero is minus infinity. In this case the record should be analyzed using the
conditional probability adjustment described in Appendix 5 of Bulletin 17B and Section
3-6 of this report.

g. Outliers.

(1) Guidance. The Bulletin 17B (46) defines outliers as "data points which depart
significantly from the trend of the remaining data.” The sequence of steps for testing for
high and low outliers is dependent upon the skew coefficient and the treatment of high
outliers differs from that of low outliers. When the computed (station) skew coefficient is
greater than +0.4, the high-outlier test is applied first and the adjustment for any high
outliers and/or historic information is made before testing for low outliers. When the
skew coefficient is less than ~0.4, the low-outlier test is applied first and the adjustment
for any low outlier(s) is made before testing for high outliers and adjusting for any
historic information. When the skew coefficient is between -0.4 and +0.4, both the high-
and low-outlier tests are made to the systematic record (minus any zero flood events)
before any adjustments are made.

(2) Eguation. The following equation is used to screen for outliers:

X, = X*K,S (3-5)

<]

where:
X, = outlier threshold in log units

X = mean logarithm (may have been adjusted for high or low outliers, and/or
historical information depending on skew coefficient)

S = standard deviation (may be adjusted value)

Ky = K value from Appendix 4 of Bulletin 17B or Appendix F, Table 11 of this
report. Use plus value for high-outlier threshold and minus value for
low-outlier threshold

N = Sampie size (may be historic period (H) if historically adjusted statistics are
used)

(3) High Qutliers. Flood peaks that are above the upper threshold are treated as high
outliers. The one or more values that are determined to be high outliers are weighted by
the historical adjustment equations. Therefore, for any flood peak(s) to be weighted as
high outlier(s), either historical information must be available or the probable occurrence
of the event(s) estimated based on flood information at nearby sites. If it is not possible
to obtain any information that weights the high outlier(s) over a longer period than that of
the systematic record, then the outlier(s) should be retained as part of the systematic
record.
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(4) Low Outliers. Flood peaks that are below the low threshold value are treated as
low outliers. Low outliers are deleted from the record and the frequency curve computed
by the conditional probability adjustment (Section 3-6). If there are one or more values
very near, but above the threshold value, it may be desirable to test the sensitivity of the
results by considering the value(s) as low outlier(s).

h. Historic Events and Historical Information.

(1) Definitions. Historic events are large flood peaks that occurred outside of the
systematic record. Historical information is knowledge that some flood peak, either
systematic or historic, was the largest event over a period longer than that of the
systematic record. It is historical information that allows a high outlier to be weighted
over a longer period than that of the systematic record.

(2) Equations. The adjustment equations are applied to historic events and high
outliers at the same time. It is important that the lowest historic peak be a fairly large
peak, because every peak in the systematic record that is equal to or larger than the lowest
historic peak must be treated as a high outlier. Also a basic assumption in the adjusting
equations is that no peaks higher than the lowest historic event or high outlier occurred
during the unobserved part of the historical period. Appendix D in this manual is a
reprint of Appendix 6 from Bulletin 17B and contains the equations for adjusting for
historic events and/or historical information.

3-3. Weighted Skew Coefficient.

a. General. It can be demonstrated, either through the theory of sampling
distributions or by sampling experiments, that the skew coefficient computed from a small
sample is highly unreliable. That is, the skew coefficient computed from a small sample
may depart significantly from the true skew coefficient of the population from which the
sample was drawn. Consequently, the skew coefficient must be compared with other
representative data. A more reliable estimate of the skew coefficient of annual flood
peaks can be obtained by studying the skew characteristics of all available streamflow
records in a fairly large region and weighting the computed skew coefficient with a
generalized skew coefficient. (Chapter 9 provides guidelines for determining generalized
skew coefficients.)

b. Weighting Equation. Bulletin 17B recommends the following weighting equation:

MSE(G) + MSE(G)

G, = (3-6)
MSE; + MSE,
where:
G, = weighted skew coefficient
G = computed (station) skew
G = generalized skew
MSE; = mean-square error of generalized skew
MSE. = mean-square error of computed (station) skew
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¢. Mean Square Error.

(1) The mean-square error of the computed skew coefficient for log-Pearson type
Il random variables has been obtained by sampling experiments. Equation 6 in Bulletin
17B provides an approximate value for the mean-square error of the computed (station)

skew coefficient:
MSEG -~ ]0(A'B[l0910("/10)]) (3-7a)

= 10MB/N® (3-7b)

A = -0.33 +0.08 |G|if |G| < 0.90
-0.52 + 0.30 |Gl if |G| > 0.90

]

0.94 - 0.26 |G| if |Gl < .50

o]
n

0.55 if |Gl > 1.50

where:
IGi = absolute value of the computed skew

N record length in years

Appendix F-10 provides a table of mean-square error for several record lengths and skew
coefficients based on Equation 3-7a.

(2) The mean-square error (MSE) for the generalized skew will be dependent on the
accuracy of the method used to develop generalized skew relations. For an isoline map,
the MSE would be the average of the squared differences between the computed (station)
skew coefficients and the isoline values. For a prediction equation, the square of the
standard error of estimate would approximate the MSE. And, if an arithmetic mean of
the stations in a region were adopted, the square of the standard deviation (variance)
would approximate the MSE.

3-4. Expected Probability.

a. The computation of a frequency curve by the use of the sample statistics, as an
estimate of the distribution parameters, provides an estimate of the true frequency curve.
(Chapter 8 discusses the reliability and the distribution of the computed statistics.) The
fact of not knowing the location of the true frequency curve is termed uncertainty. For
the normal distribution, the sampling errors for the mean are defined by the t distribution
and the sampling errors for the variance are defined by the chi-squared distribution.
These two error distributions are combined in the formation of the non-central t
distribution. The non-central t-distribution can be used to construct curves that, with a
specified confidence (probability), encompass the true frequency curve. Figure 3-2 shows

3-7
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the confidence limit curves around a frequency curve that has the following assumed
statistics: N=10, X=0., S=1.0. :

b. If one wished to design a flood protection work that would be exceeded, on the
average, only one time every 100 years (one percent chance exceedance), the usual design
would be based on the normal standard deviate of 2.326. Notice that there is a 0.5 percent
chance that this design level may come from a "true" curve that would average 22
exceedances per 100 years. On the other side of the curve, instead of the expected one
exceedance, there is a 99.5 percent chance that the "true” curve would indicate 0.004
exceedances. Note the large number of exceedances possible on the left side of the curve.
This relationship is highly skewed towards the large exceedances because the bound on the
right side is zero exceedance. A graph of the number of possible "true" exceedances
versus the probability that the true curve exceeds this value, Figure 3-3, provides a curve
with an area equal to the average (expected) number of exceedances.

¢. The design of many projects with a target of 1 exceedance per 100 years at each
project and assuming N=10 for each project, would actually result in an average of 2.69
exceedances (see Appern .ix F-8).

NORMAL DISTRIBUTION, SAMPLE SIZE=10

ERROR LIMIT EXCEEDANCE SROS.
.005 .01 .025 .05 .10

] / /.25

s .50

.75

.90

ERROR L1MIT EXCEEDANCE PROS.

.950
.975

.990
.995

STANDARD DEVIATE

- /

] ///V

99.99 99.9 99 90 50 10 1 .1 .01
PERCENT CHANCE EXCEEDANCE

Figure 3-2. Confidence Limit Curves based on the Non-central t Distribution.
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- TARGET OF 1 EXCEEDANCE PER 100 EVENTS
'I AND BASED ON SAMPLE SI12E OF 10 EVENTS
20
[ 22] B
(==
< -
w
> -y
o
=] 15
-
o4
w -
a
W “1
w -
(%}
Z 10
( v
c -
w
3 . AREA UNDER CURVE 1S EXPECTED NUMBER
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“1 2.69 (Appendix v-8)
5 1
-4 \\\
Py O Ot
o ~T Y T T T | T T T T g uﬂ
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PROBABILITY OF EXCEEDING
Figure 3-3. Cumulative Probability Distribution of Exceedances per 100 Years.

d. There are two methods that can be used to correct (expected probability
adjustment) for this bias. The first method, as described above, entails plotting the curve
at the "expected” number of exceedances rather that at the target value, drawing the new
curve and then reading the adjusted design level. Appendix F-8 provides the percentages
for the expected probability adjustment.

e. The second method is more direct because an adjusted deviate (K value) is used in
Equation 3-4 that makes the expected probability adjustment for a given percent chance
exceedance. Appendix F-7 contains the deviates for the expected probability adjustment.
These values may be derived from the t-distribution by the following equation:

Ky = tplN.1[(N+l)/N]"" (3-8)
where:

P = exceedance probability (percent chance exceedance divided by 100)

N = sample size

K = expected probability adjusted deviate

Student’s t-statistic from one-tailed distribution

-~
L]
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f. For a sample size of 10 and a 1% percent chance exceedance, the expected
probability adjusted deviate is 2.959 as compared to the value of 2.326 used to derive the
computed frequency curve.

g. As mentioned in the first paragraph, the non-central t distribution, and
consequently the expected probability adjustment, is based on the normal distribution.
The expected probability adjustment values in Appendices F-7 and F-8 are considered
applicable to Pearson type III distributions with small skew coefficients. The phrase
"small skew coefficients” is usually interpreted as being between -0.5 to +0.5. Note also
that the uncertainty in the skew coefficient is not considered. In other words, the skew
coefficient is treated as if it were the population skew coefficient.

h. The expected probability adjustment can be applied to frequency curves derived
by other than analytical procedures if the equivalent worth (in years) of the procedure can
be computed or estimated.

3-5. Risk.

a. Definition. The term risk is usually defined as the possibility of suffering loss or
injury. In a hydrologic context, risk is defined as "the probability that one or more events
will exceed a given flood magnitude within a specified period of years"” (46). Note that
this narrower definition includes a time specification and assumes that the annual
exceedance frequency is exactly known. Uncertainty is pot taken into account in this
definition of risk. Risk then enables a probabilistic statement to be made about the
chances of a particular location being flooded when it is occupied for a specified number
of consecutive years. The percent chance of the location being flooded in any given year
is assumed to be known.

b. Binomial Distribution. The computation of risk is accomplished by the equation
for the binomial distribution:

N!

= Tnenr PA-PY (3-9)

R

where:
R, = risk (probability) of experiencing exactly I flood events
N = number of years (trials)
I = number of flood events (successes)

P = exceedance probability, percent chance exceedance divided by 100, of the
annual event (probability of success)

(The terms in parentheses are those usually used in statistical texts)

When I equals zero (no floods), Equation 3-9 reduces to:
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N
= (1-P) (3-10a

and the probability of experiencing one or more floods is easily computed by taking the
complement of the probability of no floods:

- N 0L\
R“ or more) = 1-{1-P) {3-10b)

C. lication.

(1) Risk is an important concept to convey to those who are or will be protected by
flood control works. The knowledge of risk alerts those occupying the flood plain to the
fact that even with the protection works, there could be a significant probability of being
flooded during their lifetime. As an example, if one were to build a new house with the
ground floor at the 1% chance flood level, there is a fair (about one in four) chance that
the house will be flooded before the payments are completed, over the 30-year mortgage
life. Using Equation 3-10b:

1-(1-.01)%
1-.993°

R

(1 or more)

1-.74

.26 or 26% chance

(2) Appendix F-12 provides a table for risk as a function of percent chance
exceedance, period length and number of exceedances. This table could also be used to
check the validity of a derived frequency curve. As an example, if a frequency curve is
determined such that 3 observed events have exceeded the derived 1% chance exceedance
level during the 50 years of record, then there would be reason to question the derived
frequency curve. From Appendix F-12, the probability of this occurring is 0.0122 or
about 1%. It is possible for the situation to occur, but the probability of occurring is very
low. This computation just raises questions about the validity of the derived curve and
indicates that other validation checks may be warranted before adopting the derived
curve.

nditional Pr ility Adjustment. The conditional probability adjustment is made
when flood peaks have either been deleted or are not available below a specified
truncation level. This adjustment will be applied when there are zero flood years, an
incomplete record or low outliers. As stated in Appendix 5 of Bulletin 17B, this
procedure is not appropriate when 25 percent or more of the events are truncated. The
computation steps in the conditional probability adjustment are as follows:

1. Compute the estimated probability (1—") that an annual peak will exceed the
truncation level:

P = N/n (3-11a)
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where N is the number of peaks above the truncation level and n is the total number
of years of record. If the statistics reflect the adjustments for historic information,
then the appropriate equation is

H - WL
—_— (3-11b)

ol
]

H

where H is the length of historic period, W is the systematic record weight and L is
the number of peaks truncated.

2. The computed frequency curve is actually a conditional frequency curve. Given
that the flow exceeds the truncation level, the exceedance frequency for that flow
can be estimated. The conditional exceedance frequencies are converted to annual
frequencies by the probability computed in Step 1..

P=Fp, (3-12)
where P is the annual percent chance exceedance and P is the conditional percent

chance exceedance.

3. Interpolate either graphically or mathematically to obtain the discharge values
(Qp) for 1, 10 and 50 percent chance exceedances.

4. Estimate log-Pearson type III statistics that will fit the upper portion of the
adjusted curve with the following equations:

log (Q4/Q4¢)
G, = -250+3.12 —— (3-13)
log (Q,0/Qsq)
log (Q,/Qsq)
s, = — TV (3-14)
K1 - Kso
X, = log (Qsp) - Kgp S, (3-15)

where G, S, and X. are the synthetic skew coefficient, standard deviation and
mean respecnvely, é and Qg the discharges determined in Step 3; and K, and

are the Pearson Type PII devnates for percent change exceedances of 1 and g
anc? skew coefficient G,
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5. Combine the synthetic skew coefficient with the generalized skew by use of
Equation 3-6 to obtain the weighted skew,

6. Develop the computed frequency curve with the synthetic statistics and compare
it with the plotted observed flood peaks.

3-7. Two-Station Comparison.
a. Purpose.

(1) In most cases of frequency studies of runoff or precipitation there are locations
in the region where records have been obtained over a long period. The additional period
of record at such a nearby station is useful for extending the record at a short record
station provided there is reasonable correlation between recorded values at the two
locations.

(2) It is possible, by regression or other techniques, to estimate from concurrent
records at nearby locations the magnitude of individual missing events at a station.
However, the use of regression analysis produces estimates with a smaller variance than
that exhibited by recorded data. While this may not be a serious problem if only one or
two events must be estimated to "fill in” or complete an otherwise unbroken record of
several years, it can be a significant problem if it becomes necessary to estimate more than
a few events. Consequently, in frequency studies, missing events should not be freely
estimated by regression analysis.

(3) The procedure for adjusting the statistics at a short-record station involves three
steps: (1) computing the degree of correlation between the two stations, (2) using the
computed degree of correlation and the statistics of the longer record station to compute
an adjusted set of statistics for the shorter-record station, and (3) computing an equivalent
"length of record” that approximately reflects the "worth" of the adjusted statistics of the
short-record station. The longer record station selected for the adjustment procedure
should be in a hydrologically similar area and, if possible, have a drainage area size
similar to that of the short-record station.

b. Computation of §:grr§|a1ion. The degree of correlation is reflected in the
correlation coefficient R as computed through use of the following equation:

[IXY - (IXTY)/NP?

R? = (3-16)

[£X2 - (3X)¥/N] (T2 - (TY)¥/N]

where:
R? = the determination coefficient
Y = the value at the short-record station
= the concurrent value at the long-record station

N = the number of years of concurrent record

3-13
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For most studies involving streamflow values, it is appropriate to use the logarithms of the
values in the equations in this section.

c. Adjustment of Mean. The following equation is used to adjust the mean of a
short-record station on the basis of a nearby longer-record station:

Y = Y, +(X5- X RS, /5y) (3-17)

where:

~<|
"

the adjusted mean at the short-record station

= the mean for the concurrent record at the short-record station

=<

the mean for the complete record at the longer-record station

Xl Xl
w
]

-l

= the mean for the concurrent record at the longer-record station
R = the correlation coefficient

Sv., = the standard deviation for the concurrent record at the short-record station
= the standard deviation for the concurrent record at the longer-record

SX
1 .
station

All of the above parameters may be derived from the logarithms of the data where
appropriate, e.g., for annual flood peaks. The criterion for determining if the variance of
the adjusted mean will likely be less than the variance of the concurrent record is:

R? > 1/(N, - 2) (3-18)

where N, equals the number of years of concurrent record. If R? is less than the
criterion, Equation 3-17 should not be applied. In this case just use the computed mean at
the short-record station or check another nearby long-record station. See Appendix 7 of
Bulletin 17B for procedures to compare the variance of the adjusted mean against the
variance of the entire short-record period.

d. Adijustment of Standard Deviation. The following equation can be used to adjust

the standard deviation:

¢ = S +(82- 82) R%S,2/8,2) (3-19)

{approximate)
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where:
S, = the adjusted standard deviation at the short-record station

S, = the standard deviation for the period of concurrent record at the short-record
station

S, = the standard deviation for the complete record at the base station

571 = the standard deviation for the period of concurrent record at the base station

R2 = the determination coefficient

All of the above parameters may be derived from the logarithms of the data where
appropriate, e.g., for annual flood peaks. This equation provides approximate results
compared to Equation 3-19 in Appendix 7 of Bulletin 17B, but in most cases the
difference in the results does not justify the additional computations.

e. Adijustment of Skew coefficient. There is no equation to adjust the skew

coefficient that is comparable to the above equations. When adjusting the statistics of
annual flood peaks either a weighted or a generalized skew coefficient may be used
depending on the record length.

f. Equivalent Record Length. The final step in adjusting the statistics is the
computation of the "equivalent record length” which is defined as the period of time
which would be required to establish unadjusted statistics that are as reliable (in a
statistical sense) as the adjusted values. Thus, the equivalent length of record is an
indirect indication of the reliability of the adjusted values of Y and S,. The equivalent
record length for the adjusted mean is computed from the following equation:

NY1
N, = (3-20)

I - [(Ny - Ny )/N,] [R%- (1 - Rz)/(N,,1 - 3)]

where:
N, = the equivalent length of record of the mean at the short-record station
Nv1 = the number of years of concurrent record at the two stations
N, = the number of years of record at the longer-record station
R = the adjusted correlation coefficient

Figure 3-4 shows the data and computations for a two-station comparison for a short
record station with 21 events and a long record station with 60 systematic events. It can
be seen that the adjustment of the frequency statistics provides an increased reliability in
the mean equivalent to having an additional 17 years of record at the short-record station.
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TATISTICS OF DATA

Yeor Flow Long Record Short

Record

Chattoogas Talluleh Not
River River Total Concurrent Concurrent

1915 12600 Systematic Events 60 21 39 21
1917 14000
1918 5900 Mistoric Period 7" [+] ] 0
1919 16000
1920 8200 Log Mesn 3.8866 3.9310 3.84650 3.4796
1921 4100
1922 6200 Standard Deviation [0.2322 0.2678 0.2140 0.2609
1923 5300
1924 9200 Computed 0.5075 0.1588 0.7340 -0.0811
1925 3900 Skew Generalized - - - -
1926 6200 Adopted - - - -0.1000
1927 3600
1928 20100
1929 11400 COMPUTATIONS FOR TWO-STATION COMPARISON:
1940 29000°*
1941 7530 Slope: b = 0.790495
1942 6870 Correlation Coefficient: R =0.811351 (See figure 9-01)
1943 6870
1944 3840 From equations 19, 21, and 22:
1945 2930
1946 6650 Yy = 3.4796 » 0.790495 (3.8866 +« 3.9310)
1947 6440
1948 12400 Yy = 3.4445
1949 13900 2 2 2 2
1950 4740 S'z = [(0.2322)° - (0.2678)°1(0.8114)(0.2609/0.2678)
1951 5220 2
1952 13400 * (0.2609)
1953 4020 SY = 0.2386
1954 6230
1955 5820 21
1956 5820 Yy T T o eses - Lo0.any; %8
1957 5820 —rr— (0 3 B
1958 5620
B4 €=0.0 MSE; =0.302 G=-0.0811 MSE; = 0.142
ey D (0.302)(-0.0811) + (0.0142)(0.0)
s 0 Oy = 5.307 + 0.142
1963 5420 ° )
1964 9880
1965 27200 7440 Gy = -0.055 = -0.1
1966 13400 5140
1967 15400 2800
1968 5620 3100 FREQUENCY CURVE, TALLULAN RIVER NEAR CLAYTOMN, GA
1969 14700 2470
1970 3480 2010 esaeeosFLOW,CFS........ PERCENT ..CONFIDENCE LIMITS..
97 3290 976 EXPECTED CHANCE
1972 T440 2160 COMPUTED PROBABILITY EXCEEDANCE .05 LIMIT .95 LIMIT
1973 19600 3500
1974 6400 4660 12700 14200 .2 18800 9580
1975 6340 2610 10900 11900 .5 15600 8410
1976 18500 6530 9590 10300 1.0 13400 7540
1977 13000 3580 8350 8800 2.0 11300 6680
1978 7850 4090 6760 6990 5.0 8810 5550
1979 14800 6240 5590 5710 10.0 7040 4680
1980 10900 2880 4430 4480 20.0 5370 3780
1981 4120 1600 2810 2810 50.0 3260 2420
1982 5000 1960 1760 1740 80.0 2060 1450
1983 7910 3260 1370 1340 90.0 1640 1080
1984 4810 2000 1110 1070 95.0 1360 847
1985 4740 1010 745 636 99.0 957 524

* Historic information, pesk largest since 1915,

Figure 3-4. Two-Station Comparison Computations.
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(Figure 9-1 shows the computations for b and R and Figure 9-2 shows the Tallulah River
annual peaks plotted against the Chattooga River peaks.) Figure 3-5 shows the resulting
unadjusted and adjusted frequency curves based on the computed and adjusted statistics
in Flgure 3-4. Although N_ is actually the equwalent years of record for the mean, the
value is used as an estimate equivalent record length in the computation of conf:dence
limits and the expected probability adjustment.

g §ummgry of Steps. The procedure for computing and adjusting frequency
statistics using a longer-record station can be summarized as follows:

(1) Arrange the streamflow data by pairs in order of chronological sequence.
(2) Compute ?1 and S‘r1 for the entire record at the short-record station.
(3) Compute X and Sy for the entire record at the longer-record station.

(4) Compute X and S, for the pornon of the longer-record station which is
concurrent with the shox’t record station.

(5) Compute the correlation coefficient using Equation 3-16.

(6) Compute Y and Sy for the short-record station using Equations 3-17 and 3-18.

105 Tallulah River near Cl-uton, QA
H - --- Expected Probability Curve from Data
| | —=e—— Expected Probability Curve from Two-Station Comparison
o 4 1- “
G 10
- =
3 ol
] —1<
T L
X
[}
]
a o
-4
3
3
c
£ 10
<
102
99.99 99.9 99 90 50 ie 1 P .91

Percant Chance Excaesdsnce

Figure 3-5. Observed and Two-Station Comparison Frequency Curves.
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(7) Calculate the equivalent length of record of the mean for the short-record station
using Equation 3-20.

(8) Compute the frequency curve using adjusted values of Y and S in Equation 3-4
and K values from Appendix F-2 corresponding to the adopted skew coefficient.

(9) Compute the expected probability adjustment and the confidence limits.

3-8. Flood Volumes.

a. Nature and Purpose. Flood volume frequency studies involve frequency analysis
of maximum runoff within each of a set of specified durations. Flood volume-duration
data normally obtained from the USGS WATSTORE files consists of data for I, 3, 7, 15,
30, 60, 90, 120, and 183 days. These same values are the default values in the HEC
computer program STATS (Table 3-2). Runoff volumes are expressed as average flows in
order that peak flows and volumes can be readily compared and coordinated. Whenever it
is necessary to consider flows separately for a portion of the water year such as the rain
season or snowmelt season, the same durations (up to the 30-day or 90-day values) are
selected from flows during that season only. Flood volume-duration curves are used
primarily for reservoir design and operation studies, and should generally be developed in
the design of reservoirs having flood control as 2 major function.

Table 3-2. High Fiow Volume-Duration Data
- VOLUME-DURATION DATA - FISHKILL CR AT BEACON, NY - DAILY FLOWS

HIGHEST MEAN VALUE FOR DURATION, FLOW,CFS

YEAR 1 3 7 15 30 60 90 120 183

1845 2080.0 1936.7 1714.3 1398.7 1106.8 752.3 742.2 649.4 559.2
1946 1360.0 1180.3 923.0 837.3 §57.8 605.2 476.2 451.5 379.9
1947 1800.0 1616.7 1159.1 820.5 687.1 611.9 558.5 485.8 396.4
1948 2660.0 2430.0 2322.9 1641.7 1145.1 862.0 706.2 638.1 512.7
1948 2900.0 2346.7 1715.7 1358.9 888.9 680.7 586.8 522.4 422.4
1850 1050.0 908.7 746.9 639.7 588.1 455.9 423.0 387.2 335.1
1951 2160.0 1886.7 1744 .3 1248.1 872.8 832.1 781.2 689.8 568.9
1952 2870.0 2266.7 1557.6 1186.5 1032.8 925.1 854.1 732.6 692.9
1953 2850.0 2233.3 1644.3 1317.2 1145.5 884.6 831.1 794.4 654.5
1854 1520.0 1096.7 811.7 620.4 482.9 397.0 405.7 372.7 348.1
1855 6970.0 4536.7 2546.1 1360.0 758.2 608.0 494 .0 463.1 478.7
1956 6760.0 5456.7 3354.3 1959.7 1572.8 1080.9 767.7 635.8 641.7
1957 1230.0 1117.3 1037.7 758.9 524.2 408.8 363.3 373.4 324.4
1958 2130.0 1916.7 1587.1 1354.5 1128.1 872.0 848.2 777.8 654.1
1859 1670.0 986.7 782.1 586.6 517.6 486.7 437.5 398.8 346.2
1860 2080.0 1770.0 1374.3 1046.9 712.3 605.5 530.5 515.1 468.4
1861 3440.0 2966.7 2155.7 1590.2 1152.3 845.2 759.5 656.2 491.4
1962 2570.0 2070.0 1547.7 1105.0 857.7 600.8 461.3 429.4 325.0
1863 1730.0 1616.7 1309.0 1216.0 800.8 569.1 438.0 370.8 305.9
1864 1300.0 1106.7 945.3 737.8 541.2 514.8 486.6 450.1 368.3
1965 900.0 826.3 652.6 455.7 375.8 303.3 275.7 235.0 175.0
1966 830.0 774.7 693.3 546.5 445.7 352.5 296.2 272.5 208.0
1967 1520.0 1416.7 1247.1 1023.5 906.8 701.3 581.4 s21.1 436.8
1968 3500.0 2810.0 1934.3 1328.5 878.7 611.7 609.5 567.3 460.3

Note - Data based on water year of October 1 of preceeding year through September 30
of given year.
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b. Data for Comprehensive Series. Data to be used for a comprehensive flood

volume-~duration frequency study should be selected from nearly complete water year
records. Unless overriding reasons exist, the durations in Table 3-2.should be used in
order to assure consistency among various studies for comparison purposes. Maximum
flood events should be selected only for those years when recorder gages existed or when
the maximum events can be estimated by other means. Where a minor portion of a water
year’s record is missing, the longer-duration flood volumes for that year can often be
estimated adequately. If upstream regulation or diversion is known to have an effect, care
should be exercised to assure that the period selected is the one when flows would have
been maximum under the specified (usually natural) conditions.

c. istics for Comprehensiv ri

(1) The probability distribution recommended for flood volume-duration frequency
computations is the log-Pearson type III distribution; the same as that used for annual
flood peaks. In practice, only the first two moments, mean and standard deviations are
based on station data. As discussed in Section 3-3, the skew coefficient should not be
based solely on the station record, but should be weighted with information from regional
studies. To insure that the frequency curves for each duration are consistent, and
especially to prevent the curves from crossing, it is desirable to coordinate the variation in
standard deviation and skew with that of the mean. This can be done graphically as
shown in Figure 2-6. For a given skew coefficient, there is a maximum and minimum
allowable slope for the standard deviation-versus-mean relation which prevents the curves
from crossing within the established limits. For instance, to keep the curves from crossing
within 99.99 and .01 percent chance exceedances with a skew of 0., the slope must not
exceed .269, nor be less than -.269, respectively. The value of this slope constraint is
found by stating that the value of one curve (X, for curve A) must equal or exceed the
value for a second curve (Xg for curve B) at the desired exceedance frequency. Each of
these values can be found by substitution into Equation 3-4 (the K for zero skew and
99.99 percent chance exceedance is -3.719):

XA_>_XB

X, +(-3.7119)S, > X;+(-3.719)S,

a'xA

v
ol

3.719 (S - S,)

(S5 - S,)
——X > 0269
(Xa - XA)
where:
= Value of frequency curve A at 99.99 percent chance exceedance

>

= Value of frequency curve B at 99.99 percent chance exceedance
= Mean of frequency curve A
= Mean of frequency curve B

w »

= Standard deviation of frequency curve A

v X Kl K K

= Standard deviation of frequency curve B
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(2) When the skew changes between durations, it is probably easiest to adopt
smoothed relations for the standard deviation and skew and input the statistics into a
computer program that computes the ordinates. The curves can then be inspected for

consistency.

(3) If the statistics for the peak flows have been computed according to the
procedures in Bulletin 17B, the smoothing relations shouid be forced through those points.
The procedure for computing a least-squares line through a given intersection can be
found in texts describing regression analyses.

omprehensiv

(1) General Procedure. Frequency curves of flood volumes are computed
analytically using general principles and methods of Chapters 2 and 3. They should also

be shown graphically and compared with the data on which they are based. This is a
general check on the analytic work and will ordinarily reveal any inconsistency in data
and methodology. The computed frequency curves and the observed data should be
plotted on a single sheet for comparison purposes, Figure 3-7.
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(2) Interpolation Between Fixed Durations. The runoff volume for any specified

frequency can be determined for any duration between 1-day and 365-days by drawing a
curve on logarithmic paper relating mean discharge (or volume) to duration for that
specified frequency (see Figure 3-8a). When runoff volumes for durations shorter than 24
hours are important, special frequency studies should be made. These could be done in
the same manner as for the longer durations, using skew coefficients interpolated in some
reasonable manner between those used for peak and 1-day flows.

e. Applications of Fl Volume-Duration Fr nci

(1) Volume-duration Curves. The use of flood volume-duration frequencies in

solving reservoir planning, design, and operation problems usuaily involves the
construction of volume-duration curves for specified frequencies. These are drawn first
on logarithmic paper for interpolation purposes, as illustrated on Figure 3-8a. The mean
discharge values are multiplied by appropriate durations to obtain volumes and are then
replotted on an arithmetic grid as shown on the Figure 3-8b. A straight line on this grid
represents a constant rate of flow. The straight line represents a uniform flow of 1,500
cfs, and the maximum departure from the 2% chance exceedance curve demonstrates that
a reservoir capacity of 16,000 cfs-days (31,700 acre-feet) is required to control the
indicated runoff volumes by a constant release of 1,500 cfs. The curve also indicates that
a duration of about 8 days is critical for this project release rate and associated
flood-control storage space.

2) licati ingle Reservoir. In the case of a singie flood-control reservoir
located immediately upstream of a single damage center, the volume frequency problems
are relatively simple. A series of volume-duration curves, similar to that shown on Figure
3-8, corresponding to selected exceedance frequencies should first be drawn. The project
release rate should be determined, giving due consideration to possible channel
deterioration, encroachment into the flood plain, and operational contingencies. This
procedure can be used not only as an approximate aid in selecting a reservoir capacity, but
also as an aid in drawing filling-frequency curves.

(3) Application to a Reservoir System. In solving complex reservoir problems,

representative hydrographs at all locations can be patterned after one or more past floods.
The ordinates of these hydrographs can be adjusted so that their volumes for the critical
durations will equal corresponding magnitudes at each location for the selected frequency.
A design or operation scheme based on regulation of such a set of hydrographs would be
reasonably well balanced. Some aspects of this problem are described in Section 3-9g.

3-9. Effects of Flood Contrgl Works on Flood Frequencies.

a. Nature of the Problem. Flood control reservoirs are designed to substantially
affect the frequency of flood flows (or flood stages) at various downstream locations.
Many land use changes such as urbanization, forest clearing, etc. can also have significant
effects on downstream flood flows (see Section 3-10). Channel improvements (intended to
reduce stages) and levee improvements (intended to confine flows) at specified locations
can substantially affect downstream flows by eliminating some of the natural storage
effects. Levees can also create backwater conditions that affect river stages for a
considerable distance upstream. The degree to which flows and stages are modified by
various flood control works or land use changes can depend on the timing, areal
distribution and magnitude of rainfall (and snowmelt, if pertinent) causing the flood.
Accordingly, the studies should include evaluations of the effects on representative flood
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events, with careful consideration given to the effects of different temporal and areal
distributions.

b. Terminology.

(1) Natural Conditions. Natural conditions in the drainage basin are defined as
hydrologic conditions that would prevail if no regulatory works or other works of man
were constructed. Natural conditions, however, include the effects of natural lakes,

swamp areas, etc.

(2) Present Conditions. Present or base conditions are defined as the conditions that
exist as of the date of the study or some specified time.

(3) Without-Project Conditions. Without-project conditions are defined as the

conditions that would exist without the projects under consideration, but with all existing
projects and may include future projects whose construction is imminent.

(4) With-Project Conditions. With-project conditions are defined as the conditions
that will exist after the projects under consideration are completed.

c. Reservoir-Level Frequengcy Computation.
(1) Factors to be Considered. Factors affecting the frequency of reservoir levels

include historical inflow rates and anticipated future inflow rates estimated by
volume-frequency studies, the storage-elevation curves, and the plan of reservoir
regulation including location and size of reservoir outlets and spiliway. A true frequency
curve of annual maxima or minima can only be computed when the reservoir completely
fills every year. QOtherwise, the events would not be independent. If there is dependence
between annual events, the ordinate should be labeled "percent of years exceeded" for
maximum events and "percent of years not exceeded” for minimum events.

(2) Computation and Presentation of Results. A frequency curve of annual

maximum reservoir elevations (or stages) is ordinarily constructed graphically, using
procedures outlined in Section 2-4. Observed elevations (or stages) are used to the extent
that these are available, if the reservoir operation will remain the same in the future.
Historical and/or large hypothetical floods may also be routed through the reservoir using
future operating plans. A typical frequency curve is illustrated on Figure 6-4.
Elevation-duration curves are constructed from historical operation data or from routings
of historical runoff in accordance with procedures discussed in Section 2-2, Figure 3-9.
Such curves may be constructed for the entire period of record or for a selected wet
period or dry period. For many purposes, particularly recreation uses, the seasonal
variation of reservoir elevation (stages) is important. In this case a set of frequency or
duration curves for each month of the year may be valuable. One format for presenting
this information is illustrated on Figure 3-10.
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d. Effects of Reservoirs on Flows at Downstream Points.
(1) Routing for Period of Record. The frequency of reservoir outflows or of flows

at a downstream location can be obtained from routings of the period-of-record runoff by
the following methods:

(a) Determine the annual maximum flow at each location of interest and construct a
frequency curve of the regulated flows by graphical techniques (Section 2-4).

{b) Construct a graph of with-project versus without-project flows at the location of
interest and draw a curve relating the two quantities as illustrated on Figure 3-11. The
points should be balanced in the direction transverse to the curve, but factors such as
flood volume of the events and reliability of regulation must be considered in drawing the
curve. This curve can be used in conjunction with a frequency curve of without-project
flows to construct a frequency curve of with-project flows as illustrated on Figure 3-12.
This latter procedure assures consistency in the analysis and gives a graphical presentation
of the variability of the regulated events for a given unregulated flow.

(2) Use of Hvpothetical-Flood Routings. Usually recorded values of flows are not

large enough to define the upper end of the regulated frequency curve. In such cases, it is
usually possible to use one or more large hypothetical floods (whose frequency can be
estimated from the frequency curve of unregulated flows) to establish the corresponding
magnitude of regulated flows. These floods can be multiples of the largest observed
floods or of floods computed from rainfall; but it is best not to multiply any one flood by
a factor greater than two or three. The floods are best selected or adjusted to represent
about equal severity in terms of runoff frequency of peak and volumes for various
durations. The routings should be made under reasonably conservative assumptions as to
initial reservoir stages.

(3) Incidental Control by Water Supply Space. In constructing fre Tuency curves of

regulated flows, it must be recognized that reservoir operation for purp :es other than
flood control will frequently provide incidental regulation of floods. H..wever, the
availability of such space cannot usually be depended upon, and its value is considerably
diminished for this reason. Consequently, the effects of such space on the reduction of
floods should be estimated very conservatively.

(4) Allowan r rational ingencies. In constructing frequency curves of
regulated flows, it should be recognized that actual operation is rarely perfect and that
releases will frequently be curtailed or diminished because of unforeseen operation
contingencies. Also, where flood forecasts are involved in the reservoir operation, it must
be recognized that these are subject to considerable uncertainty and that some allowance
for uncertainty will be made during operation. In accounting for these factors, it will be
found that the actual control of floods is somewhat less than could be expected if full
release capacities and downstream channel capacities were utilized efficiently and if all
forecasts were exact.

(5) Runoff from Unregulated Areas. In estimating the frequency of runoff at a

location that is a considerable distance downstream from one or more reservoir projects, it
must be recognized that none of the runoff from the intermediate areas between the
reservoir(s) and the damage center will be regulated. This factor can be accounted for by
constructing a frequency curve of the runoff from the intermediate area, and using this
curve as an indicator of the lower limit for the curve of regulated flows. Streamflow
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routing and combining of both the flows from the unregulated area and those from the
regulated area is the best procedure for deriving the regulated frequency curve.

. f Channel v nd Floodw mprovements. The effect of channel,
levee and floodway improvements on river stages at the project location and on river
discharges downstream from the project location can generally be evaluated by routing
several typical floods through the reaches of the improvement and the upstream reaches
affected by backwater. The stages or discharges thus derived can be plotted against
corresponding without- project values, and a smooth curve drawn. This curve could be
used in conjunction with a frequency curve of without-project values to construct a
frequency curve of with-project values as discussed in Paragraph 3-09d(1)b.
Corresponding stages upstream from the selected control point can be estimated from
water-surface profile computations.

han in -Dischgr ionships. Changes in stage-discharge relations
due to channel improvements, levee construction or flow obstructions can best be
evaluated by computing theoretical water surface profiles for each of a number of
discharges. The resulting relationships for modified conditions can be used to modify
routing criteria to enable evaluation of the downstream effects of these changes.

g. Effects of Multiple Reservoir Systems.

(1) Representative events. When more than one reservoir exists above a damage
center, the problem of evaluating reservoir stages and downstream flows under project
conditions becomes increasingly complex. Whenever practicable, it is best to make
complete routings of five to ten historic flood events and a large event that has been
developed from a hypothetical rainfall pattern. If necessary, it is possible to supplement
these events by using multiples of the flow values. Care muse be exercised in selecting
events that have representative flood volumes, timings, and areal distributions. Also,
there should be a balance of events caused by particular climatic factors, i.e. snowmelt,
tropical storm, thunderstorm, etc. Furthermore, the flood-volume-duration characteristics
of the hypothetical events should be similar to the recorded events (see Section 3-8).
Hypothetical events must be used with caution, however, because certain characteristics of
atypical floods may be responsible for critical flooding conditions. Accordingly, such
studies should be supplemented by a critical examination of the potential effects of atypical
floods.

(2) Computer Program. It is generally impossible to make all of the flood routings
necessary to evaluate the effect of a reservoir system by hand computations. Computer
programs have been developed to route floods through a reservoir system with complex
operational criteria (55).

3-10. Effects of Urbanization,

a. General Effects. Urbanization has two major effects on the watershed which
influence the runoff characteristics. First, there is a substantial increase in the impervious
area, which results in more water entering the stream system as direct runoff. Second, the
drainage system collecting the runoff is generally more efficient and tends to concentrate
the water faster in the downstream portion of the channel system. It is important to keep
these two effects in mind when considering the changes in the flood peak frequency curve
caused by increasing urbanization.
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b. Effect on Freguencv Relations. A general statement can be made about the
effects of urbanization on flood-peak frequency relations. The usual effect on the
frequency relation is to cause a significant increase in the magnitude of the more frequent
events, but a lesser increase in the less frequent events. This results in an increase in the
mean of the annual flood peaks, a decrease in the standard deviation and an unpredictable
effect on the skew coefficient (see Figure 3-13). The resulting frequency relation may
not fit any of the standard theoretical distributions. Graphical techniques should be
applied if a good fit is not possible by an analytical distribution.

c. Other Considerations. The actual effect of urbanization at a specific location is
dependent on many factors. Some of the factors that must be considered are basin slope,
basin shape, previous land use and ground cover, number of depressional areas drained,
magnitude and nature of urban development and the typical flood source (snowmelt,
thunderstorm, hurricane, or frontal storm).It is possible for urbanization to cause a
decrease in the flood peaks at a particular site. For instance, consider an area downstream
of two tributary areas of such size and shape that the large floods are caused by the
addition of the nearly coincident peaks from the two tributaries. Urbanization in one of
the tributary areas will likely cause the contribution from this area to arrive downstream
earlier. This change in the timing of the peaks would result in lower downstream peaks.
Of course, when both areas have become equally urbanized, the flood peaks may coincide
again. The construction of bridges or other encroachments can reduce the flood peak
downstream, but causes backwater flooding upstream.
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Figure 3-13. Typical Effect of Urbanization on Flood Frequency Curves.
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d. Adjustment of a Series of Nonstationary Peak Discharges. When the annual peak

discharges have been recorded at the outlet of a basin which has been undergoing
progressive urbanization during the period of record, the peak discharges are
nonstationary because of the varying basin condition. It is generally necessary to adjust
the discharges to a stationary series representative of existing conditions. One approach
to adjusting the peaks to a stationary series is as follows:

(1) Develop and calibrate a rainfall-runoff model for existi.ng basin conditions and
for conditions at several other points in time during the period of record.

(2) Develop a hypothetical storm for the basin using generalized rainfall criteria,
such as that contained in Weather Bureau Technical Paper 40 (14). Select the
magnitude of the storm, e.g., a 25-year recurrence interval, to be used. The
recurrence interval is arbitrary as it is not assumed in this approach that runoff
frequency is equal to rainfall frequency. The purpose of adopting a specific
magnitude is to establish a base storm to which ratios can be applied for subsequent
steps in the analysis.

(3) Apply several ratios (say 5 to 8) to the hypothetical storm developed in the
previous step such that the resulting calculated peak discharges at the gage will cover
the range desired for frequency analysis. Input the balanced storms to the
rainfall-runoff model for each of the basin conditions selected in step (1), and
determine peak discharges at the gaged location.

(4) From the results of step (3), plot curves representing peak discharge versus storm
ratio for each basin condition (or point in time).

(5) Use the curves developed in step (4) to adjust the observed annual peak
discharges. For example, an observed annual peak discharge that occurred in 1975 is
adjusted by entering the "1975" curve (or interpolating) with that discharge, locating
the frequency of that event, and reading the magnitude of the adjusted peak from
the base-condition curve for the same frequency. The adjusted peak thus obtained is
assumed to be the peak discharge that would have occurred for the catchment area
and development at the base condition. It is not necessary to adjust to natural
conditions. A stationary series could be developed for one or more points in time.

(6) A conventional frequency analysis can be performed on the adjusted peak
discharges determined in the preceding step. If the data represent natural conditions,
Bulletin 17B procedures would be applicable. If the basin conditions represent
significant urbanization, graphical analysis may be appropriate.

. f Fr n rve n ites. There are several
approaches that can be taken to develop frequency curves at ungaged sites that have been
subject to urbanization. In order of increasing difficulty, they are: 1) application of
simple transfer procedures (e.g., Q = CIA); 2) application of available region-specific
criteria, e.g., USGS regression equations; 3) application of rainfall-runoff models to
hypothetical storm events; 4) application of simple and detailed rainfall-runoff models
with observed storm events and 5) complete period-of -record simulation. As approaches
(3) and (4) are often applied, the computational steps are presented in some detail.
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(1) Hypothetical Storm Approach

(a) Develop peak-discharge frequency curve for specific land use conditions
from available gaged data and/or regional relationships.

(b) Qevelop balanced storms of various frequencies using data from generalized
criteria, a nearby gage or the equivalent.

(¢) Develop rainfall-runoff model for the specific watershed with the adopted
land-use conditions. Calibrate runoff and routing parameters by reproducing
observed hydrographs occurring under natural conditions.

(d) Input balanced storms (from b) to rainfall-runoff model (from c).
Determine exceedance probabilities to associate with balanced storms from
adopted specific land-use conditions peak discharge frequency curve (from a)
with computed peak discharges.

(e) Modify parameters of rainfall-runoff model to reflect future urban runoff
characteristics. Input balanced storms to the urban- conditions model.

(f) Plot results assuming frequency of each event is the same for both the
adopted land use and the future urban conditions.

(2) "Simple” and Detailed Simulation of Historic Events

(a) Simulate all major historic events with a relatively simple model to establish
the ranking of events and an approximate peak discharge for each. The
approximate peaks could be developed by using a multiple linear regression
approach, by using a very simple rainfall-runoff model, or by any other
approach that will capture the hydrologic response of the basin.

(b) Perform a conventional frequency analysis of the approximate peaks
obtained in step a.

(c) Make detailed simulations of selected events and correlate the more precise
peaks with the approximate peaks.

(d) Use the relationship developed in step c to determine the desired frequency
curve. The same approach can be followed for both existing and future
conditions.

3-31



EM 1110-2-1415
5 Mar 93

CHAPTER 4
LOW-FLOW FREQUENCY ANALYSIS

4-1. Uses. Low-flow frequency analyses are used to evaluate the ability of a stream to
meet specified flow requirements at a particular location. The analysis can provide an
indication of the adequacy of the natural flow to meet a given demand with a stated
probability of experiencing a shortage. Additional analyses can indicate the amount of
storage that would be required to meet a given demand, again with a stated probability of
being deficient. The design of hydroelectric power plants, determination of minimum
flow requirements for water quality and/or fish and wildlife, and design of water storage
projects can benefit from low-flow frequency analysis.

4-2. Interpretation.

a. Analytical frequency techniques are usually not applicable to low-flow data
because most theoretical frequency distributions cannot satisfactorily fit the recorded data.
It is recommended that graphical techniques be used and that known geologic and
hydrologic conditions be kept in mind when developing the relationships. As the low
values are the major interest, the data are arranged with the smallest value first. The
probability scale is usually labeled "percent chance nonexceedance."

b. Annual low flows are usually computed for several durations (in days) with the
flow rate expressed as the mean flow for the period. For example, the USGS WATSTORE
output provides the mean flow values for daily durations of 1, 3, 7, 14, 30, 60, 90, 120
and 183 days. The default values for the HEC program STATS are the same with the
exception of using a 15-day duration instead of 14 (Table 4-1). Often a climatic year
from April 1 to March 31 is specified to provide a definite separation of the seasonal
low-flow periods. Figure 4-1 is a plot of the data in Table 4-1.

4-3. Application Problems.

a. Basin Development. The effects of any basin developments on low flows are
usually quite significant. For example, a relatively moderate diversion can be neglected
when evaluating flood flow relations, but it would reduce, or even eliminate, low flows.
Accordingly, one of the most important aspects of low flows concerns the evaluation of
past and future effects of basin developments.

b. Multi-Year Events. In regions of water scarcity and where a high degree of
development has been attained, projects that entail carryover of water for several years
are often planned. In such projects it is desirable to analyze low-flow volume frequencies
for periods ranging from 1-1/2 to 8-1/2 years or more. Because the number of
independent low-flow periods of these lengths, in even the longest historical records, is
very small and because the concept of multi- annual periods is somewhat inconsistent with
the basic concept of an "annual event;" there is no truly satisfactory way for computing
the percent chance nonexceedance for low-flow periods that are more than 1 year in
length. One procedure described in reference (37) has been used with long sequences of
synthetically generated streamflows to derive estimates of drought frequency. Although



EM 1110-2 1415
5 Mar 93

Table 4-1. Low-Flow Volume-Duration Data.

- VOLUME-DURATION DATA - FISHKILL CR AT BEACON, NY - DAILY FLOWS

e R e P " = - - — -

YEAR 1 3 7 15 30 60 20 120 183

1945 92.0 104.0 115.1 127.7 143.0 179.5 220.7 254.1 305.3
1946 9.4 12.8 17.6 21.3 28.5 49.8 62.1 58.7 75.4
1947 9.4 12.8 17.3 18.0 21.2 32.1 41.0 62.0 137.0
1948 8.3 10.2 15.7 15.7 18.9 21.6 27 .4 33.5 78.1
1949 7.1 8.2 8.0 9.1 10.0 11.3 12.3 14.3 21.2
1950 22.0 22.0 23.8 27.0 32.6 37.0 43.1 51.1 119.0
1851 20.0 33.3 40.8 45.5 58.4 73.2 84.0 88.7 116.4
1952 34.0 39.7 43.0 44.0 46.2 64.6 100.1 87.9 135.3
1953 4. 4 4.8 4.8 7.3 10.4 11.0 15.2 25.3 49.9
1954 8.4 9.5 12.3 14.6 16.7 22.9 38.8 99.8 160.8
1955 6.1 6.3 7.0 11.2 14.7 37.2 67.6 148.4 247.8
1956 18.0 21.3 23.0 26.8 29.5 53.5 58.5 71.3 98.2
1957 3.7 5.1 5.8 6.4 8.9 9.8 12.6 15.5 25.6
1958 12.0 13.3 17.4 19.2 23.8 29.6 41.5 50.9 118.5
1959 17.0 17.3 20.6 25.1 39.0 49.8 53.2 60.4 111.0
1960 48.0 48.3 53.3 63.9 77.5 122.1 136.3 149.1 213.9
1861 17.0 17.0 19.7 22.9 27.9 32.1 31.9 37.2 57.2
1962 5.9 6.6 7.0 7.8 9.9 15.0 16.7 20.6 41.9
1863 19.0 19.0 19.6 21.6 27.4 32.1 38.8 58.9 70.5
1864 1.1 1.4 1.8 2.5 4.2 7.1 9.0 11.5 18.1
1965 5.7 6.7 9.9 11.7 12.1 13.7 15.8 20.6 26.1
1966 4.0 4.5 4.7 4.8 5.0 6.4 13.2 21.8 B4.8
1967 43.0 44.0 49.3 58.1 62.0 92.4 122 .4 147.2 188.6
Note - Data based on Climatic Year of April 1 of given year through March 31 of next year.

the results obtained through the use of this procedure seem reasonable, it is impossible to
verify the accuracy of the frequency estimates.

c. Regionalization. Regionalization of low-flow events is usually not very
successful. The variations in geologic conditions such as depth to ground water, size of
ground water basin, permeability of the aquifer, etc., are not easily quantifiable to enable
translation into probable low-flow rates. It may be possible to estimate low-flow rates on
a per unit area basis for a given exceedance frequency if the study area is relatively
homogeneous with respect to geology, topography, and climate. If information is needed
at several ungaged sites, the procedures described by Riggs (28) should be reviewed for
applicability.

4-2



CFS

MEAN FLOW FOR OURATION,

103

-
o
n

10

FISHKILL CREEK AT BEACON,

EM [110-2-1415

NY 1945-1968

5 Mar 93

L1t

1

L1ttty

U]

L1111t

1

A

Y

W

&) !

7

¥

&

83-0aY

o 120-0ay

90-0AY
60-DAY

30-0AY

15-DAY
T=-DAY
3-0AY
iTOAY

N i
99.99 99.9

99 920

10

PERCENT CHANCE NONEXCEEDANCE

Figure 4-1. Low-Flow Frequency Curves.

4-3

1



EM 1110-2-1415
5 Mar 93

CHAPTER 5
PRECIPITATION FREQUENCY ANALYSIS

5-1. General Procedures. The computation of frequency curves of station
precipitation can be done by procedures similar to those for streamflow analysis described
in the preceding sections. Both graphical and analytical methods may be used. In
precipitation studies, however, instantaneous peak intensities are ordinarily not analyzed
since they are virtually impossible to measure and are of little practical value. Cumulative
precipitation amounts for specified durations are commonly analyzed, mostly for durations
of less than 3 or 4 days. The National Weather Service has traditionally used the
Fisher-Tippett Type I frequency distribution with Gumbel!’s fitting procedure. The
logarithmic normal, Pearson Type III and log-Pearson Type III (Figure 5-1) distributions,
have also been used with success. Station precipitation alone is not adequate for most
hydrologic studies, and some method of evaluating the frequency of simultaneous or
near-simultaneous precipitation over an area is necessary. Procedures for obtaining
depth-area frequency curves are usually available from National Weather Service
publications (references are given in subsequent paragraphs).

Davis WSW, CA 1872-1886
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Figure 5-1. Frequency Curve, Annual Precipitation.
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5-2. Available Regional Information. Where practical, use should be made of previous

precipitation-frequency-duration studies that have incorporated regional information. For
durations of 5 to 60 minutes in an area generally east of 105th meridian, see Hydro-35 (9).
For durations of 2 to 24 hours in the same area see Technical Paper 40 (10). Because of
the orographic effect, individual reports have been prepared for each of the 11 western
states (24). These reports have maps for 6- and 24-hour durations with extrapolation
procedures to obtain durations less than 6 hours. Longer duration events (2- to 10-days)
are presented in references (21), (22) and (23).

-3. Derivation of Flood-F ncy Relations fr

a. Application. Precipitation-frequency relations are often used to derive
flood-frequency relations where inadequate flow data are available or where existing (or
proposed) watershed changes have modified (or will modify) the rainfall-runoff
relationships. Guidelines for developing runoff frequencies from precipitation
frequencies are presented in references (10) and (44). Flood-frequency curves developed
by rainfall-runoff procedures often have less variance (lower standard deviation) than
those developed from annual flood peaks. This results because not all the possible loss
rates for a given magnitude of precipitation are modeled. If extensive use will be made of
frequency curves derived by rainfall-runoff modeling, an appropriate ratio adjustment for
the standard deviation should be developed for the region.

b. Calibration. Reference (44) describes the procedures involved in calibrating a
HEC-1 model to a flow-frequency curve based either on gaged data from a portion of the
basin or on regional flood-frequency relations. The coefficients from the calibrated
model must be consistent with those from nearby basins that have also been modeled. It
must be remembered that a frequency curve computed from observed flood peaks is based
on a relatively smalil sample. It is possible that the flow-frequency curve derived from
precipitation-frequency data is more representative of the population flow-frequency
curve than the one computed from the statistics of the observed flood peaks. But, there
are also errors in calibrating the model and establishing loss rates approximate with the
different frequency events. Therefore, the derivation of frequency relations by
rainfall-runoff modeling requires careful checking for consistency at every step.

c. Partial Duration. The precipitation-frequency relations presented in the National
Weather Service publications represent all the events above a given magnitude; therefore,
these relations are from a partial-duration series. The resulting flood frequency relations
must be adjusted if an annual peak flood frequency relationship is desired. Or, more
typically, the partial-duration series precipitation estimates are adjusted to represent
annual series estimates prior to use.
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CHAPTER 6
STAGE (ELEVATION) - FREQUENCY ANALYSIS

6-1. Uses. Maximum stage-frequency relations are often required to evaluate inundation
damage. Inundation can result from a flooding river, storm surges along a lake or ocean,
wind driven waves (runup), a filling reservoir, or combinations of any of these. Minimum
elevation-frequency curves are used to evaluate the recreation benefits at a lake or
reservoir, to locate a water supply intake, to evaluate minimum depths available for
navigation purposes, etc. (Stages are referenced to an arbitrary datum: whereas, elevations
are generally referenced to mean sea level.)

6-2. Stage Data.

a. The USGS WATSTORE Peak Flow File has, in addition to annual peak flows,
maximum annual stages at most sites. Also, some sites located near estuaries have only
stage information because the flow is affected by varying backwater conditions.

b. River stages can be very sensitive to changes in the river channel and floodway.
Therefore, the construction of levees, bridges, or channel modifications can result in stage
data that is non-homogeneous with respect to time. For riverine situations, it is usually
recommended that the flow-frequency curve (Figure 6-1) and a rating curve (stage versus
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Figure 6-1. Flow Frequency Curve, Unregulated and Regulated Conditions.

6-1



EM 1110-2-1415
5 Mar 93

flow, Figure 6-2) be used to derive a stage-frequency curve (Figure 6-3). A
stage-frequency curve derived by indirect methods may not always represent the true
relation if the site is subject to occasional backwater situations. Backwater conditions ¢an
be caused by an ice jam, a debris flow, a downstream reservoir, a high tide, a storm surge,
or a downstream river. A coincident frequency analysis may be necessary to obtain an
accurate estimate of the stage-frequency relationship (see Chapter 11).

¢. Usually the annual extreme value is used to develop an annual series, but a
seasonal series or a partial-duration series could be developed if needed. Caution must be
used in selecting independent events. Independent events are not easily determined if the
events are elevations of a large lake or reservoir; in fact even the annual events may be
significantly correlated.

6-3. Freguency Distribution. Stage (elevation) data are usually not normally distributed
(not a straight line on probability paper). Therefore, an analytical analysis should not be
made without observing the fit to the plotted points (see Chapter 2). Usually, an
arithmetic-probability plot is appropriate for stage or elevation data, but there may be
situations where a logarithmic or some other appropriate transformation will make the plot
more nearly linear. When drawing the curve, known constraints must be kept in mind.

As an example, the bottom elevation, bankfull stage, levee heights, etc., would be
important for a riverine site. The minimum pool, top of conservation pool, top of flood
control pool, spillway elevation, operation criteria, etc., all influence the
elevation-frequency relation for a reservoir, Figure 6-4. These constraints usually make
these frequency relations very non-linear. Extrapolation of stage (elevation) frequency
relations must be done very cautiously. Again, any constraints acting on the relations
must be used as a guide in drawing the curves. Historical information can be incorporated
into a graphical analysis of stage (elevation) data by use of the procedures in Appendix 6
of Bulletin 17B (ref 46). The statistical tests (Appendix 4, ref 46) to screen for outliers
should not be applied unless the stage (elevation) data can be shown to nearly fit a normal
distribution.

6-4. Expected Probability. The expected probability adjustment should not be made to
frequency relations derived by graphical methods. The median plotting position formula
corrects for the bias caused by small sample sizes. The expected probability adjustment
should be made when an analytical method is used directly to derive the stage (elevation)
frequency relation. The expected probability adjustment should be made to the
flow-frequency curve when the stage (elevation) frequency relation is derived indirectly.
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CHAPTER 7
DAMAGE-FREQUENCY RELATIONSHIPS

7-1. Introduction.

a. There are three methods that may be used to compute average annual damage and
are herein termed the historic method, the simulation method and the frequency method.
If 50 years of damage information were available for an area that has remained in
essentially the same land use with a reasonably constant level of economic activity,
historic damage could be scaled to the present to account for price differences (inflation)
and the average simply computed. This approach is termed the historic method and is the
most direct but is seldom used because sufficient data usually do not exist and the land use
and economic activity of an area are usually changing.

b. A hydrologic simulation model could be developed, or the historic record used,
along with damage functions to generate a time trace of simulated damage. The average
of the time trace of damage would be the average annual damage. This would be termed
the "simulation” method. The simulation method has the advantage of permitting the use
of complex damage functions that can consider more than a single parameter and thus
enable a more accurate computation of damage. The disadvantage of this method is that
the future floods are assumed to exactly duplicate the historic floods and no consideration
given to the possibility of larger floods.

c. The most widely used approach within the Corps of Engineers is the frequency
technique. This technique is described in detail in Section 7-2. This technique addresses
the disadvantages of the previous two methods, and yet is fairly easily applied.
Experience in the development and application of damage functions is essential to
computation of reasonable estimates. Care should be taken to assure the rating curve is
not looped so that discharge is a unique function of stage. Otherwise more complex
functions that correctly relate stage and discharge should be developed and applied.
Damage functions in agricultural areas are often a function of the season and the duration
of flooding. Sensitivity analysis may be useful in determining the reliability of the
computed expected annual damage considering the uncertainties involved.

omputation of Expected Annual Dam

a. Figure 7-1 shows a schematic of the application of the three basic damage
evaluation functions used to compute the expected value of the annual damage. The term
"expected” is used rather than "average" because a frequency curve is used to represent the
distribution of future flood events and the expected value of damage is computed by the
summation of probability weighted estimates of damage.

b. The steps involved in determining the reduction in annual damage due to project
measures are:

(1) Develop the basic relationships (stage-damage, stage-discharge, and
discharge-exceedance frequency functions) for each index location for existing
conditions.
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(2) Combine the stage-damage and the stage-discharge relations into an intermediate
discharge-damage function. Make certain that the stage datum for the stage-damage
and stage-discharge functions is consistent for the index location.

(3) Combine the discharge-exceedance frequency (in events per year) and
discharge-damage function into a damage-exceedance frequency relationship.

(4) Compute the area beneath the damage-exceedance frequency relation (expected
annual damage) for each index location and sum to obtain the total expected annual

flood damage.

(5) Repeat step (1) for each alternative flood plain management plan under
investigation, i.e., revise the three basic evaluation functions as necessary.

(6) Repeat steps (2)-(4).

(7) Subtract results of step (4) (with project) for each plan from results of step (4)
for without-project measures. The differences will be expected annual damage
reduction (raw damage reduction benefits) for each plan.

7-3. Eguivalent Annual Damage.

a. To determine the expected annual benefit it is necessary to account for the
changes in expected annual damage that might occur over the life of the project. This
adjustment can be of substantial significance. Watershed runoff characteristics may be
changing with time due to changes in land use, there may be long-term adjustments in
alluvial channel flow regimes that would cause the rating curve to change with time, and
the damage potential of structures and facilities will certainly change with time resulting
in changed stage~damage functions.

b. To develop a single measure of the damage potential, the expected annual damage
must be evaluated over time, at say 10 year intervals with revised evaluation functions at
each interval. The revised expected annual damage is discounted to the base period and
then the raw damage value is amortized over the life of the project to obtain equivalent
annual damage. The computer program "Expected Annual Flood Damage Computation”
(54) has the capability to make these computations, and describes in detail the basic
concepts presented in this chapter.
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CHAPTER 8
STATISTICAL RELIABILITY CRITERIA

8-1. QObjective. One principal advantage of analytical frequency analysis is that there are
means for evaluating the reliability of the parameter estimates. This permits a more
complete understanding of the frequency estimates and provides criteria for
decision-making. For instance, a common statistical index of reliability is the standard
error of estimate, which is defined as the root-mean-square error. In general, it is
considered that the standard error is exceeded on the positive side one time out of six
estimates, and equally frequently on the negative side, for a total of one time in three
estimates. An error twice as large as the standard error of estimate is considered to be
exceeded one time in 40 in either direction, for a total of one time in 20. These
statements are based on an assumed normal distribution of the errors; thus, they are only
approximate for other distributions of errors. Exact statements as to error probability
must be based on examination of the frequency curve of errors or the distribution of the
errors. Both the standard error of estimate and the confidence limits are discussed in this

chapter.

8-2. Reliability of Frequency Statistics. The standard errors of estimate of the mean,

standard deviation, and skew coefficient, which are the principal statistics used in
frequency analysis, are given by the following equations:

5 = S/(N)* (8-1)
S¢ = S/(2N)* (8-2)
S = (6N(N-1)/[(N-2)(N+1)(N+3)]}* (8-3)

where:

S; = the standard error of estimate for the mean

Ss = the standard error of estimate for the standard deviation

S, =  the standard error for estimate for the skew coefficient, and S and N are
defined in Section 3-2.

These have been used to considerable advantage, as discussed in Chapter 9, in drawing
maps of mean, standard deviation and skew coefficient for regional frequency studies.

8-3. Reliabilitv of Freguencv Curves. The reliability of analytical frequency

determinations can best be illustrated by establishing confidence limits. The error of the
estimated value at a given frequency based on a sample from a normal distribution is a
function of the errors in estimating the mean and standard deviation. (Note that in
practical application there are errors introduced by not knowing the true theoretical
distribution of the data, often termed model error.) Criteria for construction of
confidence limits are based on the non-central t distribution. Selected values are given in
Table F-9. Using that appendix, the confidence limit curves shown on Figure 8-1
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were calculated. While the expected frequency is that shown by the middle curve, there is
one chance in 20 that the true value for any given frequency is greater than that indicated
by the .05 curve and one chance in 20 that it is smaller than the value indicated by the .95
curve. There are, therefore, nine chances in 10 that the true value lies between the .05
and .95 curves. Appendix E and Example ! in Appendix 12 of Bulletin 17B (40) provide

additional information and example computations.
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CHAPTER 9
REGRESSION ANALYSIS AND APPLICATION TO REGIONAL STUDIES

9-]. Nature and Application.

a. General. Regression analysis is the term applied to the analytical procedure for
deriving prediction equations for a variable (dependent) based on given values of one or
more other variables (independent). The dependent variable is the value sought and is to
be related to various explanatory variables which will be known in advance, and which
will be physically related to the dependent variable. For example, the volume of
spring-season runoff from a river basin (dependent variable) might be correlated with the
depth of snow cover in the watershed (explanatory variable). Recorded values of such
variables over a period of years might be graphed and the apparent relation sketched in by
eye. However, regression analysis will generally permit a more reliable determination of
the relation and has the additional advantage of providing a means for evaluating the
reliability of the relation or of estimates based on the relation.

b. Definitions. The function relating the variables is termed the "regression
equation," and the proportion of the variance of the dependent variable that is explained
by the regression equation is termed the "coefficient of determination,” which is the
square of the "correlation coefficient." Correlation is a measure of the association between
two or more variables. Regression equations can be linear or curvilinear, but linear
regression suffices for most applications, and curvilinear regression is therefore not
discussed herein. Often a curvilinear relation can be linearized by using a logarithmic or
other transform of one or more of the variables.

9-2. Calculation of Regression Equations.

a. Simple Regression. In a simple regression (one in which there is only one
independent, or explanatory, variable), the linear regression equation is written:

Y = a+bX (9-1)

in which Y is the dependent variable, X is the independent variable, "a" is the regression
constant, and "b" is the regression coefficient. The coefficient "b" is evaluated from the
tabulated data by use of the following equations:

b = Nyx)/Yx)? (9-2a)
or

b = RS,/S, (9-2b)

in which y is the deviation of a single value Y, from the mean (?) of its series, X is
similarly defined, Sy and Sx are the respective standard deviations and R is computed by
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Equation 9-11. The regression constant is obtained from the tabulated data by use of the
following equation:

a=Y-bX (9-3)

All summations required for a simpie linear regression can be obtained using Equations 9-
8 and 9-9a.

b. Multiple Regression. In a multxple regress:on (one in which there is more than
one explanatory variable) the linear regression equation is written:

Y = a+b,X,+b,X,....+bX, (9-4)

In the case of two explanatory variables, the regression coefficients are evaluated from the
tabulated data by solution of the following simultaneous equations:
U(x)%b,y + Uxyx)b, = J(yx,) (9-5)
Ux,x,)b, +Z(x2)2b1 = J(yx,)
In the case of three expianatory variables, the b coefficients can be evaluated from the
tabulated data by solution of the following simultaneous equations:
3(x,0%b, + T(x4xx)b, + Hx,x5)b5 = (yX,) (9-6)
Uxyx,)b, + Z(x.‘,)-"b2 + 2(x,x5)by = (yx,)
UXx5)b, + Y(X,X5)b, + )_:(x-,‘)"':b3 = (yX5)
For cases of more than three explanatory variables, the appropriate set of simultaneous
equations can be easily constructed after studying the patterns of the above two sets of
equations. In such cases, solution of the equations becomes tedious, and considerable time
can be saved by use of the Crout method outlined in reference (51) or (52). Also,
programs are available for solution of simple or multiple linear regression problems on

practically any type of electronic computer. For muitiple regression equations, the
regression constant is determined as follows:

a = Y-bX,-bX,....-bX, (9-7)

In Equations 9-2, 9-5 and 9-6, the quantities J(x)?, ¥(yx) and §(x 1X,) can be determined
by use of the following equations:
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Ux)2 = WX - (TX)UN (9-8)
Uyx) = UXY)-IXTY/N (9-9a)
Uxxy) = UXXy) - TX, TX,/N (9-9b)

9-3. Th rrelation fficient an ndard Error.

a. General. The correlation coefficient is the square root of the coefficient of
determination, which is the proportion of the variance of the dependent variable that is
explained by the regression equation. A correlation coefficient of 1.0 would correspond to
a coefficient of determination of 1.0, which is the highest theoretically possible and
indicates that whenever the values of the explanatory variables are known exactly, the
corresponding value of the dependent variable can be calculated exactly. A correlation
coefficient of 0.5 would correspond to a coefficient of determination of 0.25, which
would indicate that 25 percent of the variance is accounted for and 75 percent
unaccounted for by the regression equation. The remaining variance (error variance)
would be 75 percent of the original variance and the remaining standard error would be
the square root of 0.75 (or 87 percent) multiplied by the original standard deviation of the
dependent variable. Thus, with a correlation coefficient of 0.5, the average error of
estimate would be 87 percent of the average errors of estimate based simply on the mean
observed value of the dependent variable without a regression analysis.

b. Determination Coefficient. The sample coefficient of multiple determination (R?)
can be computed by use of the following equation:

b, 2yx,) + by J(yx,) ... + b, Yyx)

R? (9-10)
Xy)?
In the case of simple correlation, Equation 9-10 resolves to:
R? = Jyx)%/Uy)? Yx)? ©-11)

An unbiased estimate of the coefficient of determination is recommended for most
applications, and is computed by the following equation:

R? = 1-(1-R¥(N-1)/df (9-12)

The number of degrees of freedom (df), is obtained by subtracting the number of
variables (dependent and explanatory) from the number of events tabulated for each

variable.

c. Standard Error. The adjusted standard error (S,) of a set of estimates is the
root-mean-square error of those estimates corrected for the degrees of freedom. On the
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average, about one out of three estimates will have errors greater than the standard error
and about one out of 20 will have errors greater than twice the standard error. The
adjusted error variance is the square of the adjusted standard error. The adjusted
standard error or error variance of estimates based on a regression equation is calculated
from the data used to derive the equation by use of one of the following equations:

Uy)? - by Uyx,) - by Xyx,) ... - by Uyx,)

s& = (9-13a)
df

= (1-R?) Uy)%/(N-1) (9-13b)

= (1-R%s? (9-13c)

Inasmuch as there is some degree of error involved in estimating the regression
coefficients, the actual standard error of an estimate based on one or more extreme values
of the explanatory variables is somewhat larger than is indicated by the above equations,
but this fact is usually neglected.

d. Reliability. In addition to considering the amount of variance that is explained by
the regression equation, as indicated by the determination coefficient or the standard
error, it is important to consider the reliability of these indications. There is some chance
that any correlation is accidental, but the higher the correlation and the larger the sample
upon which it is based, the less is the chance that it would occur by accident. Also, the
reliability of a regression equation decreases as the number of independent variables
increases. Ezekiel (8) gives a set of charts illustrating the reliability of correlation
coefficients. It shows, for example, that an unadjusted correlation coefficient (R) of 0.8
based on a simple linear correlation with 12 degrees of freedom could come from a
relationship that has a true value as low as 0.53 in one case out of 20. On the other hand,
the same unadjusted correlation coefficient based on a multiple linear correlation with the
same number of degrees of freedom but with seven independent variables, could come
from a relationship that has a true value as low as zero in one case out of 20. With only 4
degrees of freedom, an unadjusted correlation coefficient of 0.97 would one time in 20
correspond to a true value of 0.8 or lower, in the case of simple correlation, and as low as
zero in a seven-variable multiple correlation. Accordingly, extreme care must be
exercised in the use of multiple correlation in cases based on small sampies.

imple Linear Regression Example.

a. General. An example of a simple linear regression analysis is illustrated on
Figures 9-1 and 9-2. The data for this example are the concurrent flows at two stations
in Georgia for which a two-station comparison is desired (see Section 3-7). The long
record station is the Chattooga, so the flows for this station are selected as X; therefore
the flows for the short record station (Tallulah) are assigned to Y.

b. Phvsical Relationship. The values in the table are the annual peak flows for the

water years 1965-1985 (21 values). These two stations are less than 20 miles apart and are
likely to be subject to the same storm events; therefore, the first requirement of a
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Chattooga River Tallulah River
Flow Log Flow Log
Year X’ X A\ Y
1965 | 27200 4.434568 7440  3.871572 zxz‘ 82.55075 Iy = 73.07071
1966 | 13400 4.127104 5140  3.710963 £x2= 325.93995 £v2= 255.61486
1967 | 15400 4.187520 2800 3.447158 . .
1968 | 5620 3.749736 3100 3.491361 X = 3.93099 T o= 3.47956
1969 | 14700  4.167317 2470  3.392696 2.
1970 | 3480 3.541579 2010 3.303196 (TXY)" = 288.3745%
1971 | 3290 3.517195 976  2.989449 (232
1972 | 7440 3.871572 2160  3.334453 2N . 324.50602
1973 | 19600 4.292256 8500 3.929418 R
1974 | 6400 3.806179 4660 3.668385 2% | el as3
1975 | 6340 3.802089 2410 3.382017 W .
1976 | 18500 4.267171 6530  3.814913 Ix v
1977 | 13000 4.113943 3580 3.553883 ZXIY . 287.20008
1978 | 7850 3.894869 4090 3.611723
1979 | 14800 4.170261 6240 3.795184 2 o
1980 | 10900 4.037426 2880 3.459392 x© = 1.43393 (by equation 9-8)
1981 | 4120 3.514897 1600 3.204119 xy = 1.13351 (v " 9-98)
1982 | s000 3.698970 1960 3.292256 2 . " " .8
1983 | 7910 3.898176 3260 3.513217 y® = 1.26115 ( 98
1984 | 4810 3.682145 2000 3.301029
1985 | 4740 3.675778 1010  3.004321
Computations for a, b, RZ, and R2:
b = 1.13351/1.433922 (by equation 9-2a)
= 0.79049
8 = 3.47956 - (0.79049)(3.93099) (by equation 9-3)
= 0.37213
R = (1.13351)2/(1.43393)¢1.36115) (by equation 9-11)
= 0.658290
£2 2 1 - (1-0.65892)(21-1)/(21-2) (by equation 9-12)
= 0.64031
Computations for standard error:
$¢2 = (1-0.640312)(1.36115)/(21-1) (by equation 9-13b)
= 0.02448
S, = 0.15646

Regression equation: Y = 0.37213 « 0.79049X (by equation 9-1)

79

Yz 2.356X‘°' (without logarithms)

Figure 9-1. Computation of Simple Linear Regression Coefficients.
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regression analysis (logical physical relationship) is satisfied. Because runoff is a
multiplicative factor of precipitation and drainage area, the logarithmic transformation is
likely to be appropriate when comparing two stations with different drainage areas. A
linear correlation analysis was made, as illustrated on Figure 9-1, using equations given in
Section 9-2. The annual peaks for the each station are plotted against each other on
Figure 9-2,

¢. Regression Equation. The regression equation is plotted as Curve A on Figure
9-2. This curve represents the best estimate of what the annual peak Tallulah River
would be given the observed annual peak on the Chattooga River. Although not
computed in Figure 9-1, Curve B represents the regression line for estimating the annual
peak flow for the Chattooga River given an observed annual peak on the Tallulah River.

TWO-STATION COMPARISION EXAMPLE
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CHATTOO6A RIVER ANNUAL PEAK (X'), CFS

Curve A - Regression line with Y as dependent variable
Curve 8 - Regression line with X as dependent variable

Figure 9-2. Illustration of Simple Regression.
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d. Reliability. In addition to the curve of best fit, an approximate confidence
interval can be established at a distance of plus and minus 2 standard errors from Curve
A. Because logarithms are used in the regression analysis, the effect of adding (or
subtracting) twice the standard error to the estimate is equivalent to multiplying (or
dividing) the annual peak values by the antilogarithm of twice the standard error. In this
case, the standard error is 0.156, and the antilogarithm of twice this quantity is 2.05.
Hence, values of annual peak flow represented by the confidence interval curves are those
of Curve A multiplied and divided respectively by 2.05. There is a 95 percent chance that
the true value of the dependent variable (Y) for a single observed independent value (X)
will lie between these limits. The confidence interval is not correct for repeated
predictions using the same sample (6).

Factors R ibl r Nondetermin

a. General. Factors responsible for correlations being less than 1.0 (perfect
correlation) consist of pertinent factors not considered in the analysis and of errors in the
measurement of those factors considered. If the effect of measurement errors is
appreciable, it is possible in some cases to evaluate the standard error of measurement of
each variable (see Paragraph 9-3c) and to adjust the correlation results from such effects.

b. Measurement Errors. If an appreciable portion of the variance of Y (dependent
variable) is attributable to measurement errors and these errors are random, then the
regression equation would be more reliable than is indicated by the standard error of
estimate computed from Equation 9-13. This is because the departure of some of the
points from the regression line on Figure 9-2 is artificially increased by measurement
errors and therefore exaggerates the unreliability of the regression function. In such a
case, the curve is generally closer to the true values than to the erroneous observed values.
Where there is large measurement error of the dependent variable, the standard error of
estimate should be obtained by taking the square root of the difference of the error
variance obtained from Equation 9-13 and the measurement error variance. If well over
half of the variance of the points from the best-fit line is attributable to measurement
error in the dependent variable, then the regression line would actually yield a better
estimate of a value than the original measurement. If appreciable errors exist in the
values of an explanatory variable, the regression coefficient and constant will be affected,
and erroneous estimates will result. Hence, it is important that values of the explanatory
variables be accurately determined, if possible.

¢. Qther Factors. In the example used in Section 9-4 there may well be factors
responsible for brief periods of high intensities that do not contribute appreciably to
annual precipitation. Consequently, some locations with extremely high mean annual
precipitation may have maximum short-time intensities that are not correspondingly high,
and vice versa. Therefore, the station having the highest mean annual precipitation would
not automatically have the highest short-time intensity, but would in general have
something less than this. On the other hand, if mean annual precipitation were made the
dependent variable, the station having the highest short-time intensity would be expected
to have something less than the highest value of mean annual precipitation. Thus, by
interchanging the variables, a change in the regression line is effected. Curve B of Figure
9-2 is the regression curve obtained by interchanging the variables Y and X. As thereisa
considerable difference in the two regression curves, it is important to use the variable
whose value is to be calculated from the regression equation as the dependent variable in
those cases where important factors have not been considered in the analysis.
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d. Average Slope. If it is obvious that all of the pertinent variables are included in
the analysis, then the variance of the points about the regression line is due entirely to
measurement errors, and the resulting difference in slope of the regression lines is entirely
artificial. In cases where all pertinent variables are considered and most of the
measurement error is in one variable, that variable should be used as the dependent
variable. Its errors will then not affect the slope of the regression line. In other cases
where all pertinent variables are considered, an average slope should be used. An average
slope can be obtained by use of the following equation:

b = S,/S, (9-14)

9-6. Multiple L inear Regression Example.

a. General. An example of a multiple linear regression analysis is illustrated on
Figure 9-3. In this case, the volume of spring runoff is correlated with the water
equivalent of the snow cover measured on April 1, the winter low-water flow (index of
ground water) and the precipitation falling on the area during April. Here again, it was
determined that logarithms of the values would be used in the regression equation.
Although loss of 4 degrees of freedom of 12 available, as in this case, is not ordinarily
desirable, the adjusted correlation coefficient attained (0.94) is particularly high, and the
equation is consequently fairly reliable. The computations in Figure 9-3 were made with
the HEC computer program MLRP (reference 50).

b. Logarithmic Transformation. In determining whether logarithms should be used
for the dependent variable as above, questions such as the following should be considered:
"Would an increase in snow cover contribute a greater increment to runoff under
conditions of high ground water (wet ground conditions) than under conditions of low
ground water?" If the answer is yes, then a logarithmic dependent variable (by which the
effects are multiplied together) would be superior to an arithmetic dependent variable (by
which the effects are added together). Logarithms should be used for the explanatory
variables when they would increase the linearity of the relationship. Usually logarithms
should be taken of values that have a natural lower limit of zero and a natural upper limit
that is large compared to the values used in the study.

c. Function of Multiple R ion. It should be recognized that multiple regression

performs a function that is difficult to perform graphically. Reliability of the results,
however, is highly dependent on the availability of a large sampling of all important
factors that influence the dependent variable. In this case, the standard error of an
estimate as shown on Figure 9-3 is approximately 0.038, which, when added to a
logarithm of a value, is equivalent to multiplying that value by 1.09. Thus, the standard
error is about 9 percent, and the 1-in-20 error is roughly 18 percent. As discussed in
Paragraph 9-3d, however, the calculated correlation coefficient may be accidentally high.

9-7. Partial Correlation. The value gained by using any single variable (such as April
precipitation) in a regression equation can be measured by making a second correlation
study using all of the variables of the regression equation except that one. The loss in
correlation by omitting that variable is expressed in terms of the partial correlation
coefficient. The square of the partial correlation coefficient is obtained as follows:

9-8
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INPUT_DATA
08S NG 0BS ID LOG @  LOG SNO LOG GW  LOG PRCP
11936 .939 .399 .325 .710
2 1937 .945 .343 .385 .634
3 1938 1.052 .369 408 .886
4 1939 Pk .246 .428 .581
5 1940 .666 .181 .316 1.027
6 1941 1.081 .297 .460 1.315
71942 1.060 .29 .51 1.097
8 1943 .892 .354 .37 .707
9 1944 1.021 .295 .395 1.240
10 1945 .920 .321 .376 1.091
11 196 .755 .168 413 1.038
12 1947 .960 .280 410 979
STATISTICS OF DATA
STANDARD
VARIABLE AVERAGE VAR IANCE DEVIATION
LOG SNO .2960 .0050 .0704
LOG GW .4005 .0028 .0531
LOG PRCP 9421 .0572 .2392
L0G Q 9196 .0181 .1346 DEPENDENT
VARIABLE
UNBIASED CORRELATION COEFFICIENTS (R)
VARIABLE LOG SNO  LOG GW LOG PRCP LoG @
LOG SNO  1.0000 .0000  -.0459 .6308
LOG GW .0000  1.0000 .12715 4170
LOG PRCP - .0459 L1275 1.0000 .2011
L0 @ .6308 L4170 .2011  1.0000
REGRESSION RESULTS
PARTIAL
INDEPENDENT REGRESSION DETERMINATION
VARIABLE COEFFICIENT COEFFICIENT
LOG SNO 1.621806 .9106
LOG W 1.012912 .6814
LOG PRCP .273390 L7451
UNBIASED STANDARD
REGRESSION R R ERROR OF
CONSTANT SQUARE SQUARE ESTIMATE
-.223698 .9437 .9226 0375
Figure 9-3. Example Multiple Linear Regression Analysis.
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a2 = 1 - (1-RZ,0/(1-R2 ) (9-15)

in which the subscript to the left of the decimal indicates the variable whose partial
correlation coefficient is being computed, and the subscripts on the right of the decimal
indicate the independent variables. An approximation of the partial correlation can
sometimes be made by use of beta coefficients. After the regression equation has been
calculated, beta coefficients are very easy to obtain by use of the following equation:

B, = bS./Sy (9-16)

The beta coefficients of the variables are proportional to the influence of each variable on
the result. While the partial correlation coefficient measures the increase in correlation
that is obtained by addition of one more explanatory variable to the correlation study, the
beta coefficient is a measure of the proportional influence of a given explanatory variable
on the dependent variable. These two coefficients are related closely only when there is
no interdependence among the various explanatory variables. However, some explanatory
variables naturally correlate with each other, and when one is removed from the equation,
the other will take over some of its weight in the equation. For this reason, it must be
kept in mind that beta coefficients indicate partial correlation only approximately.

9-8. Verification of Regression Results. Acquisition of basic data after a regression

analysis has been completed will provide an opportunity for making a check of the results.
This is done simply by comparing the values of the dependent variable observed, with
corresponding values calculated from the regression equation. The differences are the
errors of estimate, and their root-mean-square is an estimate of the standard error of the
regression-equation estimates (Paragraph 9-3). This standard error can be compared to
that already established in Equation 9-13. If the difference is not significant, there is no
reason to suspect the regression equation of being invalid, but if the difference is large,
the regression equation and standard error should be recalculated using the additional data
acquired.

9-9. Regression by Graphical Technigues. Where the relationships among variables used

in a regression analysis are expected to be curvilinear and a simple transformation cannot
be employed to make these relationships linear, graphical regression methods may prove
useful. A satisfactory graphical analysis, however, requires a relatively large number of
observations and tedious computations. The general theory employed is similar to that
discussed above for linear regression. Methods used will not be discussed herein, but can
be found in references 8 and 27.

9-10. Practical Guidelines. The most important thing to remember in making
correlation studies is that accidental correlations occur frequently, particularly when the
number of observations is small. For this reason, variables should be correlated only when
there is reason to believe that there is a physical relationship. It is helpful to make
preliminary examination of relationships between two or more variables by graphical
plotting. This is particularly helpful for determining whether a relationship is linear and
in selecting a transformation for converting curvilinear relationships to linear
relationships. It should also be remembered that the chance of accidentally high
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correlation increases with the number of correlations tried. If a variable being studied is
tested against a dozen other variables at random, there is a chance that one of these will
produce a good correlation, even though there may be no physical relation between the
two. In general, the results of correlation analyses should be examined to assure that the
derived relationship is reasonable. For example, if streamflow is correlated with
precipitation and drainage area size, and the regression equation relates streamflow to
some power of the drainage area greater than one, a maximum exponent value of one
should be used, because the flow per square mile usually does not increase with drainage
area when other factors remain constant.

9-11. Regional Frequency Analysis.

a. General. In order to improve flood frequency estimates and to obtain estimates
for locations where runoff records are not available, regional frequency studies may be
utilized. Procedures described herein consist of correlating the mean and standard
deviation of annual maximum flow values with pertinent drainage basin characteristics by
use of multiple linear regression procedures. The same principles can be followed using
graphical frequency and correlation techniques where these are more appropriate.

b. Freguency Statistics. A regional frequency correlation study is based on the two
principal frequency statistics: the mean and standard deviation of annual maximum flow
logarithms. Prior to relating these frequency statistics to drainage basin characteristics, it
is essential that the best possible estimate of each frequency statistic be made. This is
done by adjusting short-record values by the use of longer records at nearby locations.
When many stations are involved, it is best to select long-record base stations for each
portion of the region. It might be desirable to adjust the base station statistics by use of
the one or two longest-record stations in the region, and then adjust the short-record
station values by use of the nearest or most appropriate base station. Methods of adjusting
statistics are discussed in Section 3-7.

. in Ch ristics. A regional analysis involves the determination of
the main factors responsible for differences in precipitation or runoff regimes between
different locations. This would be done by correlating important factors with the
long-record mean and with the long-record standard deviation of the frequency curve for
each station (the long-record values are those based on extension of the records as
discussed in Section 3-7). Statistics based on precipitation measurements in mountainous
terrain might be correlated with the following factors:

- Elevation of station

- General slope of surrounding terrain
- Orientation of that siope

- Elevation of windward barrier

- Exposure of gage

- Distance of leeward controlling ridge
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Statistics based on runoff measurements might be correlated with the following factors:

- Drainage area (contributing)

- Stream length

- Slope of drainage area or of main channel
- Surface storage (lakes and swamps)

- Mean annual rainfall

- Number of rainy days per year

- Infiltration characteristics

- Urbanized Area

r Relationships. In order to obtain satisfactory results using multiple linear
regression techniques, all variables must be expressed so that the relation between the
independent and any dependent variable can be expected to be linear, and so that the
interaction between two independent variables is reasonable. An illustration of the first
condition is the relation between rainfall and runoff. If the runoff coefficient is sensibly
constant, as in the case of urban or airport drainage, then runoff can be expected to bear a
linear relation to rainfall. However, in many cases initial losses and infiltration losses
cause a marked curvature in the relationship. Ordinarily, it will be found that the
logarithm of runoff is very nearly a linear function of rainfall, regardless of loss rates,
and in such cases, linear correlation of logarithms would be most suitable. An illustration
of the second condition is the relation between rainfall, D, drainage area, A, and runoff,
Q. If the relation used for correlation is as follows:

Q = aD+bA +¢ (9-17)

then it can be seen that one inch change in precipitation would add the same amount of
flow, regardless of the size of drainage area. This is not reasonable, but again a
transformation to logarithms would yield a reasonable relation:

logQ = dlogD+elog A +logf (9-18)
or transformed:
Q = fD%" (9-19)

Thus, if logarithms of certain variables are used, doubling one independent quantity will
multiply the dependent variable by a fixed ratio, regardless of what fixed values the other
independent variables have. This particular relationship is reasonable and can be easily
visualized after a little study. There is no simple rule for deciding when to use
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logarithmic transformation. It is usually appropriate, however, when the variable has a
fixed lower limit of zero. The transformation should provide for near-uniform variance
throughout the range of data.

xample of Regional Correlation. An illustrative example of a regional
correlation analysis for the mean log of annual flood peaks (Y) with several basin
characteristics is shown on Figure 9-4. In this example, the dependent variable is
primarily related to the drainage area size, but precipitation and slope added a small
amount to the adjusted determination coefficient. The regression equation selected for the
regional analysis included only drainage area as an independent variable.

f. Selection of Useful Variables. In the regression equations shown on Figure 9-4,

the adjusted determination coefficient increases as variables are deleted according to their
lack of ability to contribute to the determination. This increase is because there is a
significant increase in the degrees of freedom as each variable is deleted for this small
sample of 20 observations. Both the adjusted determination coefficient and standard error
of estimate should be reviewed to determine how many variables are included in the
adopted regression equation. Even in the case of a slight increase in correlation obtained
by adding a variable, consideration of the increased unreliability of R as discussed in
Section 9-3 might indicate that the factor should be eliminated in cases of small samples.
The simplest equation that provides an adequate predictive capability should be selected.
In this example, there is some loss in determination in only using drainage area, but this
simple equation is adopted to illustrate regional analysis. The adopted equation is:

log Y =1.586 + 0.962 log (AREA) (9-20)

or .
Y = 38.5 AREA -9 (9-21)

The R2 for this equation is 0.839.

g. Use of Map. Many hydrologic variables cannot be expressed numerically.
Examples are soil characteristics, vegetal cover, and geology. For this reason, numerical
regional analysis will explain only a portion of the regional variation of runoff
frequencies. The remaining unexplained variance is contained in the regression errors,
which varies from station to station. These regression errors are computed by subtracting
the predicted values from the observed values for each station. These errors can then be
plotted on a regional map at the centroid of each station’s area, and lines of equal values
drawn (perhaps using soils, vegetation, or topographic maps as a guide). Combining this
regional error with the regression equation should be much better than using the single
constant for the entire region. In smoothing lines on such a map, consideration should be
given to the reliability of computed statistics. Equations 8-1 and 8-2 can be used to
compute the standard errors of estimating means and standard deviations. In Figure 9-5
for example, Station 5340 (observation 11) had 66 years of record and the standard error
for the mean was 0.028. There is about one chance in three that the mean is in error by
more than 0.029 or about one chance in twenty that the mean is in error by more than
0.056 (twice the standard error). Figure 9-6 shows a map of the errors and Figure 9-5
shows the regional map values for each station and evaluates the worth of the map. The
map has a mean square error of 0.0112 compared to that of 0.0356 for the regression

equation alone.
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1weyT DATA
OBS NO O8S 1D AREA SLOPE LENGTN LAKES ELEY FOREST PRECIP SOILS MEAN
1 S090 292.0 6.3 31.5 1.8 1.230 35.0 40.0 3.5 3.783
2 5140 185.0 14.3 30.3 1.0 1.026 52.0 38.2 3.2 3.783
3 S180 282.0 &46.0 9.8 1.0 1.740 64.0 35.0 3.3 4.030
& 5200 298.0 20.1 37.3 1.0 1.600 30.0 36.5 3.3 &.044
5 5205 771.0 6.4 46.8 1.0 1.647 33.0 34.0 3.2 4.333
6 5260 114.0 35.8 17.5 1.0 1.383 30.0 3.0 3.0 3.751
7 S270 $2.2 29.9 17.6 1.0 1.489 28.0 33.0 3.0 2.637
8 5280 66.8 12.6 20.1 1.0 1.305 41.0 33.6 3.0 3.186
9 S305 .5 45.2 13.9 1.0 1.123 27.0 34.6 3.0 3.348
10 S320 215.0 1.7 27.5% 1.1 966 57.0 35.5 3.0 3.995
11 $340 343.0 21.3 36.7 3.5 1.370 54.0 42.0 3.3 4.122
12 SIS 15.7 291.0 5.6 1.0 1.350 81.0 40.0 3.5 2.722
13 S380 43.8 52.2 22.1 1.0 1.300 85.0 43.0 3.5 3.078
1% S3%0 274.0 39.6 32.3 1.6 1.200 70.0 43.0 2.8 3.930
15 S44S 136.0 37.4 22.7 1.0 1.800 94.0 43.0 4.9 3.590
16 5485 604.0 22.8 &4.5 1.0 1.900 83.0 37.0 3.2 4.092
17 5495 37.7 54.8 15.2 1.0 1.350 67.0 37.8 3.2 3.284
18 $500 173.0 5.7 26.2 1.0 1.700 65.0 39.0 3.0 3.816
19 S520 &43.0 26.4 56.0 1.3 1.600 89.0 &4.0 3.2 4.275
20 5525 3.8 15.7 10.0 1.0 1.800 80.0 47.0 6.3 3.249
STATIST F_DATA
STANDARD
VARIABLE AVERAGE VARIANCE DEVIATION
AREA 2.1488 2249 4743
SLOPE 1.5105 . 1255 3542
LENGTH 1.3832 .0550 2345
STORAGE 0540 0171 .1308
ELEV 1.4339 .0707 2659
FOREST 1.7293 .0353 1879
PRECIP 1.5845 .0020 .0hbs
SOILS .5230 .0034 0581
KEAN 3.6524 2455 4955 DEPEMDENT VARIABLE
A RELAT FF NT!
VARTABLE AREA SLOPE LENGTH LAKES ELEY FOREST PRECIP SOILS MEAN
AREA 1.0000 -.6327 9304 2749 .0000 .0000 .0000 .0000 9159
SLOPE -.6327 1.0000 - T64 -.1318 L1187 3635 . 1867 .2053 -.4521
LENGTN 9304 - T4 1.0000 2345 .0000 .0000 .0000 -.1096 .8263
STORAGE 2T49 -.1318 2348 1.0000 .0000 .0000 2812 .0000 2596
ELEV .0000 1187 .0000 .0000 1.0000 2™ .0000 5297 .0000
FOREST . 0000 .3635 .0000 .0000 - 2™ 1.0000 A877 4304 .0000
PRECIP .0000 . 1887 .0000 2812 .0000 6877 1.0000 5412 .0000
SOILS .0000 .2053 -. 1096 .0000 5297 4304 5412 1.0000 .0000
MEAN 9159 - .4521 8263 2596 .0000 .0000 .0000 .0000 1.0000
RY OF R Ul F
ADJUSTED STANDARD  MEAN
REGRESSION . . . . . . . . . . REGRESSION COEFFICIENT . . . . . . . . . . DETERMINATION ERROR OF SQUARE
CONSTANT AREA SLOPE LENGTH  LAKES ELEV FOREST PRECIP  SOILS COEFFICIENT ESTIMATE  ERROR
—(l0G) (L0G) (LOG) (LOG) (WONE) (L0G)  (LOG) (L0G)
-1.522 1.261 0.182 -0.328 -0.272 -0.184 0.055 1.739 0.140 0.8097 0.2162 0.0257
-1.633 1.269 0.169 -0.364 -0.209 -0.169 0.054 1.874 ----- 0.8254 0.2070 0.0257
-1.808 1.267 0.179 -0.350 -0.30% -0.185 ----- 2.0 ----- 0.8386 0.1990 0.0258
-1.668 1.130 0.283 ----- -0.251 -0.167 ~----- 1.753  ~»=e- 0.8469 0.1939 0.0263
-1.130  1.106 0.250 ~<vcvs  cvece 0,129 o= 1,399 ceeoe 0.8537 0.1896 0.0269
1,034 1.069 O0.198 cccce  ccens  ccwen meses 1319 -ee-- 0.8584 0.1865 0.0278
~1.136 0,975 c-ces  cecces  ewces  ecmss  oece- 1.699 -c--- 0.8553 0.1885 0.0302
1.58 0.962 ----- sseee  seome  sees.  -eses ceces  ceooe 0.8390 0.1988 0.0356

Figure 9-4. Regression Analysis for Regional Frequency Computations.
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REGIONAL ANALYSIS WITH REGRESSION ON DRATNAGE AREA ONLY
MAP YEARS CF STANDARD
0BS NO STATION OBSERVED COMPUTED ERRCR VALUE DIFF  DIFF? RECCRD  DEVIATION Sy
1 5090 3.783 3,957  -0.174 -0.18  0.006 0.000036 W3 0.180 0.029
2 5140 3.783 3.766  0.017 0.01  0.007 0.00004S 52 0.195 0.027
3 580 4.030 3,842 0.088 0.09 -0.002 0.000004 39 0.289 0.046
4 5200 4.044 3,965 0.079 0.07  0.009 0.000081 27 0.256 0.049
5 5205 4.333 4.362 -0.028 0.08 -0.109 0.011881 50 0.251 0.035
6 5260 3.751 3.564  0.187 0.11  0.077 0.005929 as 0.293 0.050
7 5270 2.637 3,238  -0.601 -0.22 -0.381 0.145161 31 0.206 0.037
8 5280 3.186 3.341  -0.155 -0.17  0.015 0.000225 45 0.186 0.028
9 5305 3.348 3.403 -0.055 -0.04 -0.015 0.000225 P 0.128 0.019
10 5320 3.985 3.829  0.166 0.16  0.006 0.000036 &6 0.288 0.035
11 5340 4,122 4.070  0.052 0.02  0.032 0.001024 66 0.227 C.028
12 5375 2.722 2.736 -0.014 -0.05  0.036 0.001296 40 0.323 0.051
13 5380 3.078 3.164 =-0.086 -0.08 -0.006 0.000036 60 0.226 0.028
14 5390 3.830 3.830  0.000 0.00  0.000 0.000000 41 0.261 0.041
15 5445 3.590 3.638 -0.048 -0.15  0.102 0.010404 38 0.278 0.045
16 5485 4.082 4.260 -0.168 -0.08 ~-0.088 0.007744 61 0.262 0.031
17 5485 3.284 3,102 0.182 0.04 0.162 0.020164 39 0.262 0.039
18 5500 3.816 3.738  0.078 0.08 -0.002 0.000004 66 0.237 0.029
19 5520 4.275 4,131  0.144 0.17 -0.026 0.000676 54 0.277 0.038
20 §525 3.249 2.910 0.3239 0.20  0.139 0.019321 39 0.291 0.047
Sum 0.06 -0.058 0.224296

Average 0.003 -0.003 0.0112

Figure 9-5. Regional Analysis Computations for Mapping Errors.
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Figure 9-6. Regional Map of Regression Errors.
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mmary of Procedure. A regional analysis of precipitation or flood-flow
frequencies is generally accomplished by performing the following steps:

(1) Select long-record base stations within the region as required for extension of
records at each of the short-record stations.

(2) Tabulate the maximum events of each station.

(3) Transform the data to logarithms and calculate X, S and, if appropriate, G
(Equations 3-1, 3-2 and 3-3) for each base station.

(4) Calculate X and S for each other station and for the corresponding values of the
base station, and calculate the correlation coefficient (Equation 3-16).

(5) Adjust all values of X and S by use of the base station, (Equations 3-17 and 3-
19). (If any base station is first adjusted by use of a longer-record base station, the
longer-record statistics should be used for all subsequent adjustments.)

(6) Select meteorological and drainage basin parameters that are expected to correlate
with X and S, and tabulate the values for each drainage basin or representative area.

(7) Calculate the regression equations relating X and S to the basin characteristics,
using procedures explained in Section 9-2, and compute the corresponding
determination coefficients.

(8) Eliminate variables in turn that contribute the least to the determination
coefficient, recomputing the determination coefficient each time, and select the
regression equation having the highest adjusted determination coefficient, or one
with fewer variables if the adjusted determination coefficient is nearly the same.

(9) Compute the regression errors for each station, plot on a suitable map, and draw
isopleths of the regression errors for the regression equations of X (see Figures 9-5
and 9-6 for an example) and S considering the standard error for each computed, or
adjusted, X and S. Note that an alternate procedure is to add the regression constant
to each error value and develop a map of this combined value. This procedure
eliminates the need to keep the regression constant in the regression equation as the
mapped value now includes the regression constant.

(10) A frequency curve can be computed for any ungaged basin in the area covered
within the mapped region by using the adopted regression equations and appropriate
map values to obtain X and S, and then using the procedures discussed in Section 3-2
to compute several points to define the frequency curve. (It may also be necessary to
develop regional (generalized) values of the skew coefficient if the Pearson type III
distribution is considered appropriate. The next section describes the necessary steps
to compute a generalized skew coefficient.)

. Generali kew rminations. Skew coefficients for use in hydrologic studies
should be based on regional studies. Values based on individual records are highly
unreliable. Figure 9-7 is a plot of skew coefficients sequentially recomputed after adding
the annual peak for the given year. Note that, after 1950, the skew coefficient was at a
at a minimum of about 0.5 in 1954 and maximum of about 1.9 in 1955, only one year
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apart. The procedures for developing generalized skew values are generally set forth in
Bulletin 17B (pages 10-15).

In summary, it is recommended that:
(1) the stations used in the study have 25 or more years of data,

(2) at least 40 stations be used in the analysis, or at least all stations surrounding the
area within 100 miles should be included,

(3) the skew values should be plotted at the centroid of the basins to determine if
any geographic or topographic trends are present,

(4) a prediction equation should be developed to relate the computed skew
coefficients to watershed and climate variables,

(5) the arithmetic mean of at least 20 stations, if possible, in an area of reasonably
homogeneous hydrology should be computed, and

(6) then select the method that provides the most accurate estimation of the skew
coefficient (smallest mean-square error).

In addition to the above guidelines, care should be taken to select stations without
significant man-made changes such as reservoirs, urbanization, etc.
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CHAPTER 10
ANALYSIS OF MIXED POPULATIONS

10-1. Definition. The term mixed population, in a hydrologic context, is applied to data
that results from two or more different, but independent, causative conditions. For
example, floods originating in a mountainous area or the northern part of the United
States at a given site could be caused by melting snow or by rain storms. Along the Gulf
and Atlantic coasts, floods can be caused by general cyclonic storms or by intense tropical
storms. A frequency curve representing the events caused by one of the climatic
conditions may have a significantly different slope (standard deviation) than for the other
condition. A frequency plot of the annual events, irrespective of cause, may show a
rather sudden change in slope and the computed skew coefficient may be comparatively
high. In these situations, a frequency curve derived by combining the frequency curves
of each population can result in a computed frequency relation more representative of the
observed events.

10-2. Procedure.

a. The largest annual event is selected for each causative condition. As Bulletin 17B
(46) cautions, "If the flood events that are believed to comprise two or more populations
cannot be identified and separated by an objective and hydrologically meaningful
criterion, the record shall be treated as coming from one population." Also, Bulletin 17B
states, "Separation by calendar periods in lieu of separation by events is not considered
hydrologically reasonable unless the events in the separated periods are clearly caused by
different hydrometeorologic conditions."

b. The frequency relations for each separate population can be derived by the
graphical or analytical techniques described in Chapter 2-and then combined to yield the
mixed population frequency curve. The individual annual frequency curves are combined
by "probability of union." For two curves, the equation is:

P, = P,+P,-PP, (10-1)
where:
P. = Annual exceedance probability of combined populations for a selected
magnitude.
P, = Anpuall exceedance probability of same selected magnitude for population
series 1.

P, = Annual exceedance probabilitv of same magnitude selected above for
population series 2.

c. Figure 10-1 illustrates a combined annual-event frequency curve derived by
combining a hurricane event frequency curve with a nonhurricane event curve for the
Susquehanna River at Harrisburg, PA. For more than two population series, n curves may
be more easily combined by the following form:
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P, = 1-(1-P) (I-P,)) ... (1-P,) (10-2)

c

NOTE: The exceedance probability (percent chance exceedance divided by 100) must be
used in the above equations.

d. If partial duration curves are to be added, the equation is simply P_= P, + P,
This assumes that the events in both series are hydrologically independent. When the
combined curve is used in an economic analysis, the events in both series must also be
economically independent.

10-3. Cautions.

a. If annual flood peaks have been separated by causative factors, a generalized skew
must be derived for each separate series to apply the log-Pearson Type III distribution as
recommended by Bulletin 17B. Plate 1 of Bulletin 17B or any other generalized skew map
based on the maximum annual event, irrespective of cause, will not be applicable to any
of the separated series. Derivation of generalized skew relations for each series can
involve much effort.

b. Some series may not have an event each year. For example, tropical storms do not
occur every year over most drainage areas in the United States, and quite often there are
only a few flood events for the series. Extensive regionalization may be necessary to
reduce the probable error in the frequency relations which results from small sample sizes.

c. Sometimes frequency relations of particular seasons are of interest, i.e., quarterly
or monthly, and the curves are combined to verify the annual series curve. The combined
curve will very likely fit the annual curve only in the middle parts of the curve. The
lower end of the curve will have a partial duration shape as many small events have been
included in the analysis. Also, it is possible that the slope of the frequency relation will
be higher at the upper end of the curve as the one season or month with the maximum
event included in its series will likely have a higher slope than that of the annual series.

d. A basic assumption of this procedure is that each series is independent of the
other. Coincidental frequency analysis techniques must be used where dependance is a
factor. For instance, the frequency curves of two or more tributary stations cannot be
combined by the above equation to derive the frequency curve of a downstream site. This
is because the downstream flow is a function of the summation of the coincident flows on
each of the tributaries.
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CHAPTER 11
FREQUENCY OF COINCIDENT FLOWS
11-1. Introduction. In many cases of hydrologic design, it is necessary to consider

only those events which occur coincidentally with other events. For example, a pump
station is usually required to pump water only when interior runoff occurs at a time that
the main river stage is above interior ponding levels. In constructing a frequency curve of
interior runoff that occurs only at such times, data selected for direct use should be
limited to that recorded during high river stages. In some cases, such data might not be
adequate, but it is possibie in these cases where the two types of events are not highly
correlated to make indirect use of noncoincident data in order to establish a more reliable
frequency curve of coincident events.

11-2. A Procedure for Coincident Frequency Analysis.

a. Qbjective. Determine an exceedance-frequency relationship for a variable C.
Variable C is a function of two variables, A and B.

b. Selection of Dominant Variable. The variable that has the largest influence on

variable C is designated as variable A; the less influential variable is designated as variable
B. The significance of "influential” will be indicated by means of an example. Figure
11-1 shows water surface profiles along a tributary near the junction with a main river.
Stage on the tributary (variable C) is a function of main river stage and tributary
discharge. In Region I, main river stage, will tend to have the dominant influence on
tributary stage, whereas in Region II, tributary discharge will tend to dominate. The
boundary between Regions I and II cannot be precisely defined and will vary with
exceedance frequency. Stage-frequency determinations will be least accurate in the
vicinity of the boundary where both variables have a substantial impact on the combined
result.

¢. Procedure.

(1) Construct a duration curve for variable B. Discretize the duration curve with a
set of "index" values of B. Index values should represent approximately equal ranges
of magnitude of variable B. The area under the resulting discretized duration curve
should equal the area under the original duration curve. The number of index values
of B required for discretization depends on the range of variation of B and the
sensitivity of variable C to B. Therefore, the number of points selected should
adequately define the relationships.

(2) For each of the index values of variable B, develop a relationship between
variable A and the combined result C. In the illustration (Figure 11-1) the
relationship linking variables A, B and C would be obtained with a set of water
surface profile calculations for various combinations of main river stage and
tributary discharge.

(3) If variables A and B are independent of each other, construct an
exceedance-frequency curve of variable A, If the variables are not independent,
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construct a conditional exceedance-frequency curve of variable A for each index
value of variable B.

(4) Using the relationship developed in step (2) and frequency curve(s) developed in
step (3), construct a conditional exceedance-frequency curve of variable C for each

index value of variable B.

(5) For a selected magnitude of variable C, multiply the exceedance-frequencies
from each curve developed in step (4) by the corresponding proportions of time
represented, and sum these products to obtain the exceedance-frequency of variable
C. Repeat this step for other selected magnitudes of C until a complete
exceedance-frequency curve for variable C is defined. This step is an application of
the total probability theorem.

d. Seasonal Effects. The duration of frequency curves from steps (1) and (3) are
assumed to represent stationary processes. That is, it is assumed that probabilities and
exceedance frequencies obtained from the curves do not vary with time. In order for this
assumption to be reasonably valid, it is generally necessary to follow the above procedure
on a seasonal basis. Once seasonal exceedance-frequency curves have been obtained (step
e), they may be combined to obtain an all-season exceedance-frequency curve.

e. Assumption of Independence. Although step (3) enables application of the

procedure to situations where variables A and B are not independent, data is generally not
available to establish the conditional exceedance frequency curves required by that step.
Consequently, application of the procedure presented here is generally limited to
situations where it is reasonable to assume that variables A and B are independent.
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Figure 11-1. Illustration of Water Surface Profiles in Coincident Frequency Analysis.
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CHAPTER 12
STOCHASTIC HYDROLOGY

12-1. Introduction.

a. A stochastic process is one in which there is a chance component in each
successive event and ordinarily some degree of correlation between successive events.
Modeling of a stochastic process involves the use of the "Monte Carlo” method of adding a
random (chance) component to a correlated component in order to construct each new
event. The correlated component can be related, not only to preceding events of the same
series, but also to concurrent and preceding events of series of related phenomena.

b. Work in stochastic hydrology has related primarily to annual and monthly
streamflows, but the results often apply to other hydrologic quantities such as
precipitation and temperatures. Some work on daily streamflow simulation has been done.

12-2. Applications.

a. Hydrologic records are usually shorter than 100 years in length, and most of them
are shorter than 25 years. Even in the case of the longest records, the most extreme
drought or flood event can be far different from the next most extreme event. There is
often serious question as to whether the extreme event is representative of the period of
record. The severity of a long drought can be changed drastically by adding or
subtracting | year of its duration. In order that some estimate of the likelihood of more
severe sequences can be made, the stochastic process can be simulated, and long sequences
of events can be generated. If the generation is done correctly, the hypothetical sequence
would have as equal likelihood of occurrence in the future as did the observed record.

b. The design of water resource projects is commonly based on assumed recurrence
of past hydrologic events. By generating a number of hydrologic sequences, each of a
specified desired length, it is possible to create a much broader base for hydrologic design.
While it is not possible to create information that is not already in the record, it is possible
to use the information more systematically and more effectively. In selecting the number
and length of hydrologic sequences to be generated, it is usually considered that 10 to 20
sequences would be adequate and that their length should correspond to the period of
project amortization.

c. It must be recognized that the more hydrologic events that are generated, the
more chance there is that an extreme event or combination of events will be exceeded.
Consequently, it is not logical that a design be based on the most extreme generated event,
but rather on some consideration of the total consequences that would prevail for a given
design if all generated events should occur. The more events that are generated, the less
proportional weight each event is given. If a design is tested on 10 sequences of
hydrologic events, for example, the benefits and costs associated with each sequence
would be divided by 10 and added in order to obtain the "expected” net benefits.

12-3. Basic Procedure. Successful simulation of stochastic processes in hydrology has
been based generally on the concept of multiple linear regression, where the regression
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equation determines the correlated component, and the standard error of estimate
determines the random component. Figure 12-1 illustrates the general nature of the
process. In this case, a low degree of correlation is illustrated, in order to emphasize
important aspects of the process. It can be seen that, if every estimate of the dependent
variable is determined by the regression line (Figure 12-1a), the estimated points would be
perfectly correlated with the independent variable and would have a much smaller range
of magnitude than the actual observed values of the dependent variable. In order to avoid
such unreasonable results, it is necessary to add a random component to each estimate
(Figure 12-1b), and this random component should conform to the scatter of the observed

data about the regression line.
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12-4. Monthly Streamflow Model.

a. In accordance with the above basic procedure, a simulation model for generating
values of a variable which can be defined only partially by a deterministic relation is:

Y = a+b,X,+b,X,+ZS,(1-R)* (12-1)
where:
Y = dependent variable
a = regression constant
b.‘,b2 = regression coefficients
XX, = independent variables

Z = random number from normal standard population with zero mean and
unit variance

S, = standard deviation of dependent variable

R = mulitiple correlation coefficient

b. This type of simulation model can be used to generate related monthly streamflow
values at one or more stations. Multiple linear regression theory is based on the assumed
distribution of all variables in accordance with the Gaussian normal distribution.
Therefore, mathematical integrity requires that each variable be transformed to a normal
distribution, if it is not already normal. It has been found that the logarithms of
streamflows are approximately normally distributed in most cases. For computational
efficiency it is convenient to work with deviations from the mean which have been
normalized by dividing by the standard deviation. This deviate is sometimes called the
Pearson Type III deviate and can be computed as follows:

tp = (X; ;- X;)/8; (12-2)

where:

-
[}

Pearson Type III deviate
month number

-
H

= year number

= logarithm of flow

mean of flow logarithms

= standard deviation of flow logarithms

m><|><....
[}
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c. If these deviates exhibit a skewness, they can be further transformed, if
necessary, to a distribution very close to normal by use of the following approximate
Pearson Type III transform equation:

K; = (6/G,) {l(G;t;/2) + 11>+ 1} + G,/6 (12-3)
where:

K = normal standard deviate

i = month number

G = skew coefficient

t = Pearson Type III deviate as defined in Equation 12-2

An equation for generating monthly streamflow is:

Kix=BK; 1+ 8K 5+ ..+, Ky 1+ 8K
(12-4)
+ Byt Ki'-1,ko1’ + B, Ki’-1,n +Z; (1"Ri2,k)v'
where:
K = monthly flow logarithm, expressed as a normal standard deviate

B = beta coefficient, defined as b, ,S, /S, where m is a station not equal to
k and b is the regression coefficient.

i = month number for value being generated
k = station number for value being generated
n = number of interrelated stations
R = multiple correlation coefficient

= random number from normal standard population

12-4



EM 1110-2-1415
5 Mar 93

For the case of a single station, this resolves to:

Ki = R iy K{ +Z;(I-R2; P (12-5)

1

d. Note that Equation 12-5 is very similar to Equation 12-1. The differences result
from using normal standard deviates. When this is done, the regression constant, a, equals
zero, the regression coefficients, b, become beta coefficients, 8, and the standard
deviation, S, does not appear in the random component since it equals 1. Note also that
one of the independent variables is the flow for the preceding month in order to preserve
the inherent serial correlation. The flow value in the original units is computed by
reversing the transformation process, i.e., from normal standard deviate to Pearson Type
II1 deviate, to logarithm of flow and finally flow value.

e. A step-by-step procedure for generating monthly streamflows for a number of
interrelated locations having simultaneous records is as follows:

(1) Compute the logarithm of each streamflow quantity. If a value of zero
streamflow is possible, it is necessary to add a small increment, such as 0.1
percent of the mean annual flow, to each monthly quantity before taking the
logarithm.

(2) Compute the mean, standard deviation and skew coefficient of the values
for each location and each month, using equations given in Chapter 2.

(3) For each month and location, subtract the mean from each event and divide
by the standard deviation (Equation 12-2).

(4) Transform these "standardized” quantities to a normal distribution by use of
Equation 12-3.

(5) Arrange the locations in any sequence, and compute a regression equation
for each location in turn for each month. In each case, the independent
variables will consist of concurrent monthly values at preceding stations and
preceding monthly values at the current and subsequent stations.

(6) Generate standardized variates for each location in turn for each month,
starting with the earliest month of generated data. This is accomplished by
computing a regression value and adding a random component. The random
component, according to Equation 12-5, is a random selection from a normal
distribution with zero mean and unit standard deviation, multiplied by the
alienation coefficient which is (1 - R€)™.

(7) Transform each generated value by reversing the transform of Equation 12-
3 with the appropriate skew coefficient, multiplying by the standard deviation
and adding to mean in order to obtain the logarithm of streamflow.

(8) Find the antilogarithm of the value determined in step (7) and subtract the
small increment added in step (1). If a negative value results, set it to zero.
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f. It is obviously not feasible to accomplish the above computations without the use
of an electronic computer. A computer program, HEC-4 Monthly Streamflow Simulation
(51) can be used for this purpose.

12-5. Data Fill In. Ordinarily, periods of recorded data at different locations do not
cover the same time span, and therefore, it is necessary to estimate missing values in order
to obtain a complete set of data for analysis as described above. In estimating the missing
values, it is important to preserve all statistical characteristics of the data, including
frequency and correlation characteristics. To preserve these characteristics, it is necessary
to estimate each individual value on the basis of multiple correlation with the preceding
value at that location and with the concurrent or preceding values in all other locations. A
random component is also required, as indicated in Equation 12-1.

12-6. Application In Areas of Limited Data. The streamflow generation models discussed

so far have assumed that sufficient records were available to derive the appropriate
statistics. For instance, the monthly streamflow model requires four frequency and
correlation coefficients for each of the 12 months, or 48 values for one station simulation.
A model has been developed (51) that combines the coefficients into a few generalized
coefficients for the purpose of generating monthly streamflow at ungaged locations.
(Procedures for determining generalized statistics for use in generating daily flows have
not yet been developed.) The generalized model considers the following:

season of maximum runoff

- lag to season of minimum runoff

- average runoff

- variation between maximum and minimum runoff
- standard deviation of flows

interstation and serial correlations of flows

12-7. Daily Streamflow Model.

a. Generation of daily streamflows can be accomplished in a manner very similar to
the generation of monthly streamflow quantities. Although a computer program has been
prepared for this purpose, it is capable only of generating flows at a single location and
does not provide a totally satisfactory hydrograph. Since it is desired in many reservoir
operation studies to use a monthly interval most of the time, and to perform daily
operation computations for only a few critical periods, the program has been designed to
generate daily flows after the monthly total runoff has been generated by another
program. Flows for any particular day are correlated with flows for the preceding day
and for the second antecedent day.

b. A procedure that will give a reasonable shaped hydrograph, as well as coordinated
hydrographs at many locations in a basin, would consist of (1) stochastic generation of
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precipitation over the basin, and (2) using a precipitation-runoff mode! to derive the
resulting streamflow.

12-8. Reliability. While the simulation of stochastic processes can add reliability in
hydrologic design, the techniques have not yet developed to the stage that they are
completely dependable. All mathematical models are simplified representations of the
physical phenomena. In most applications, simplifying assumptions do not cause serious
discrepancies. It is important at this "state of the art,” however, to examine carefully the
results of hydrologic simulation to assure that they are reasonable in each case.
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APPENDIX B

GLOSSARY

These definitions have been collected from four major sources: (1) Guidelines for
Determining Flood Flow Frequency (17B), reference 46; (2) International Glossary of
Hydrology (WMO), reference 48; (3) General Introduction and Hydrologic Definitions
(USGS), reference 18; and (4) Mathematics Dictionary (MD), reference 16.

ERM

Analytical Frequency

Analysis

Annual Event

Annual Series

Array

Autocorrelation

Base Discharge

Biased

Broken Record

Chi-Square
Distribution

Class Interval

DEFINITION

A predefined method of estimating the parameters that define a
selected theoretical frequency distribution.

The most extreme event, either maximum or minimum, in the
year. (17B)

A general term for a set of any kind of data in which each item is
the maximum or minimum in a year. (17B)

A list of data in order of magnitude; in flood- frequency analysis
it is customary to list the largest value first, in a low-frequency
analysis, the smallest first. (17B)

See "Serial Correlation.”

Usually refers to the discharge above which independent
instantaneous peak flows are collected for a partial duration
frequency analysis.

The expected value of a statistic obtained from random sampling
is not equal to the parameter or quantity being estimated. (MD)

A systematic record which is divided into separate continuous
segments because of deliberate discontinuation of recording for
significant periods of time. (17B)

The distribution of sample variances drawn from a normal
distribution. Used to compute confidence intervals for the
population variance estimated from a sample.

A convenient sized interval into which data may be grouped. The
upper and lower bounds of the class interval are called "class
limits.” (MD)
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Climatic Year

Coefficient of
Skewness

Coefficient of
Variation

Confidence Limits
Correlation
Covariance
Cumulative Frequency
Curve
Deviation
Depth-Duration-
Frequency
Distribution

Double Mass Curve

Drought

Duration Curve

Error Variance
Exceedance Frequency

Exceedance Interval

A continuous 12-month period during which a complete annual
cycle occurs, arbitrarily selected for the presentation of data
relative to hydrologic or meteorologic phenomena. The climatic
year is usually designated by the calendar vear during which most
of the 12 months occur. See "Water Year." (USGS)

A numerical measure or index of the lack of symmetry in a
frequency distribution. Function of the third moment of
magnitudes about their mean, a measure of asymetry. Also called
*coefficient of skew” or "skew coefficient." (17B)

Statistical parameter describing the change of a stochastic variable
in time or space, expressed as the ratio of the standard deviation
to the mean. (WMOQO)

Computed values on both sides of an estimate of a parameter that
show for a specified probability the range in which the true value
of the parameter lies. (17B)

The interdependence between two sets of numbers. (MD)

The first product moment of two variates normalized by their
respective mean values. (WMQ)

Relation of event magnitude to percentage of events exceeding (or
not exceeding) that magnitude.

The difference between the magnitude of an event and the mean
of all the events in the sample.

Curve showing the frequency relationship of precipitation depth
for a given storm duration.

Function describing the relative frequency with which events of
various magnitudes occur. (17B)

Plot of successive accumulated values of one variable against the
contemporaneous accumulated values of another variable. (WMO)

A period of abnormally dry weather sufficiently prolonged for
the lack of precipitation to cause a serious hydrological imbalance.
(WMO)

A cumulative frequency curve that shows the percent of time that
specific values are equalled or exceeded. (USGS)

Square of the standard error.
See "Percent chance exceedance.”

See "Recurrence interval.”
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Exceedance
Probability

Expected Probability

F Distribution

Flow-~Duration Curve

Frequency

Frequency Analysis

Frequency Curve

Generalized Skew
Geometric Mean
Graphical Frequency

Analysis

Histogram

Historic Data

Homogeneity

Incomplete Record

Level of Significance
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Probability that a random event will exceed a specified magnitude
in a given time period, usually one year unless otherwise
indicated. (17B)

The average of the true probabilities of all magnitude estimates
for any specified flood frequency that might be made from
successive samples of a specified size. (17B)

The random sampling distribution of the ratio of two independent
estimates of the variance of a normal distribution. (MD)

See "Duration Curve.”

The number of events in a sample (or the population) that meet
specified criteria.

Procedure involved in interpreting a record of events in terms of
future probabilities of occurrence. (WMO)

A graphical representation of a frequency distribution. Usually a
cumulative frequency curve with the abscissa a probability grid
and the ordinate the event magnitude.

A skew coefficient derived by a procedure which integrates
values obtained at many locations. (17B)

The Nth root of the product of N values or the antilogarithm of
the mean logarithm of a set of values.

The development of a frequency curve by drawing a smooth
curve through plotted points while considering known constraints.
Plotting positions are computed based on the order number and
the total number of values represented, and then plotted on the
appropriate probability paper.

Univariate frequency diagram with rectangles proportional in area
to the class frequency, erected on a horizontal axis with width
equal to the class interval. (WMO)

Information about significant events before or after the period of
"systematic” data collection. (derived from 17B)

Records (sampies) from the same population. (17B)

A streamflow record in which some peak flows are missing
because they were too low or high to record or the gage was out
of operation for a short period because of flooding. (17B)

The probability of rejecting a hypothesis when it is in fact true,
At a "10-percent" level of significance the probability is 1/10.
(17B)
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Log-Pearson Type 111
Distribution

Mass Curve

Mean

Mean Daily

Median

Method of Moments

Mixed Populations

Mode

Non-Central t
Distribution

Nonstationary

Normal Distribution

Outlier

Parameter

Parent Population

Partial-Duration Series

Application of the Pearson Type III distribution to the logarithms
of the data.

Curve of an accumulative quantity versus time. (WMO)

The expected value of a random variable, the first moment. The
arithmic mean (or average) of a sample is an estimate of the
population mean.

The mean of daily values in a specified period, or the mean of
values within one day. (derived from WMO)

The value at which one-half of ordered observations lie on either
side. If there is no middle value, the median is the average of the
two middle values.

A standard statistical computation for estimating the moment of a
distribution from the data of a sample. (17B)

A sample whose events have come from two or more different
populations, i.e., data not homogenous.

The most frequent value of a set of numbers. (MD)

A distribution that combines the probable error in the mean and
the standard deviation for samples from a normal distribution.
Used in the development of confidence limit curves about a
frequency curve computed from sample statistics.

Not stationary with respect to time. See "Stationary Process."

A probability distribution that is symmetrical about the mean,
median, and mode (bell shaped). It is the most studied
distribution in statistics, even though most data are not exactly
normally distributed, because of its value in theoretical work and
because many other distributions can be transformed into the
normal. It is also known as Gaussian, the Laplacean, the
Gauss-Laplace, or the Laplace-Gauss distribution, or the Second
Law of Laplace. (17B)

Outliers (extreme events) are data points which depart from the
trend of the rest of the data. (17B)

A characteristic descriptor of the population, such as mean or
standard deviation. Parameter estimates are called statistics.

See "Population”.

A list of flood peaks that exceed a chosen base stage or discharge,
regardliess of the number of peaks occurring in a year. (USGS)



Pearson Type 111
Distribution

Percent Chance
Exceedance

Percent Chance
Non-Exceedance
Plotting Position

Population

Probability

Random

Recurrence Interval

Regional Analysis

Regression

Return Period

Risk

Sample
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Family of asymmetrical, theoretical frequency distributions of
which the normal distribution is a special case.

The probability, expressed as a percentage, with which values
exceed a specified magnitude,.

The probability, expressed as a percentage, with which values
will not exceed a specified magnitude.

Percent chance of exceedance (or non-exceedance) of an observed
value estimated from its position in the array.

The entire (usually infinite in hydrologic application) number of
data from which a sample is taken or collected. For example,
total number of past, present, and future floods at a location on a
river is the population of floods for that location even if the
floods are not measured or recorded. (17B)

The ratio of the number of random events with some particular
size or other attribute to the total number of equally likely events.

Any event in the population has an equal chance of being
selected.

The average time interval between actual occurrences of a
hydrological event of a given or greater magnitude. In an annual
flood series, the average interval in which a flood of a given size
is exceeded as an annual maximum. In a partial duration series,
the average interval between floods of a given size, regardless of
their relationship to the year or any other period of time. The
distinction holds even though for large floods, recurrence
intervals are nearly the same for both series. (17B)

Extension of the results of the frequency analysis of point data to
an area. (WMO)

An analytical procedure that derives estimation or prediction
equations for a variable (dependent) based on given values of one
or more other variables (independent). Commonly, the principle
of minimum squared error (least squares) is used in the derivation.

See "Recurrence Interval.”

The probability of a potential outcome (success) being realized
within a specified number of events (trials). In a hydrologic
context, the probability that one or more events will exceed a
given annual event, that has an assumed "true" percent chance
exceedance, during a specified number of years. Risk is
computed by the binomial distribution. (For contrast, see
uncertainty.)

An element, part, or fragment of a "population." Every
hydrologic record is a sample of a much longer record. (17B)
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Sampling Error

Serial Correlation

Skew Coefficient

Stage

Standard Deviation

Standard Error

Stationary Process

Statistic

Stochastic Process

Student’s t-
Distribution

Systematic Record
t-Distribution

Test of Significance

Transformation

The difference between a random sampling statistic and the
parameter of the population from which the random sample was
drawn. (MD)

A measure of the interdependence between an observation at a
given time period and that of a preceeding time period. Also
called autocorrelation.

See "Coefficient of Skewness."

The height of a water surface above an established datum plane.
(USGS)

A measure of the dispersion or precision of a series of statistical
values such as precipitation or stream flow. It is the square root
of the sum of squares of the deviations from the arithmetic mean
divided by the number of values or events in the series. It is now
standard practice in statistics to divide by the number of values
minus one in order to get an unbiased estimate of the variance
from the sample data. (17B)

Standard deviation of the sampling distribution of a statistical
parameter. (WMOQO)

All of the generating moments of the frequency distribution
remain fixed with respect to time.

An estimate of a population parameter obtained from a sample of
the population.

Process in which both the probability and the sequence of
occurrence of the variables are taken into account. (WMOQ)

A distribution used in evaluation of variables which involve
sample standard deviation rather than population standard
deviation. (17B)

Information collected by a systematic data collection program.
(derived from 17B)

See "Student’s t-Distribution.”

A test mode to learn the probability that a result is accidental or
that a result differs from another result. For all the many types
of tests, there are standard formulae and tables. (17B)

The change of numerical values of data to make later
computations easier, to linearize a plot or to normalize a skewed
distribution by making it more nearly a normal distribution. The
most common transformations are those changing ordinary
numerical values into their logarithms, square roots or cube roots;
many others are possible. (17B)

B-6



Trend

Unbiased

Uncertainty
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A statistical term referring to the direction or rate of increase or
decrease in magnitude of the individual members of a time series
of data when random fluctuations of individual members are
disregarded. (USGS)

The expected value of a statistic obtained from random sampling
is equal to the parameter or quantity being estimated. (MD)

The inherent error in an analysis caused by not knowing either
the true model or the model parameters. In frequency analysis,
model uncertainty comes from assuming a theoretical frequency
distribution and parameter uncertainty comes from estimating the
parameters for the selected distribution by sample statistics.

A measure of the amount of spread or dispersion of a set of
values around their mean, obtained by calculating the mean value
of the squares of the deviations from the mean, and hence equal
to the square of the standard deviation. (17B)

The divide separating one drainage basin from another and in the
past has been generally used to convey this meaning. However,
over the years, use of the term to signify drainage basin or
catchment area has come to predominate, although drainage basin
is preferred. (USGS)

Continuous twelve-month period selected in such a way that all
solid and liquid precipitation runs off during this period. Thus,
carryover is reduced to a minimum. (WMO) In U.S. Geological
Survey reports, it is the twelve-month period. October 1 through
September 30. The water year is designated by the calendar year
within which most of the twelve-months occur. (USGS)
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APPENDIX C

COMPUTATION PROCEDURE
FOR
EXTREME VALUE (GUMBEL) DISTRIBUTION

(Reproduced from reference 48.)

5.2.6.1.2 Computational methods

It can be shown that most frequency functions applicable to hydrological
analysis can take the form

Xr, = X + Ks: (5.1)

where X is the mean value, and sz is the standard deviation of the variable
being studied. Value Xr, denotes the magnitude of the event reached or exceeded

on an average once in T: years. K is the frequency factor. If X is not normally
distributed, K depends on frequency and skewness coelficient. A commonly used
distribution of extreme values (annual series) is the double exponential distribu-
tion, which has been widely applied by Gumbel (see Bibliography), and often
bears his name. In this method

Y'rr—?n
K= —— (5.2)

Sp



EM 1110-2-1415
S Mar 93

HYDROLOGICAL ANALYSIS Ho

where Y, the reduced mean, and sg, the reduced standard deviation, are functions
only of sample size; and Yr,, the reduced variate, is related to return period by

, .
¥i, = - - (083405 + 2.30250 log log ) 5.3

r—1
Table 5.3 gives values of K computed by means of Eq. (5.2) using Gumbel's
values for Ya, sa, and Y-rr.
There are two basic methods for fitting data to the extreme value distribution.
One consists in computation of X1, by means of Eq. (5.1), after a previous

computation of the values of X and s; (Table 5.4). The other consists in plotting
data on suitable graph paper, known as extreme probability paper, and drawing
a line by inspection.

TasLe 5.3
Values of K based on Eg. (5.2)
Return period (years)
n 2 B 10 25 50 100

10 —0.1355 1.0580 1.8483 2.8467 3.5874 4.3227
11 —0.1376 1.0338 1.8094 2.7894 3.5163 4.2379
12 —0.1393 1.0134 1.7766 2.7409 3.4563 4.1664

13 —0.1408 .9958 1.7484 2.6993 3.4048 4.1050
14 —0.1422 .9806 1.7240 2.6632 3.3600 4.0517
15 —0.1434 9672 1.7025 2.6316 3.3208 4.0049
16 —0.1444 9553 1.6835 2.6035 3.2860 3.9635
17 —0.1454 9447 1.6665 2.5784 3.2549 3.9265
18 —0.1463 .9352 1.6512 2.5559 3.2270 3.8932
19 —0.1470 .9265 1.6373 2.5354 3.2017 3.8631
20 —0.1478 9187 1.6247 2.5169 3.1787 3.8356
21 —0.1484 9115 1.6132 2.4999 3.1576 3.8106
22 —0.1490 9049 1.6026 2.4843 3.1383 3.7875
23 —0.1496 .8988 1.5929 2.4699 3.1205 3.7663
24 —0.1501 8931 1.5838 2.4565 3.1040 3.7466
25 —0.1506 .8879 1.5754 2.4442 3.0886 3.7283
26 —0.1510 .8830 1.5676 2.4326 3.0743 3.7113
27 —0.1515 8784 1.5603 2.4219 3.0610 3.6954
28 —0.1518 8742 1.5535 2.4118 3.0485 3.6805
29 —0.1522 8701 1.5470 2.4023 3.0368 3.6665

(continued)



30
31
32
33
34

35
36
37

39

40
41
42

44

—0.1526
—0.1529
—0.1532
—0.1535
—0.1538

—0.1540
—0.1543
—0.1545
—0.1548
—0.1550

—0.1552
—0.1554
—0.1556
—0.1557
—0.1559

—0.1561
—0.1562
—0.1564
—0.1566
—0.1567

—0.1568
—0.1570
—0.1571
—0.1572
—0.1573

—0.1575
—0.1576
—0.1577
—0.1578
—0.1579

—0.1580
—0.1581
—0.1582
—0.1583
-—0.1583
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Tasre 5.3 (continued)

Return period (years)

5

.86G4
.8628
.8594
.8562
.8532

.8504
.8476
.8450
8425
.8402

.8379
.8357
.8337
8317
.8298

8279
.8262
.8245
.8228
.8212

.8197
.8182
.8168
.8154
8141

.8128
.8116
.8103
.8092
.8080

10

1.5410
1.5353
1.5299
1.5248
1.5199

1.5153
1.5110
1.5068
1.5028
1.4990

1.4954
1.4920
1.4886
1.4854
1.4824

1.4794
1.4766
1.4739
1.4712
1.4687

1.4663
1.4639
1.4616
1.4594
1.4573

1.4552
1.4532
1.4512
1.4494
1.4475

1.4458
1.4440
1.4424
1.4407
1.4391

C-3

25

2.3934
2.3850
2.3770
2.3695
2.3623

2.3556
2.3491
2.3430
2.3374

2.3315

2.3262
2.3211
2.3162
2.3115
2.3069

2.3026
2.2984
2.2944
2.2905
2.2868

2.2832
22797
2.2763
2.2731
2.2699

2.2669
2.2639
2.2610
2.2583
2.2556

2.2529
2.2504
2.2479
2.2455
2.2432

50

3.0257
3.0153
3.0054
2.9961
2.9873

2.9789
2.9709
2.9633
2.9561
2.9491

2.9425
2.9362
2.9301
2.9243
2.9187

2.9133
2.9081
2.9031
2.8983
2.8937

2.8892
2.8849
2.8807
2.8767
2.8728

2.8690
2.8653
2.8618
2.8583
2.8550

2.8518

2.8486
2.8455
2.8426
2.8397
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100

3.6534
3.6410
3.6292
3.6181
3.6076

3.5976
3.5881
3.5790
3.2704
3.5622

3.5543
3.5467
3.5395
3.5325
3.5259

3.5194
3.5133
3.5073
3.5016
3.4961

3.4908
3.4856
3.4807
3.4759
3.4712

3.4667
3.4623
3.4581
3.4540
3.4500

3.4461
3.4424
3.4387
3.4352
3.4317
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[

—0.1584
—0.1585
—0.1586
—0.1587
—0.1587

—0.1588
—0.1589
—0.1590
—0.1590
—0.1591

—0.1592
—0.1592
—0.1593
—0.1593
—0.1594

—0.1595
—0.1595
—0.1596
—0.1596
—0.1597

—0.1597
—0.1598
—0.1598
—0.1599
—0.1599

—0.1600
—0.1600
—0.1601
—0.1601
—0.1602

—0.1602
—0.1602
—0.1603
—0.1603
—0.1604

—0.1604
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TasrLe 5.3 (continued)

Return period (years)

5

.8018
.8009
.8000
7991
.7982

7974
.7965
7957
.7950
.7942

7934
.7927
.7920
7913
.7906

10

1.4376
1.4364
1.4346
1.4332
1.4318

1.4305
1.4291
1.4278
1 4266
1.4254

1.4242
1.4230
1.4218
1.4207
1.4196

1.4185
1.4175
1.4165
1.4154
1.4145

1.4135
1.4125
1.4116
1.4107
1.4008

1.4089
1.4081

1.4072

1.4064
1.4056

1.4048
1.4040
1.4033
1.4025
1.4018

1.4010

25

2.2409
2.2387
2.2365
2.2344
2.2324

2.2304
2.2284
2.2265
2.2246
2.2228

2.2214
2.2193
2.2176
2.2160
2.2143

2.2128
2.2112
2.2097
2.2082
2.2067

2.2053
2.2039
2.2026
2.2012
2.1999

2.1986
2.1973
2.1961
2.1949
21937

2.1925
21913
2.1902
2.1891
2.1880

2.1869

50

2.8368
2.8341
2.8314
2.8288
2.8263

2.8238
2.8214
2.8190
2.8167
2.8144

2.8122
2.8101
2.8080
2.8059
2.8039

2.8020

2.7982
2.7963
2.7945

2.7927
2.7910
2.7893
2.7877
2.7860

2.7844
2.7828
2.7813
2.7798
2.7783

2.7769
2.7754
2.7740
2.7726
2.7713

2.7700

5.23

100

3.4284
3.4251
3.4219
3.4188
3.4158

3.4128
3.4099
3.4071
3.4044
3.4017

3.3991
3.3965
3.3940
3.3916
3.3892

3.3868
3.3845
3.3823
3.3801
3.3779

3.3758
3.3738
3.37117
3.3698
3.3678

3.3659
3.3640
3.3622
3.3604
3.3586

3.3569
3.3552
3.3535
3.3519
3.3503

3.3487
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5.24 HYDROLOGICAL ANALYSIS

Extreme probability paper has a linear ordinate for the variable being
studied. and the abscissa is a linear scale of the reduced variate [Eq. (5.3)]. For
convenience in plotting, the warped scale of T is also shown along the top of
Fig. 5.9. Plotting positions are commonly determined by the formulac [16}:

1
Tr=n+ (5.4
m
or
n + 0.4 .
Tr—m (5.5

where n is the number of years of record (the number of items in the annual
series) and m is the rank of the item on the series, m being 1 for the largest.

To illustrate the steps in numerical computation of the rainfall value for a
given return period, hypothetical values of z series of annual rainfall maxima are
given in the upper part of Table 5.4. Computations are illustrated in the lower
part of the table for T: of 10. Rainfall depths for return periods other than
10 years can be computed in a similar manner.

EXTREME PROBABILITY PAPER

ACTURN PEZRIOD (YEARS)
3 0 23

1.0 2 30 100 200
’°° R R R AL AL AL
4-;58
© /
§ ‘67
:.GO /
s &
° e
2o [
E b'lﬂl;
g 62
o1 /e
/
o N R [ 1
1.0 30 [ ] °0 ] 9 9.5
PROSARILITY ['00% ")]
-1.0 o Lo 4.0 #MU%L:LLU

2.0 xe
REOUCED VARIATE

Figure 5.9 - Example of extreme probability plot using data of Table 5.4.
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HYDROLOGICAL ANALYSIS 5.25

TasrLe 5.4

Computation of extreme values

Year v m ntt P—D  (P—Pp2 P2
m
1960 37 7 1.72 —9 81 1,269
1961 2 11 1.09 —2 676 400
1962 32 8 1.5 —14 196 1,024
1963 60 3 4.0 + 14 196 3,600
1964 2 9 1.33 —21 441 625
1965 52 4 3.0 +6 36 2,704
1966 46 6 2.0 0 0 2,116
1967 70 2 6.0 + 24 576 4,900
1968 92 1 12.0 + 46 2,116 8,464
1969 48 5 24 +2 4 2,304
1970 2% 10 1.2 —22 a4 576
Total 506 4,806 28,082
- n 506
P=ZP/n= "7 =460

n 2__ n
sx by square of deviations: \/M =\ /—— = 21.92
n—1 10
/2 (P — PE P 4806
sz by short cut: \ p— =\ /—1-(—)- = 21.92

For T = 2 and n = 11, K = —0.1376 (from Table 5.3).
Substituting tnto Eq. (5.1):
= 46.0 — 0.1376 x 21.92 = 43.0

Similarly, for Tr = 10, K = 1.8094, and
Pyp = 46.0 + 1.8094x21.92 = 85.7

In Fig. 5.9 the two + 's show the above values for P, and P,, and define
the line shown.

To illustrate the graphical method of fitting data to the extreme-value
distribution, reference is again made to Table 5.4 and Fig. 5.9. In the table,
values of the plotting position are given, and in Fig. 5.9 the plotted points
are given, with rainfall values for each plotting position. The curve shown could
have been drawn by fitting the plotted points by inspection.

In this example, for convenience, a record of only 11 years is used. Such a
record gives a fairly stable value for return periods of as much as five years, but
for longer return periods the short record has a large sampling error and the
computations should not be taken as precise estimates.
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5.26 HYDROLOGICAL ANALYSIS

For some types of data, instead of using the extreme-value distribution, a
better fit of the data, or a closer approach to linearity, may be obtained from
one of several other types of distribution, such as the normal or lognormal
Pearson Type 11l distribution. A commonly used distribution is one in which
the magnitude scale is logarithmic and the probability or return-period scale
is the normal distribution. This distribution and the plotting paper used with
it are widely known as log-normal. For discussion of additional distributions
and of additional methods for fitting distributions, reference may be made to
textbooks, and periodical statistical literature (17, 18, 63-66].

An advantage of fitting data to a distribution is achievement of objectivity.
This advantage has the corollary of standard treatment of data, so that a deci-
sion is based on differences in data rather than differences in subjective inter-
pretation of data. A third advantage of linearity in plotting points, and of close
fit to a particular distribution, is the facility for extrapolating beyond the range
of the data. However, it should be remembered that extrapolation involves con-
siderable sampling error.

For evaluation of the accuracy of the computed values Xr it would be
desirable to compute the confidence interval with limits:

X1, — t(a)se; Xr, + t(@)se

within which, with given confidence levels, one may expect to find the true
precipitation value Xy. Values of t(a) for selected confidence levels are as
follows:

a=95% t(a) = 1.960
a=9 9% t(a) = 1.645
a =809, t(e) = 1.282
a= 68 % t(c) = 1.000

In most cases, values of se, the standard error of estimate, can be computed
by means of the formula

Sx
= pr (5.6)

In particular, for the Gumbel distribution the following relation [19] exists:

Br,= V1 + 1.14K + 1.10K? (5.7)

where K is the numerical value defined by Eq. (5.2) and readily obtainable from
Table 5.3. However, for convenience in the use of Eq. (5.6) values of Br,/vn

can be obtained directly from Table 5.5. Thus, in determining the 80 per cent
confidence interval for Py = 85.7 in Table 5.4, for example,

t(a)se = 1.282x%0.7783x21.92 = 21.9
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The lower and upper limits of the confidence interval are therefore 85.7—21.9
and 85.7 4 21.9, respectively, which means that there is an 80 per cent probability
that the true value of P, lies between 63.8 and 107.6. Similarly, the lower and
upper limits of the same confidence interval for P, = 43.0 arc 35.1 and 50.9,

respectively, the value of BTJ\/; being 0.2803 (Table 5.5).

TasLE 5.5
Values of ﬂ'rr/\/; for use in Eq. (5.6)
Return period (years)

n 2 5 10 25 50 100
10 2942 5863 8285 1.4472 1.3873 1.6273
11 2803 5522 7733 1.0761 1.3007 1.5252
12 2681 5232 .7358 1.0161 1.2275 1.4389
13 2574 4982 .6992 .9645 1.1646 1.3648
14 2479 4763 6673 9196 1.1100 1.3005
15 2393 4569 6392 8801 1.0620 1.2439
16 2316 4397 6142 8450 1.0193 1.1937
17 2246 4242 5918 8136 9811 1.1488
18 2182 4102 5716 .7853 9467 1.1083
19 2123 3974 5532 7596 9155 1.0716
20 2068 .3857 5365 7364 8871 1.0382
21 2018 .3750 5214 7146 8610 1.0075
22 4971 .3651 5069 6948 8370 9793
23 1927 .3559 4937 6765 8148 9532
24 1886 3473 4815 6595 7942 9290
25 1847 339 4702 6437 7750 9064
26 A811 3319 4595 .6289 7571 8854
27 4777 3249 4496 6450 7403 8657
28 4745 3183 4402 6020 7245 8472
29 A714 3121 4314 5898 7097 8298
30 1685 .3062 4230 5782 6957 8134
31 1657 3007 4152 5673 6825 7978
32 1631 2954 4077 5569 6699 7831
33 1606 2904 4006 5471 6581 7692
34 1582 2856 .3938 5377 6468 7559
35 1559 2811 3874 5289 6360 7433
36 1537 2767 3813 5204 6257 7313
37 516 2726 3754 5123 6159 7198
38 1496 .2686 .3698 5045 6066 7088
39 1476 2648 3645 4971 5976 6983

(continued)
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1457
1434
1422
1405
13849

4373
1358
1344
1330
1316

.1303
.1290
A277
1265
1253

A242
1230
1219
1209
1198

1188
1179
1169
1160
1150

A142
1133
1124
1116
.1108

1100
1092
.1084
077
1070

HYDROLOGICAL ANALYSI®

TasLe 5.5 (continued)

Return period (years)

5

2611
2576
2042
2510
2479

.2449
.2419
2391
.2364
.2338

2312
.2288
.2264
2241
.2218

.2196
2175
.2155
2135
.2115

.2096
.2078
.2060
.2042
.2025

.2008
1992
.1976
1960
1945

1930
1916
1902
.1888
1874

10

3303
3544
34496
3451
.3407

.3365
.3324
3284
3246
.3209

3174
3139
.3106
.3073
.3042

.3012
.2082
.2953
.2925
.2898

.2872
.2846
2821
2796
2772

.2749
2726
2704
2683
2661

.2641
.2621
2601
2582
2563

25

.4900
4832
47606
44703
4643

.4584
4528
4474
4431
44370

4321
4274
4228
4183
4140

4098
.4057
.4018
.3979
3942

.3905
.3870
.3836
.3802
.3769

3737
.3706
.3676
.3646
.3617

.3589
.3561
.3534
3507
.3481

50

.5890
.5808
5729
.56353
.5580

.5509
D441
5375
5312

5251

5192
5134
5079
.5025
4973

4922
4873
4825
4779
4734

.4690
.4647
.4606
.4565
4525

4487
4449
4413
4377
4342

4208
4274
14242
14210
4179
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100

6883
L7860
6643
6604
.6518

.6436
6356
6279
.6205
.6133

.6064
.5996
.5931
.>868
.5807

5748
.5690
.5635
.5580
.5527

5476
.5426
.5377
.5330
5284

.5239
.5195
.5152
5110
.5069

.5029
4990
4952
24914
4878
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TasrLe 5.5 (continued)
Return period (years)

n 2 S i) 25 50 100
75 1062 4861 2544 3456 L4148 4842
76 L1055 1848 .2526 3431 4118 4807
77 1043 1835 .2508 3407 .408Y9 4773
78 1042 11823 2491 .3383 .4060 4739
79 1035 1810 2474 .3360 14032 4706
80 1028 4798 .2457 3337 4005 J4h74
81 1022 1786 2441 .3315 .3978 4643
82 1016 1775 2425 .3293 .3951 4612
83 1010 1764 .2409 3271 3925 4581
84 1004 4752 2394 .3250 .3900 RATW
85 .0998 1742 .2379 .3229 .3875 4522
86 .0992 1731 .2364 .3209 .3830 4494
87 .0986 4720 .2349 .3189 .3826 .4466
88 .0980 A710 .2335 3169 .3803 .4438
89 0975 1700 2321 .3150 .3780 L4411
90 .0969 1690 2307 3131 3757 4384
9 .0964 .1680 .2293 3113 3734 4358
92 .0959 1670 .2280 .3094 3712 14332
93 L0954 1661 2267 3076 .3691 .4307
94 10948 1652 2254 .3059 .3670 4282
95 .0943 .1642 2241 3041 .3649 .4258
96 .0939 .1633 2229 .3024 .3628 4234
97 0934 1624 2217 .3007 .3608 4210
98 .0929 1616 2204 .2991 .3588 .4187
99 0924 1607 .2193 2975 .3569 .4164
100 .0919 .1599 2191 .2959 .3549 4142

An example of the magnitude of error in extrapolation beyond the range
of the data may be found in the record of maximum annual 24-hour rainfall at
Hartford, Connecticut, U.S.A. Based on the 50 years of record through 1954,
the 100-year value was found to be 155 mm. The maximum event during this
period was 170 mm. In 1955 a hurricane produced 307 mm in 24 hours. The
computation of 100-year 24-hour rainfall based on the 51 years of record through
1955 resulted in a new estimate of 218 mm, a 40 per cent increase. Even the
10-year value was increased substantially by this one event.
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It may happen, however, that during a definite period of T, years, pre-
cipitation of the magnitude P = Pr, does not occur at all, or that it occurs several
times. The probability that, during a given period of t years, a respective
phenomenon will occur n times, is equal to

t!
= | ——————— o —_ t-n =
P"‘""(mu-n)!)p d-» 5-8)
where p = 1/T:. Assuming, for example, that t = Tr = 100 years, then the
probabilities for various values of n are:

n 0 1 2 3 4 5
Pronco 0.366 0.370 0.185 0.061 0.015 0.003

The overall probability of Pr, or greater event occurring in t years is
discussed in Sec. A.5.7.3.
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APPENDIX D

HISTORIC DATA'
Flood information outside that in the systematic record can often be

used to extend the record of the largest events to a historic period much
longer than that of the systematic record. In such a situation, the follow-
ing analytical techniques are used to compute a historically adjusted log-
Pearson Type IIl frequency curve.

1. Historic knowledge is used to define the historically longer period
of "H" years. The number "Z" of events that are known to be the largest in
the historically longer period "H" are given a weight of 1.0. The remaining
“N" events from the systematic record are given a weight of (H-Z)/(N+L) on the
assumption that their distribution is representative of the (H-Z) remaining
years of the historically longer period.

2. The computations can be done directly by applying the weights to
each individual year's data using equations 6-1, 6-2a, 6-3a, and 6-4a.

Figure 6-1 is an example of this procedure in which there are 44 years of
systematic record and the 18397, 1919 and 1927 floods are knéwn to be the
three largest floods in the 77 year period 1897 to 1973. If statistics have
been previously computed for the current continuous record, they can be
adjusted to give the equivalent historically adjusted values using equations
6-1, 6-2b, 6-3b, and 6-4b, as illustrated in Figure 6-2.

3. The historically adjusted frequency curve is sketched on logarithmic-
probabiiity paper through points established by use of equation 6-5. The
individual flood events should also be plotted for comparison. The histor-
ically adjusted plotting positions for the individual flood events are
computed by use of equation 6-8, in which the historically adjusted order
number of each event "m" is computed from equations 6-6 and 6-7. The com-
putations are illustrated in Figures 6-1 and 6-2, and the completed pﬁotting
is shown in Figure 6-3.

4, The following example illustrates the steps in application of the
historic peak adjustment only. It does not include the final step of
weighting with the generalized skew. The historically adjusted skew developed
by this procedure is appropriate to use in developing a generalized skew.

! Reproduction of Appendix 6 of Bulletin 17B.

D-1
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DEFINITION OF SYMBOLS

event number when events are ranked in order from greatest magnitude
to smallest magnitude. The event numbers "E" will range from 1 to
(Z + N).

logarithmic magnitude of systematic peaks excluding zero flood
events, peaks below base, high or low outliers

logarithmic magnitude of a historic peak including a high outlier
that has historic information

number of X's
mean of X's
historically adjusted mean

historically adjusted order number of each event for use in formulas
to compute the plotting position on probability paper

standard deviation of the X's
historically adjusted standard deviation
skew coefficient of the X's

historically adjusted skew coefficient

Pearson Type 111 coordinate expressed in number of standard devia-
tions from the mean for a specified recurrence interval or percent

chance

computed flood flow for a selected recurrence interval or percent
chance

plotting position in percent

probability that any peak will exceed the truncation level (used
in step 1, Appendix §)

number of historic peaks including high outliers that have historic
information

number of years in historic period

number of low values to be excluded, such as: number of zeros,
number of incomplete record years (below measurable base), and low
outliers which have been identified .

constant that is characteristic of a given plotting position formula.
For Weibull formula, a = 0; for Beard formula, a = 0.3; and for

Hazen formula, a = 0.5
systematic record weight
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EQUATIONS
H-2 )
W N+ L (6-1)
~ WIX +Z XZ
= 2 (6-2a)
2 WI(X-M) + T(x, - M)
S o= (A-WL-1) (632)
- 3 - 3
. H-WL WE(X - M) +E(x, - M)
G = =7 (6-4a)
{(H-WL-T)  (H-WL-2) S
- WNM +§.Xz
M = ——F_—NL— (S-Zb)
2 -~ 2 -2
2 W(N-T)S +WN (M- M) +3(x, - M)
) (R-WL-T) (6-3b)
3
~ - - - 2
(H-WL-1) (H-WL-2)S N
-~ 3 ~ 3
+ WN (M -M) +2(Xz -M) (6-4b)
Log Q=M+ KS (6-5)
m=E; when: 1 <E<Z (6-6)
m=WE - (W-1)(Z+0.5); when: (Z +1) < E < (Z + N+L) (6-7)
- _ m - a -
PP = = 100 (6-8)

D-3
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Figure 6.1 HISTORICALLY WEIGHTED LOG PEARSON TYPE III . ANNUAL PEAKXS
Scation: 3.6065, Big Sandy River at Brucston, TN. D_A. 205 square miles
Record: 1897, 1919, 1927, 1930-1973 (47 years)
Historical period: 1897-1973 (77 years)
N=44,2=3 H=77
Q (cfa) LogY Departure Weight Event Weighted Plotting
Year =Y from Number order position
=X maesn log -W =E Number (Weibull)
= (X-M -m PP
1897 25,000 4.3979¢ 0.68212 1.00 1 1.00 1.28
1919 21,000 4.32222 0.60640 1.00 2 2.00 2.56
1927 18,500 4.26717 0.55136 1.00 3 3.00 3.85
1935 17,000 4.23045 0.51464 1.68182 ] M 5.56
1937 13,800 4.13988 0.42407 — 5 6.02 7.72
1946 12,000 4.07918 0.36337 6 m 9.88
1972 12,000 4.07918 0.36337 7 9.39 12.04
1936 11,800 4.07188 0.35607 8 11.07 14.19
1942 10,100 4.00432 0.28851 9 1275 16.35
1950 9,880 3.99475 0.27895 10 14.43 18.50
1930 9,100 3.95904 0.24323 11 16.12 20.67
1967 9,060 395713 024132 12 17.80 22.82
1932 7,820 389321 0.17740 13 19.48 24.97
1973 7,640 3.88309 0.16728 4 21.16 27.13
1962 7.480 3.87390 0.15809 15 22.84 29.28
1965 7,180 3.85612 0.14031 16 U.53 3145
1936 6,740 3.82866 0.11285 2 17 26.21 33.60
1948 €.130 3.78746 0.07165 by 18 27.89 35.76
-]
1939 5,940 3.77379 0.05798 I 19 29.57 37.91
1945 5,630 3.75051 0.03470 ~ 20 3125 40.06
1934 5,580 3.74663 0.03082 * 21 3294 4223
1952 5,480 3.73878 0.02297 X 2 34.62 «“3s
1944 5,340 372754 0.01173 « 23 36.30 46.54
1951 5,230 3.71850 0.00269 E u 37.88 48.69
1957 5,150 371181 0.00400 1 25 39.66 50.85
1971 5,080 3.70586 0.00985 26 4135 53.01
1953 5,000 3.69897 0.01684 z 27 4303 55.17
1949 4740 3.67578 0.04003 & 28 “11 §7.32
1970 4,330 3.63649 0.07932 z 29 46.39 5947
1938 4,270 3.63043 -0.08538 W 30 48.07 61.62
1952 4,260 3.62941 -0.08640 B 31 49.76 63.79
1947 3,980 3.59988 -0.11583 32 51.44 65.95
1943 3,780 357749 0.13832 33 53.12 68.10
1961 3170 3.57634 0.13947 4 54.80 7025
1958 3350 3.52504 0.19077 35 56.49 7242
1954 3,320 352114 0.19467 36 58.17 74.58
1933 3,220 3.50786 0.20785 37 59.85 76.73
1964 3,100 349136 0.22445 38 61.53 78.88
1968 3,080 3.48855 022725 39 6321 81.04
1969 2,800 344716 0.26865 40 64.90 8321
1963 2,740 343775 0.27806 41 66.58 85.36
1959 2,400 3.38021 0.33560 2 68.26 87.51
1931 2,060 331387 040194 43 §9.94 89.67
1966 1,920 328330 -0.43251 “ 71.62 91.82
1840 1,680 322531 0.49050 4 73.31 93.99
1960 1,460 3.16435 0.55146 — 4 74.99 96.14
1841 1,200 3.07918 0.63663 1.68182 47 76.67 98.29

D-4
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Figure 6-1. WISTORICALLY WEIGHTED LOG PEARSON-TYPE {|i - ANMUAL PEAKS {Continued)
Solviny (Eq. 6-2a) Solving {fq. 6-3a)
X = 162.40155 $x% = 3.00755
WIX = 273.13018 WXx® = 5.20952
Ix,= _12.98733 2,2 = 1.13705
_12.98733 - L3705
286.11751 6.34657
M = = -
L 286.11751/77 = 3.71581 2 - 6.3657/(77 - 1) = 0.0835)
3 7 0.2089 33 - 0.02413
Solving {€q. 6-4a)
3 2 -
Ix3 0.37648 (77) (0.07485)
WIx™ = -0.63317 = = 0.0418
z‘i .« 0.70802 (76) (75) (0.02413) —
0.07485
Solving (Eq. 6, Page 13
N 77
A= -0.33 + 0.08 (0.0418) = -0.32666
B= 0.94 - 0.26 (0.0418) = 0.92913
tse, - 10[-0-32666 - 0.92913[0.88649]] _ |[~1.150325] _ () o7
Solving (Eq. 9.5, Page 12
0.302(C.0418) + 0.07074(-0.2)
6, = -0.00409
.302 + 0.07074
Solving (Eq. 6-5
x K (s) (K) H+ (3 (K) = Log Q ¥
G, = -0.00409 ¥ = 28898 N = 3.71581 (ft 7/s)
99 -2.32934 -0.67313 3.04269 1.103
95 -1.64599 -0.47566 3.24014 1.738
90 -1.2819 -0.37046 3.34535 2,215
80 -0.84141 -0.24315 3.47266 2,969
50 0.00067 0.00019 3.71600 5,200
20 0.84180 0.24326 3.95907 9,100
10 1.28110 0.37021 4.08602 12,190
4 1.74929 0.50551 4.22132 16,646
2 2.05159 0.59289 4.30868 20,355
1 2.32340 0.67142 4.38723 24,391
R 3.08455 0.89138 4.60719 40,475
.01 3.71054 1.07227 4.78808 61,387
Solving (Eq. 6-6 Solving (Eq. 6-7
=3 (Z+1)=4
For E=1; m=sE=1 (Z+N) =47
ForE=2;ﬁj*E=2 For 4< E<47:
For€=3m=t=3 W= (1.682) (E) - (0.682) (3.5)
Solving (Eg. 6-8 W+ {1.682) (E) - 2.387

For Weibull: a = 0. PP = (100) (m)/(78)
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Fiqure 6-2. HISTORICALLY WEIGHTED LOG-PEARSQii TYPE III - ANNUAL PEAKS

Results of Standard Computation for the Current Continuous Record

Big Sandy River at Bruceton, TN. DA - 205 square miles
#3-6065 (44 years)
N = number of observations used = 44
M = mean of logarithms = 3.69094
S = standard deviation of logarithms = 0.26721]
s?2 = 0.07140 3 = 0.01908
= coefficient of skewness {logs) =-0.18746
Adjustment to Historically Weighted 77 Years
Historic Peaks (Z = 3 Years)
T T 1 ; L
vear | Y, (ft%s) | Logv = x Ix, -H g - M2 (x, - ¥
N 1 l [
1897 | 25,000 ! 4.39794 |0.68213 | 0.46531 | 0.31740
1919 21,000 I 4.32222 |0.60641 | 0.36774 | 0.22300
1922 | 1,500 1 4.26m7 '0.55136 I 0.30400 [ 0.16762
] [ |
Summation 12.98733 1.83990 1.13705 0.70802
N =44 Z2=3 H=177

Solving (Eq. 6-1): W = (77-3)/44 = 1.68182
Solving (Eq. 6-2b): § . (1.68182) (44) (3.69094) + (12.98733) _ 3.71581
77 :

Solving (Eq. 6-3b):
(M - M) = -0.02487, (M - M)% = 0.000619; (M - M)> = -0.0000154

32 _ {1.68182)(43)(0.07140) + 11.53;32)(44)(0.000519) + (1.13705) _ o oe3s]
52 = 0.08351 S = 0.28898 33 = 0.02413

Solving (Eq. 6-4b):

% . 77 [ (1.68182) (43) (42) (0.01908) (-0.18746)
~{76) (75) (0.02413) 44
(3)(1.68182) (43)(-0.02487)(0.07140) + (1.68182)(44)(-0.0000154) + (0.70802)]

G = 0.0418
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APPENDIX E

EXAMPLES OF RELIABILITY TESTS
FOR THE
MEAN AND STANDARD DEVIATION

Mean

Analysis of 19 annual flood peaks indicates that X = 3.8876 and S = 0.4681. It is
hypothesized on the basis of a regional analysis that the true mean is 3.7782. Sample
means, where the population variance is unknown, are distributed like the t-distribution.
If u=3.7782, what is the probability of obtaining an X greater than 3.8876?

ForN=19 X =38876 S=0468]1 pu=3.7782

X -u 3.8876 - 3.7782
(SZ/N)* ((0.4681)2/19)*

Prob (X > 3.8876) = Prob (t > 1.019)

From a table for the t-distribution (Appendix F-4), there is a 16.2% chance that a sample
with 18 degrees of freedom will have an X of 3.8876 or more.

Standard Deviation

Find the 90% confidence interval for the population variance from a sample for which
S% = 14.4818 and N = 20. Sample values of variance (standard deviation squared) are
distributed like the Chi-square (xz) distribution. From a table (Appendix F-5) for the
Chi-square distribution with 19 degrees of freedom:

Exceedance

Probability Chi-square
0.95 10.117
0.05 30.144

The 90% confidence interval is computed as:

(N -1) 82 (N-1) §?
—2'—— <0< "'—"2—'—

Xs Xos
19(14.4918) 19(14.14818)
T ——— < 0 < T ——

30.144 10.117

9.128 <0< 27.197
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MEDI

Table F-1

N PLOTTING P

ITION

Plotting Positions in Percent Chance Exceedance

Order .

~im)

. Number of Values in Array (N)

]

8

2

9

11

12

. Order
13 _(m)

B e e S S RNNNNRNRNRN NN RN W G0 W W W W W s PP
HNWPCONDDORNWE NOUBDORNGEOd Yo e rboroalaclll
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N WErsrOAOND OO
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98.
96.
94,
92.
81.
89.
87.
85.
83.
81.
79.
77.
75.
73.
71.
70.
68.
66.
64 .
62.
60.
58.
56.
.77
52.
50.
49.
47.
45,
.32
41.
38.
37.
35.
33.
3l1.
28.
28.
26.
24.
22.
20.
18.
16.
.69

54

43

14

12.
.87
.96
.05
.14
.23
22

10

= W W

00

68
77
86
95
04
13
22
31
40
50
58
68
77
86
95
04
13
23
32
41
50
59
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05
14
23

41
50
59
68
77
87
96
05
14
23
a2
41
50
58

78

.29
71

.65
.70
.76
.81
.87
.92
.97
.03
.08
.14
.19
.24
.30
.35
L4l
.46
.51
.57
.62
.68
.73
.78
.86
.89
.95
.00
.05
.11
.16
.22
.27
.32
.38
.43
.49
.54
.58
.65
.70
.76
.81
.86
.92
.97
.03
.08
.13
.19
.24
.30

35

15.
38.
61.
84,

98.
96.
94,
2.
90.
88.
86.
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80.
78.
76.
T4.
72.
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68.
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64,
62.
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58.
56.
54,
s52.
50.
47.
45,

41.
39.
37.
3s.
33.
31.
29.
27.
25.
23.
21.
18.
17.
15.
13.

i+ W ©

12.94
31.47
50.00
68.53
87.06

98.57
96.50
94 .43
82.37
80.30
88.23
86.17
84.10
82.03
798.97
77.90
75.83
73.77
71.70
69.63
67.57
65.50
63.43
61.37
59.30
57.23
55.17
53.10
51.03
48.97
46.90
44,83
42.77
40.70
38.63
36.57
34.50
32.43
30.37
28.30
26.23
24.17
22.10
20.03
17.97
15.80
13.83
11.77
9.70
7.63
5.57
3.50
1.43

10.
26.
42,
57.
73.
89.

98.
96.
94.
92.
90.
87.
85.
83.
81.
79.
77.
75.
73.
71.
68.
66.
64.
62.
60.
58.
56.
54.
52.
50.
47.
45,
43.
41,
39.
37.
3s.
33.
31.
28.
26.
24.
22.
20.
18.
16.
14,
12.
.91

= W L

91
55
18
82
45
09

54
43
32
21
10
98
87
76
65
54
43
32
21
10
99
88
77
66
55
bé
33
22
11
00
89
78
67
56
45
34
23
12
01
20
79
68
57
45
35
24
13
02

79

57

246

9.43
22.95
36.48
50.00
63.52
77.05
90.57

98.50
96.35
94.19
82.04
8g8.88
87.73
85.57
83.41
81.26
79.10
76.95
74.79
72.64
70.48
68.32
66.17
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61.86
59.70
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51.08
48.92
46.77
44.61
42.45
40.30
38.14
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27.36
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.79
.70

Y
.27
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.14
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.73
.33

7.41
18.06
28.71
39.35
50.00
60.65
71.29
81.84
g2.59

98.44
86.18
93.93
g91.68
88.43
87.17
84.92
82.67
80.41
78.16
75.81
73.66
71.40
68.15
66.80
64 .64
62.238
60.14
57.89
55.63
53.38
51.13
48.87
46.62
b4 .37
42.11
38.86
37.61
35.36
33.10
30.85
28.60
26.34
24.08
21.84
18.598
17.33
15.08
12.83
10.57
8.32

6.07

3.82

1.56

.70
.32
.94
.57
.19
.81
.43
.06
.68
.30

.40
.10
.79
.49
.18
.88
.57
.27
.86
.66
.35
.05
.74
Lhk
.13
.83
.52
.22
.81
.61
.30
.00
.70
.39

.78
.48
.17
.87
.56
.26
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.65
.34
.04
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.80
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.89
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94.

68
75
82
89
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Table F-1 (Cont)
MEDIAN PLOTTING POSITIONS
Plotting Positions in Percent Chance Exceedance
Order . . . . . . . . . . . . . . . Number of Values in Arrey (N) . . . . . . . . . . . . . . . Order
—{m) 14 15 16 17 18 18 20 21 22 23 24 25 26 (m)
1 4.83 .52 4.24 4.00 3.78 3.58 3.41 3.25 3.10 2.97 2.85 2.73 2.63 1
2 11.78 11.01 10.3& 9.75 9.22 8.74 8,31 7,92 7.57 7.24 6.95 6.67 6.42 2
3 18.73 17.51 16.44 15.50 14.65 13.90 13.22 12.60 12.03 11.52 11.05 10.61 10.21 3
4 25.68 24.01 22.5 21.25 20.09 19.05 18.12 17.27 16.50 15.80 15.15 14.55 14.00 4
S 32.63 30.51 28.65 27.00 25.53 24.21 23.02 21.95 20.97 20.07 19.25 18.43 17.78 5
6 39.58 37.00 34.75 32.75 30.97 29.37 27.93 26.62 25.43 24.35 23.35 22.43 21.58 6
7 46.53 43.50 40.85 38.50 36.41 34.53 32,83 31.30 29.90 28.62 27.45 26.37 25.37 7
8 53,47 50.00 46.95 44.25 41.84 39.68 37.74 35.97 34.37 32.90 31.55 30.31 29.16 8
9 60.42 56.50 53.05 S50.00 47.28 44.84 42.64 40.65 38.83 37.17 35.65 34.24 32.95 9
10 67.37 63.00 58.15 55.75 S52.72 S50.00 47.55 45,32 43.30 41.45 39.75 38.18 36.74 10
11 74.32 69.49 65.25 61.50 58.16 55.16 52.45 50.00 47.77 45.72 43.85 42.12 40.53 11
12 81.27 75.99 71.35 67.25 63.59 60.32 57.36 54.68 52.23 50.00 47.95 46.06 44.32 12
13 88.22 82.49 77.46 73.00 69.03 65.47 62.26 59.35 56.70 S54.28 52.05 50.00 48.11 13
14 95.17 88.99 #3.56 78.75 74.47 70.63 67.17 64.03 61.17 58.55 56.15 53.94 51.89 14
95.48 89.66 84.50 79.91 75.79 72.07 68.70 65.63 62.83 60.25 57.88 55.68 15
39 98.24 95.76 90.25 85.35 80.85 76.98 73.38 70.10 67.10 64.35 61.82 59.47 16
38 95.70 98.18 86.00 90.78 B86.10 B81.88 78.05 74.57 71.38 68.45 65.76 63.26 17
37 93.16 95.59 98.14 96.22 91.26 86.78 82.73 79.03 75.65 72.55 69.69 67.05 18
36 90.62 92.98 95.47 98.09 96.42 91.68 B87.40 B3.50 79.93 76.65 73.63 70.84 19
35 88.08 90.38 92.79 95.34 98.04 96.56 92.08 87.97 B84.20 80.75 77.57 74.63 20
34 85.54 B87.77 90.12 92.60 95.21 ©7.98 96.75 92.63 B88.48 84.85 81.51 78.42 21
33 83.01 85.17 87.45 89.85 92.39 85.07 97,92 96.90 92.76 B8B.95 B85.45 82.21 22
32 B80.47 82.56 84.77 87.10 89.56 92.17 94.93 97.86 97.03 93.05 89.39 86.00 23
31 77.93 79.96 82.10 84.35 86.74 89.26 91.93 94.77 97.79 97.15 93.33 89.79 24
30 75.39 77.35 79.42 81.60 83.91 86.35 88.94 91.68 94,60 97.72 97.27 93.58 25
29 72.85 74.75 76.75 78.86 81.08 B83.44 85.94 8B.59 91.42 94.43 97.64 97.37 26
28 70.31 72.14 74.07 76,11 78.26 80.53 82.95 85.51 88.23 91.13 84,24 97.55
27 67.77 68.54 71.40 73,36 75.43 77.63 79.95 82.42 85.05 87.86 90.83 04.03 97.47 27
26 65.23 66.93 68.72 70.61 72.61 74.72 76.96 79.33 81.86 84.55 87.43 980.51 93.81 26
25 62.69 64.33 66.05 67.86 69.78 71.81 73,96 76.24 78.67 81.26 84.03 B86.99 90.16 25
24 60.16 61.72 63.37 65.11 66.95 68.90 70.97 73.16 75.49 77.97 80.62 B83.46 B86.51 24
23 $7.62 58.12 60.70 62.37 64.13 65.99 67.97 70.07 72.30 74.68 77.22 79.94 B82.86 23
22 55.08 56.51 58.02 59.62 61.30 63,00 64.98 66.98 69.12 71.39 73.82 76.42 79.21 22
21 S52.54 53.91 55,35 56,87 58.48 60.18 61.98 63.89 65.93 68.10 70.42 72.90 75.56 21
20 S0.00 51.30 52.67 S4.12 55.65 57.27 S58.99 60.81 62.74 64.81 67.01 69.37 71.91 20
19 47.46 48.70 50.00 51.37 52.83 54.36 55.99 57.72 59.56 61.52 63.61 65.85 68.26 19
18 44.92 46.09 47.33 48.63 50.00 51.45 53.00 54.63 $6.37 58.23 60.21 62.33 64.60 18
17 42.38 43.49 44,65 45,88 47.17 48.55 S0.00 S51.54 53.19 54.94 56.81 S8.81 60.95 17
16 38.84 40.88 41.98 43.13 44.35 45.64 47.00 48.46 50.00 51.65 53.40 55.28 57.30 16
15 37.31 38,28 39.30 40.38 41.52 42.73 44.01 45.37 46.81 48.35 50.00 S1.76 53.65 15
14 34.77 35.67 36.63 37,63 38.70 39.82 41.01 42.28 43.63 45.06 46.60 48.24 50.00 14
13 32.23 33.07 33.95 34.89 35.87 36.91 38.02 39.10 40.44 41.77 43.19 44.72 46.35 13
12 29.69 30.46 31.28 32.14 33,05 34.01 35.02 36.11 37.26 38.48 39.79 41.19 42.70 12
11 27.15 27.86 28.60 28.39 30.22 31.10 32.03 33.02 34.07 35.19 36.38 37.67 39.05 11
10 24.61 25.25 25.93 26.64 27.39 28.1¢ 29,03 29.93 30.88 31.90 32.99 34.15 35.40 10
9 22.07 22.65 23.25 23.89 24.57 25.28 26.04 26.84 27.70 28.61 29.58 30.63 31.74 9
8 19.53 20.04 20.58 21.14 21.74 22.37 23.04 23.76 24.51 25.32 26.18 27.10 28.09 8
7 16.99 17.44 17.90 18.40 18.92 18.47 20.05 20.67 21.33 22.03 22.78 23.58 24.44 7
6 14.46 14.83 15.23 15.65 16.09 16.56 17.05 17.58 18.14 18.74 19.38 20.06 20.79 6
5 11.92 12,23 12.55 12.90 13.26 13.65 14.06 14.49 14.95 15.45 15.97 16.5¢ 17.14 5
4 9.38 9.62 9.88 10.15 10.44 10.74 11,06 11.61 11.77 12.16 12.57 13.01 13.49 &
3 6.8 7.02 7.21 7.40 7,61 7.83 8,07 B8.32 8.58 8.87 9.17 9.45 9.84 3
2 4.30 4.41 4.53 4,66 4.79 4.93 507 523 540 5.57 5.76 5.97 6.18 2
1 __1.76 1.81 1.86 1,91 196 202 208 214 221 228 236 245 253 1
(m) 39 38 37 36 35 34 k] 32 3 30 29 28 27 (m)
Order . . . . . . . . . . . . . Number of Values in Array (N) . . . . . . . . . . . . . Order

F-3
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Table F-2
DEVIA F PEARSON TYPE-III DISTRIBUTION
Positive Skew

Skow

Coefficient . . . . . . . . . . .. ... .. ... Parcent Chance Exceedannce . . . . . . . . . . . . . ... ...
(G) 290 950 90 800 S0 _ 200 100 5.0 2.0 1.0 0.5 0.2 0.1
0.0 -2.32535 -1.64485 -1,28155 -0.84162 0.00000 0.84162 1.28155 1.64485 2.05375 2.32635 2.57583 2.87816 3.09023
0.1 -2.252%8 -1.61594 -1.27037 -0.84611 -0.01662 0.83639 1.20178 1.67279 2.10697 2.39961 2.66965 2.99978 3.23322
0.2 ~-2.17840 -1.58607 -1.25824 -0.84986 -0.03325 0.83044 1.30105 1.69671 2.15835 2.47226 2.76321 3.12169 3.37703
0.3 -2.10384 -1.55527 -1.24516 -0.85285 -0.04993 0.82377 1.30836 1.72562 2.21081 2.54421 2.85636 3.24371 3.52139
0.4 =-2.02933 -1.52357 -1.23114 -0.85508 -0.06651 0.81638 1.31671 1.75048 2.26133 2.61539 2.94900 3.36566 3.66608
0.5 -1.95472 -1.49101 -1.21618 -0.85653 -0.08302 0.80829 1.32309 1.77428 2.31084 2.68572 3.04102 3.48737 3.81090
0.6 -1.88029 -1.45762 -1.20028 -0.85718 -0.09945 0.79950 1.32850 1.79701 2.35831 2.75514 3.13232 3.60872 3.95567
0.7 -1.B0621 -1.42345 -1.18347 -0.85703 -0.11578 0.79002 1.33284 1.81854 2.40670 2.82359 3.22281 3.723957 4.10022
0.8 -1.73271 -1.38855 -1.16574 -0.85607 -0.13190 0.77686 1.33640 1.83016 2.45288 2.80101 3.31243 3.B4981 4.24439
0.8 ~-1.56001 -1.35209 -1,14712 -0.85426 -0.14807 0.76802 1.33889 1.85856 249811 2.95735 3.40109 3.96932 4.38807
1.0 -1.58838 -1.31684 -1.12762 -0.85161 -0.16397 0.75752 1.34039 1.87683 2.54206 3.02256 2.48874 4.08802 453112
1.1  -1.51808 -1.28019 -1.10726 -0.84800 -0.17968 0.74537 1.34082 1.89395 2.58480 3.08660 3.57530 4.20582 467344
1.2 -1.44942 -1.26313 -1.08608 -0.84369 -0.19517 0.73257 1.34047 1.90992 2.62631 3.1484 23.66073 6.32263 4.B14@2
1.3 -1.38267 -1.20578 ~1,06413 -0.83841 -0.21040 0.71915 1.33904 1.92472 2.66657 3.21103 3.74497 4.43839 4.95548
1.4 -1.31815 -1.16827 -1.04144 -0.83223 -0.22535 0.70512 1.33665 1.93836 2.70556 3.27134 3.82798 4.55304 5.09505
1.5 -1.25611 -1.13075 -1.01810 -0.82516 -0.23996 0.50050 1.33330 1.85083 2.74325 3.33035 3.90973 4.66651 5.23353
1.6 -1.19680 -1.09338 ~0.90418 -0.81720 -0.25422 0.67532 1.32000 1.96213 2.77964 3.38804 3.99016 4.77875 5.37087
1.7  -1.14042 -1.05631 -0,96877 -0.80837 -0.266808 0.65850 1.32376 1.97227 2.81472 3.44438 4.06926 4.88971 5.50701
1.8 -1.08711 -1.01973 -0.94495 -0.79868 -0.28150 0.64335 1.31760 1.88124 2.84848 3.49935 4.14700 4.99937 5.64190
1.9 -1.03685 -0.88381 -0.91968 -0.78816 -0.20443 0.62662 1.31054 1.96006 2.88091 3.55205 4.22336 5.10768 5.77549
2.0 ~0.98995 -0.84871 -0,80464 -0.77686 -0.30685 0.60944 1.30259 1.99573 2.91202 3.60517 4.29832 5.21461 5.90776
2.1 -0.94607 -0.91458 -0.86338 -0.76482 ~0.31872 0.58183 1.29377 2.00128 2.94181 3.65600 4.37186 5.32014 6.03865
2.2 -0.90521 -0.88156 -0.84422 -0.75211 -0.32090 0.57383 1.28412 2.00570 2.97028 3.70543 4.44388 5.42426 6.16816
2,3 -0.86723 -0.84976 -0.81920 -0.73880 -0.34063 0.55549 1.27365 2.00903 2.90744 3.75347 4.51467 5.526%4 6.29626
2.4 -0.83196 -0.81827 -0.79472 ~0.72485 -0.35062 0.53683 1.26240 2.01128 3.02330 3.80013 4.58333 5.62818 6.42232
2.5 -0.79821 -0.79015 -0.77062 -0.71067 -0.35092 0.51789 1.25039 2.01247 3.04787 3.84540 4.65176 5.72796 6.54814
2.6 -0.76878 -0.76242 -0.74709 -0.69602 -0.36852 0.49872 1.23766 2.01263 3.07116 3.88930 4.71815 5.82629 6.67191
2.7 -0.74049 -0.73610 -0.72422 -0.68111 -0.37640 0.47934 1.22422 2.01177 3.08320 3.93183 4.78313 5.92316 6.73421
2.8 -0.71415 -0.71116 -0.70209 -0.66603 -0.38353 0.45880 1.21013 2.00992 3.11398 3.97301 4.84669 6.01858 6.91505
2.9 -0.68950 -0.68758 -0.68075 -0.65086 -0.38991 0.44015 1.19539 2.00710 3.13356 4.01286 4.90884 6.11254 7.03443
3.0 -0.66663 -0.66532 -0.66023 -0.63560 -0.38554 0.42040 1.18006 2.00335 3.15193 4.05138 4.96959 6.20506 7.15235

Source: Appendix 3, Bulletin 17B, reference (46).
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Table F-2 (Cont)
DEVIATES FOR PEARSON TYPE-III DISTRIBUTION
Negative Skew

Skew

Coefficiant . . . . . . . . . . ... ... Parcent Chance Exceedance . . . . . . . . . . . .. ... ... .. .
(G) 990 950 900 800 500 200 100 5.0 2.0 1.0 0.5 0.2 0.1
0.0 -2.32635 -1.64485 -1.28155 -0.84162 0.00000 0.84162 1.28155 1.64485 2.05375 2.32635 2.57583 2.87816 3.09023
-0.1 =-2.399681 -1.67279 -1.29178 -0.83639 0.01662 0.84611 1.27037 1.61584 1.99973 2.25258 2.48187 2.75706 2.94834
-0.2  -2.47226 -1.68071 -1.30105 -0.83044 0.03325 0.848966 1.2582¢ 1.58607 1.94499 2.17840 2.38795 2.63672 2.80786
-0.3  -2.54421 -1.72562 -1.30836 -0.82377 0.04693 0.85285 1.24516 1.55527 1.88959 2.10384 2.20423 2.51741 2.66915
-0.4 -2.61539 -1.75048 -1.31671 -0.81638 0.06651 0.85508 1.2311¢ 1.52357 1.83361 2.02833 2.20082 2.39942 2.53261
<0.5 -2.68572 -1.77428 -1.32309 -0.80829 0.08302 0.85653 1.21618 1.48101 1.77716 1.95472 2.10825 2.28311 2.39867
-0.6 -2.75516 -1.79701 -1.32850 -0.79950 0.09%45 0.85718 1,20028 1.45762 1.72033 1.88020 2.01644 2.16884 2.26780
-0.7 -2.82359 -1.81864 -1.33284 -0.79002 0.11578 0.85703 1.18347 1.42345 1.66325 1.80621 1.92580 2.05701 2.14053
-0.8 -2.89101 -1.83916 -1.33640 -0.77986 0.13199 0.85607 1.16574 1.38855 1.60604 1.73271 1.83B60 1.94806 2.01739
-0.8 -2.95735 -1.85856 -1.33888 -0.76802 0.14807 0.85426 1.14712 1.35280 1.54886 1.66001 1.74819 1.84244 1.89884
-1.0 -3.02256 -1.87683 -1.34039 -0.75752 0.16397 0.85161 1.12762 1.31684 149188 1.58838 1.66380 1.74062 1.78572
-1.1 -3.08660 -1.89395 -1.34082 -0.74537 0.17968 0.84809 1.10726 1.28019 1.43529 1.51808 1.58110 1.64305 1.67825
=1.2  -3.14864 -1.90992 -1,34047 -0.73257 0.18517 0.84369 1.08608 1.24313 1.37929 1.44942 1.50114 1.55016 1.57695
-1.3  -3.21103 -1.92472 -1.33904 -0.71915 0.21040 0.83841 1.06413 1.20578 1.32412 1.38267 1.42438 1.46232 1.48216
-l.4  =3.27134 -1.93836 -1.33665 -0.70512 (.22535 0.83223 1.04144 1,16827 1.26899 1.31815 1.35114 1.37881 1.38408
-1.5 -3.33035 -1.95083 -1.33330 -0.68050 0.2399 0.82516 1.01810 1.13075 1.21716 1.25611 1.28167 1.30278 1.31275
-1.6 ~-3.38804 -1.96213 -1.32000 -0.67532 0.25422 0.81720 0.99418 1.08338 1.16584 1.19680 1.21618 1.23132 1.23805
-1.7  -3.44438 -1.97227 -1.32376 -0.65350 0.26808 0.80837 0.96977 1.05631 1.11628 1.14042 1.15477 1.16534 1.16974
=1.8 -3.49935 -1.88124 -1.31760 -0.64335 0.28150 0.79868 0.94496 1.01873 1.06864 1.08711 1.09749 1.10465 1.10743
-1.9  -3.55205 -1.98906 -1.3105 -0.62662 0.29443 0.78816 0.91968 0.98381 1.02311 1.03695 1.04427 1.04898 1.05068
-2.0 -3.60517 -1.99573 -1.30250 -0.60944 0.30685 0.77686 0.80464 0.94871 0.97980 0.98995 0.99499 0.98800 0.99900
-2.1  -3.65600 -2.00128 -1.28377 -0.59183 0.31872 0.76482 0.86438 0.91458 0.93878 0.94607 0.94945 0.95131 0.95188
2.2 -3.70543 -2.00570 -1.28412 -0.57383 0.32988 0.75211 0.84422 0.88156 0.80008 0.90521 0.90742 0.90854 0.90885
-2.3  -3.75347 -2.00903 -1.27365 -0.55548 0.34063 0.73880 0.81929 0.84976 0.86371 0.86723 0.86863 0.86829 0.86845
-2.4 -3.80013 -2.01128 -1.26240 -0.53683 0.35062 0.72495 0.79472 0.81927 0.82950 0.83196 0.83283 0.83320 0.83328
-2.5 -3.84540 -2.01247 -1.25039 -0.51786 0.35682 0.71067 0.77062 0.79015 0.79765 0.79821 0.79973 0.799%4 0.79998
-2.6 -3.88930 -2.01263 -1.23766 -0.49872 0,36852 0.69602 0.74709 0.76242 0.76779 0.76878 0.76909 0.76320 0.76922
-2.7  -3.93183 -2.01177 -1.22422 -0.47834 0.37640 0.68111 0.72422 0.73610 0.73967 0.74049 0.74067 0.74073 0.74074
-2.8  -3.97301 -2.00992 -1.21013 -0.45980 0,38353 0.66603 0.70209 0.71116 0.71377 0.71415 0.71425 0.71428 0.71428
-2.9  -4.01286 -2.00710 -1.19539 -0.44015 0.38991 0.65086 0.68075 0.68759 0.68835 0.68950 0.68964 0.68965 0.68965
-3.0  ~4.05138 -2.00335 -1.18006 -0.42040 0.39554 0.53569 0.66023 0.66532 0.66649 0.66663 0.66666 0.66667 0.66667

Source: Appendix 3, Bulletin 17B, reference (46).
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Table F-3
NORMA ISTRIBUTION
Percent Chance Exceedance for Given Normal Standard Deviate (K)
.. . . Increments to K in Columm 1 . . .

K .00 01 .02 .03 .06 .05 06 .07 .08 .08

.0 50.00 49.60 49.20 48.80 48,40 48.01 47.61 47.21 46,81 46,41

.1 46.02 45.62 45.22 44 .83 44 .43 44 .04 43,64 43.25 42.86 42 .47

.2 42,07 41.68  41.29  40.90  40.52  40.13 39,74  39.36  38.97  238.59

.3 38.21 37.83 37.45 37.07 36.89 36.32  35.94 3557 3520  34.83

) 36.46 34.09 33.72 33.36 33.00 32.64 32.28 31.92 31.56 31.21

.5 30.85  30.50 30.15 29.81  29.46  29.12  28.77  28.43  28.10 27.76

.6 27.43  27.08 26.76 26.43  26.11  25.78 25,46  25.14  24.83  24.51

.7 24,20 23.89 23.58  23.27 22.96 22.66 22.36 22.06 21.77  21.48

.8  21.19 20.90 20.61 20.33  20.05 19.77  10.49  19.22  18.94 18.67

.9 18.41 18.14 17.88 17.62 17 .36 17.11 16.85 16.60 16.35 16.11
1.0 15.87  15.62  15.3%  15.15  14.82  14.68  14.46  14.23 14.01  13.79
1.1 13.57  13.35  13.14 12.92 12,71 12.51  12.30  12.10 11.80  11.70
1.2 11.51  11.31  11.12 10.83  10.75  10.56 10.38  10.20  10.03 9.85
1.3 9.68 9.51 9.34 9.18 9.01 8.85 8.69 8.53 8.38 8.23
1.4 8.08 7.93 7.78 7.64 7.48 7.35 7.2% 7.08 6.94 6.81
1.5 6.68 6.55 6.43 6.30 6.18 6.06 5.94 5.82 5.71 5.59
1.6 5.48 5.37 5.26 5.16 5.05 4.95 4.85 4.75 4,65 4.55
1.7 .46 4.36 4.27 4.18 4.0 4.01 3.92 3.84 3.75 3.67
1.8 3.59 3.5 3.44 3.36 3.29 3.22 3.14 3.07 3.01 2.94
1.9 2.87 2.81 2.74 2.68 2.62 2.56 2.50 2.44 2.38 2.33
2.0 2.28 2.22 2.17 2.12 2.07 2.02 1.97 1.92 1.88 1.83
2.1 1.79 1.74 1.70 1.66 1.82 1.58 1.54 1.50 1.46 1.43
2.2 1.39 1.36 1.32 1.29 1.25 1.22 1.18 .~ 1.16 1.13 1.10
2.3 1.072  1.044  1.017 .980 . 964 .939 .914 .889 .866 .842
2.4 .820 .798 .776 .755 734 714 .685 .676 .657 .639
2.5 .621 .604 .587 .570 .554 .539 .523 .508 494 .480
2.6 . 466 . 453 . 440 . 427 L4158 . 402 .391 .379 .368 .357
2.7 .347 .336 .326 .317 .307 .298 .289 .280 .272 .264
2.8 .256 .248 .240 .233 .226 .218 .212 .205 .199 .193
2.9 .187 .181 175 .168 .164 .158 .154 .149 144 .139
3.0 L1358 .131 .126 .122 .118 .114 L1111 .107 . 104 .100
3.1 .0968 .0936 .0904 0874 .0845 .0816 .0789 .0762 ,0736 L0711
3.2 .0687 .0664 .0641 .0618  .0598 ,0577 .0557 .0538 .0519 .0S01
3.3 .0483 .0467 .0450 L0434 .0419 .0404 .0390 .0376 .0362 .0350
3.4 .0337 .0325 .0313 .0302 .0291 .0280 .0270 .0260 .0251 .0242
3.5 .0233 .0224 .0216 .0208 .0200 .0193 .0185 .0178 .0172 .0165
3.6 .0159 .0153 .0147 .0142 .0136 .0131 .0126 .0121 .0117 .0112
3.7 .01078  .01037  .0098 .0D9S8  .00920 .00884 .00850 .00817 .00784  .00753
3.8 .00724 .00695 .00667 .00641 .00615 .00581 .00567 .00S544 .00522 .00501
3.9 .00481  .00462 .00463 00425 00408 .00391 .00375 .00360 .00345 .00331
4.0 .00317  .00304 .00291 .00279 .00267 .00256 .00245 .00235 _00225 .00216

.0 .042867
5.0 .07987

Note - Values have been generated by use of computer routines for the normal

distribution.
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Table F-4

NE-TAILED t-DISTRIBUTION

FT

INT

RCENTA

P

. Exceedance Probability
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A few values for exceedance probabilities of 0.005 and less
may differ plus or minus 0.00] from published tables.

istribution.

Values have been generated by use of computer routines for the inverse

t-d

Note -
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Table F-5
VALUE I- ARE DISTRIBUTION
..................... Excesdance Probability . . . . . . . . . . . . . ... ...
oF 0.99 0.95 0.90 0.75 0.50 0.25 0.10 0.05 0.01 0.005 0.001
1 03187 003x 0158 .102 455 1.323 2.706 3.841 §.535 7.878  10.828
2 .020 ,103 211 575 1.385 2.773 4.605 5.991 8.210  10.5¢7 13,816
3 115 .352 .584 1.213 2.366 4,108 6.251 7.815 11,345  12.838  16.266
4 .297 m 1.064 1.923 3.35 5.385 7.779 9.488 13277  14.8650  18.467
5 . 554 1.145 1.610 2.675 4.351 6.626 9.236 11.070 15,088 16.75%0 20.515
6 .872 1.635 2.204 3.455 5.348 7.841  10.645 12,582 16,812  18.548  22.458
7 1.239 2.167 2.833 4.255 6.346 9.037  12.017  14.067  18.475  20.278  24.322
8 1.646 2.73 3.490 5.071 7.3 10,219  13.362  15.507 20,000  21.955  26.125
9 2.088 3.325 4.168 5.888 8.343 11,389 14.684 16.919 21.666 23.589 27.877
10 2.558 J3.940 4,865 6.737 9.342 12.549 15.887 18.2307 23.209 25,188 29.588
1 3.053 4,575 5.578 7.584 10.341 13.701 17.275 19.675 24,725 26.757 31.264
b1 351 5.226 6.304 8.438  11.30  14.845 18,59  21.026 26,217  28.299  32.909
13 4.107 5.8 7.042 9.299 12340 15964  19.812  22.362  27.688  29.819 34,528
14 4.660 6.571 7.780  10.165 13,339  17.117  21.064  23.685 29,141  31.319  36.123
15 5.229 7.261 8.547  11.037  16.339  18.245 22,307  24.985 30,578  32.801  37.697
16 5.812 7.962 $.312  11.812  15.338 19360  23.52  26.205  32.000  34.267  39.252
17 6.408 8.672 10.085 12.7%2 16.338 20.489 24 .769 27.587 33.409 35.718 40.790
18 7.015 9.390  10.865  13.675  17.338  21.605 25,98  28.860  34.805  37.1%  42.312
19 7.633 10117 11.651  14.562  18.338  22.718  27.204 30,144 36,191  38.582  43.820
20 8.260  10.851  12.443 15452  19.337  23.828  28.412 31410 37,56  39.997  45.315
2 8.897  11.581  16.240  13.3s  20.337  26.835 20615  32.671  38.932 41,401  46.797
2 9.52 12,338  14.041  17.240  21.337  26.030  30.813 33,924  40.289  42.796  48.258
22 10196  13.091  14.88  18.137  22.337  27.141 32,007  35.172 = 41.638  44.181  49.728
24  10.8%  13.848  15.65 19,037  23.337  28.241  33.196  36.415 42,980  45.559  51.179
25 11526  14.611  16.473  19.639  24.337  20.338  34.38  37.652  44.314  46.28  S2.620
26  12.198  15.379  17.282  20.843  25.336  30.435  35.563  38.885  45.642  48.200  54.052
27 12878  16.151 18,114  21.749  26.336 31,528 36,741  40.113  46.963  49.645  55.476
28 1365 16.228  18.939  22.657  27.336  32.621  37.916 41,337  48.278  S0.993  56.8@2
29 14.2%  17.708  19.758 23,567 28,33  33.711  30.087 42,557 49,588  S52.336  58.302
30 14.953  18.483  20.580  24.478  28.336  34.800  40.25  43.773  50.8%2  S3.672  59.703
40  22.164  26.508  29.051 33,860  39.335  45.616  51.805  55.750  63.691  66.766  73.402
S0 29.707  34.764  37.689 42,942 48,335 56,33  63.167  67.505  7J6.15%  79.480  86.661
60  37.485  43.188  46.459  52.20  S9.335  66.981  74.397  79.082  88.379  91.852  99.607
70 45.442 51739 55,320  61.688  69.33  77.577  @85.527  90.531 100.425 104.215  122.317
80  53.540  60.382  64.278 71,145  79.33 88,130 96,578 101.879 112,320 116,321  124.839
90  61.75%  69.126  73.201  80.625  89.33  98.650  107.565 113,145 124.116 128,299  137.208
100  70.065  77.830  82.358 90,133  ©9.334  109.141  118.498  124.342 135807 140.168  149.448
From Table 26.8, Percentage Points of the y2-Distribution, Handbook of Mathematical

Functions, National Bureau of Standards Applied Mathematical Series 55, U.S.

Government Printing Office, Washington, D.C., 1972, page 984 and 985.
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Table F-6

F THE F DISTRIBUTION

ya

F Distribution Values for Upper 5% (a = .05)
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ions, National Bureau of Standards Applied Mathematical Series 55, U.S.

Government Printing Office, Washington, D.C., 1972, page 987.

From Table 26.9, Percentage Points of the F-Distribution, Han
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t-distribution. This table is based on samples drawn from a normal distribution.
The above values (after adjustment for skew) may be used as approximate
F-10

Values have been generated by use of computer routines for the inverse
adjustments to Pearson type-III distributions having small skew coefficients.

Note -
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Table F-8

FOR THE EXPECTED PROBABILITY ADJUSTMENT

PERCENTA

. Parcant Chance Exceedance

0.2 0.1 0.05 0.02 0.01

0.5

30 20, 10,

40,

NMm 3N

5789m

259
219
.188
164
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345
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3863
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052
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.080
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083

080

019
018
.017
016
010

034
.032
.031
030
020

Note -

Values have been generated by use of computer routines for the inverse normal

and inverse t-distributions. This table is based on samples drawn from a normal
distribution. The above values may be used as approximate adjustments to

Pearson type-IIlI distributions having small skew coefficients.
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Table F-9 (Cont)

FOR N AL DISTRIBUTION
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IMIT VIATES FOR NORMAL DISTRIBUTION
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Table F-10
MEAN- A ERROR OF STATION w FFICIENT

Station . Record Length, in Years (N or H) .. P

Skew (G) 10 20 30 40 50 60 20 80 80 100
0.0 0.468 0.244 0.167 0.127 0.103 0.087 0.075 0.066 0.058 0.054
0.1 0.476 0.253 0.175 0.134 0.108 0.093 0.080 0.071 0.064 0.058
0.2 0.485 0.262 0.183 0.142 0.116 0.099 0.086 0.077 0.068 0.063
0.3 0.494 0.272 0.192 0.150 0.123 0.105 0.082 0.082 0.074 0.068
0.4 0.504 0.282 0.201 0.158 0.131 0.113 0.089 0.088 0.080 0.073
0.5 0.513 0.293 0.211 0.167 0.139 0.120 0.106 0.085 0.087 0.079
0.6 0.522 0.303 0.221 0.176 0.148 0.128 0.114 0.102 0.093 0.086
0.7 0.532 0.315 0.231 0.186 0.157 0.137 0.122 0.110 0.101 0.093
0.8 0.542 0.326 0.243 0.196 0.167 0.146 0.130 0.118 0.109 0.100
0.9 0.552 0.338 0.254 0.207 0.177 0.156 0.140 0.127 0.117 0.108
1.0 0.603 0.376 0.285 0.235 0.202 0.178 0.160 0.147 0.135 0.126
1.1 0.646 0.410 0.315 0.261 0.225 0.200 0.181 0.166 0.153 0,143
1.2 0.682 0.448 0.347 0.290 0.252 0.225 0.204 0.187 0.174 0.163
1.3 0.741 0.488 0.383 0.322 0.281 0.252 0.230 0.212 0.197 0.185
1.4 0.794 0.533 0.422 0.357 0.314 0.283 0.259 0.240 0.224 0.211
1.5 0.851 0.581 0.465 0.397 0.351 0.318 0.292 0.271 0.254 0.240
1.6 0.912 0.623 0.498 0.425 0.376 0.340 0.313 0.291 0.272 0.257
1.7 0.877 0.667 0.534 0.456 0.403 0.365 0.335 0.311 0.292 0.275
1.8 1.047 0.715 0.572 0.489 0.432 0.391 0.359 0.334 0.313 0.295
1.9 1.122 0.766 0.613 0.523 0.463 0.419 0.385 0.358 0.335 0.316
2.0 1.202 0.821 0.657 0.561 0.496 0.449 0.412 0.383 0.359 0.339
2.1 1.288 0.880 0.704 0.601 0.532 0.481 0.442 0.410 0.385 0.363
2.2 1.380 0.943 0.754 0.644 0.570 0.515 0.473 0._440 0.412 0.389
2.3 1.479 1.010 0.808 0.680 0.610 0.552 0.507 0.471 0.442 0.417
2.4 1.585 1.083 0.866 0.738 0.654 0.582 0.543 0.505 0.473 0.447
2.5 1.698 1.160 0.928 0.792 0.701 0.634 0.582 0.541 0.507 0.479
2.6 1.820 1.243 0.984 0.848 0.751 0.678 0.624 0.580 0.543 0.513
2.7 1.950 1,332 1.088 0.9810 0.805 0.728 0.689 0.621 0.582 0.550
2.8 2.089 1.427 1.142 0.975 0.862 0.780 0.716 0.666 0.624 0.589
2.9 2.239 1.529 1.223 1.044 0.924 0.836 0.768 0.713 0.669 0.631
3.0 2.399 1.638 1.311 1.119 0.990 0.895 0.823 0.764 0.716 0.676

Note - Values computed from Equation 6

in Bulletin 17B,

reference (46).
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Table F-11
TLIER TESTK VA 10P NT SIGNIFICANCE LEVEL

Sample Outlier Sample Outlier Sample Outlier Sample Qutlier

ize K Value ize K Value e K Value Size K Value
10 2.036 45 2.727 80 2.940 115 3.064
11 2.088 46 2.736 81 2.945 116 3.067
12 2.134 47 2.744 82 2.949 117 3.070
13 2.175 48 2.753 83 2.953 118 3.073
14 2.213 49 2.760 84 2.957 119 3.075
15 2.247 50 2.768 85 2.961 120 3.078
16 2.279 51 2.775 86 2.966 121 3.081
17 2.309 52 2.783 87 2.970 122 3.083
18 2.335 53 2.790 88 2.973 123 3.086
19 2.361 54 2.798 89 2.977 124 3.089
20 2.385 55 2.804 90 2.981 125 3.092
21 2.408 56 2.811 91 2.984 126 3.095
22 2.429 57 2.818 92 2.989 127 3.097
23 2.448 58 2.824 93 2.993 128 3.100
24 2.467 59 2.831 94 2.996 129 3.102
25 2.486 60 2.837 95 3.000 130 3.104
26 2.502 61 2.842 96 3.003 131 3.107
27 2.519 62 2.849 97 3.006 132 3.109
28 2.534 63 2.854 98 3.011 133 3.112
29 2.549 64 2.860 99 3.014 134 3.114
30 2.563 65 2.866 100 3.017 135 3.116
31 2.577 66 2.871 101 3.021 136 3.119
32 2.591 67 2.877 102 3.024 137 3.122
33 2.604 68 2.883 103 3.027 138 3.124
34 2.616 69 2.888 104 3.030 139 3.126
35 2.628 70 2.893 105 3.033 140 3.129
36 2.639 71 2.897 106 3.037 141 3.131
37 2.650 72 2.903 107 3.040 142 3.133
38 2.661 73 2.908 108 3.043 143 3.135
39 2.671 74 2.912 109 3.046 144 3.138
40 2.682 75 2.917 110 3.049 145 3.140
41 2.692 76 2.922 111 3.052 146 3.142
42 2.700 77 2.927 112 3.055 147 3.144
43 2.710 78 2.931 113 3.058 148 3.146
44 2.719 79 2.935 114 3.061 149 3.148

Note - Table contains one sided 10% significance level deviates for the normal
distribution. Source: Appendix 4, Bulletin 17B, reference (46).
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Table F-12
BINOMIA ISK TAB
Tables are probabilities of binomial risk for
various exceedance frequencies and record lengths.
10.0 Percent Chance Exceedance Event
Number
of L. Length of Period in Years .................
Exceedances 10 20 30 40 50 60 80 100
0 .3487 L1216 .0424 .0148 .0052 .0018 .0002 .0000
1 .3874 .2702 .1413 .0657 .0286 .0120 .0019 .0003
2 .1937 .2852 .2277 .1423 .0779 .0393 .0085 .0016
3 .0574 .1901 .2361 .2003 .1386 .0844 .0246 .0059
4 .0112 .0898 L1771 .2059 .1809 .1336 .0527 .0159
5 .0015 .0319 .1023 .1647 .1849 .1662 .0889 .0339
6 .0001 .0089 .0474 .1068 .1541 .1693 .1235 .0596
7 .0000 .0020 .0180 .0576 .1076 .1451 .1451 .0889
8 .0000 .0004 .0058 .0264 .0643 .1068 L1471 .1148
9 .0000 .0001 .0016 .0104 .0333 .0686 .1308 .1304
10 .0000 .0000 .0004 .0036 .0152 .0389 .1032 .1319
5,0 Percent Chance Exceedance Event
Number
of il Length of Period in Years .................
Exceedances 10 20 30 40 50 60 80 100
0 .5987 .3585 .2146 .1285 .0769 .0461 .0165 .0059
1 .3151 .3774 .3389 .2706 .2025 .1455 .0695 .0312
2 .0746 .1887 .2586 L2777 .2611 .2259 .1446 .0812
3 .0105 .0596 .1270 .1851 .2199 .2298 .1978 .1396
4 .0010 .0133 .0451 .0901 .1360 .1724 .2004 .1781
5 .0001 .0022 .0124 .0342 .0658 .1016 .1603 .1800
6 .0000 .0003 .0027 .0105 .0260 .0490 .1055 .1500
7 .0000 .0000 .0005 .0027 .0086 .0199 .0587 .1060
8 .0000 .0000 .0001 .0006 .0024 .0069 .0282 .0649
9 .0000 .0000 .0000 .0001 .0006 .0021 .0119 .0349
10 .0000 .0000 .0000 .0000 .0001 .0006 .0044 .0167
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Table F-12 (Cont)
INOM TAB
Tables are probabilities of binomial risk for
various exceedance frequencies and record lengths.
2.0 Percent Chance Exceedance Event
Number
of L Length of Period in Years ...............
Exceedances 10 20 30 40 50 60 80 10
0 .8171 .6676 .5455 .4457 L3642 .2976 .1986 .13
1 .1667 .2725 .3340 .3638 .3716 .3644 .3243 .27
2 .0153 .0528 .0988 .1448 .1858 .2194 L2614 .27
3 .0008 .0065 .0188 .0374 .0607 .0865 .1387 .18
4 .0000 .0006 .0026 .0071 .0145 .0252 .0545 .09
5 .0000 .0000 .0003 .0010 .0027 .0058 .0169 .03
6 . 0000 .0000 .0000 .0001 .0004 .0011 .0043 .01
7 .0000 .0000 .0000 .0000 .0001 .0002 .0009 .00
8 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .00
9 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .00
10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .00
ce Exceedance Event
Number
of Ll Length of Period in Years ...............
Exceedances 10 20 30 40 50 60 80 10
0 .9044 .8179 .7397 .6690 .6050 .5472 L4475 .36
1 .0914 .1652 .2242 .2703 .3056 .3316 .3616 .36
2 .0042 .0159 .0328 .0532 .0756 .0988 .1443 .18
3 .0001 .0010 .0031 .0068 .0122 .0193 .0379 .06
4 .0000 .0000 .0002 .0006 .0015 .0028 .0074 .01
5 .0000 .0000 .0000 .0000 .0001 .0003 .0011 .00
6 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .00
7 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .00
8 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .00
9 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .00
10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .00
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Table F-12 (Cont)
INOMI K TAB
Tables are probabilities of binomial risk for
various exceedance frequencies and record lengths.
5 Percent Chance Exceedance Event
Number
of L Length of Period in Years .................
Exceedances 10 20 30 40 S50 60 80 100
0 .9511 .9046 .8604 .8183 .7783 .7403 .6696 .6058
1 .0478 .0909 L1297 .1645 .1956 .2232 .2692 .3044
2 .0011 .0043 .0095 .0161 .0241 .0331 .0534 .0757
3 .0000 .0001 .0004 .0010 .0019 .0032 .0070 .0124
4 .0000 .0000 .0000 .0000 .0001 .0002 .0007 .0015
5 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001
6 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
7 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
8 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
9 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.2 Percent Chance eedance Event
Number
of Ll Length of Period in Years .................
Exceedances 10 20 30 40 S50 60 80 100
0 .9802 .9608 .9417 .9230 .9047 .8868 .8520 .8186
1 .0196 .0385 .0566 .0740 .0907 .1066 .1366 .1640
2 .0002 .0007 .0016 .0029 .0045 .0063 .0108 .0163
3 .0000 .0000 .0000 .0001 .0001 .0002 .0006 .0011
4 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001
5 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
6 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
7 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
8 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
9 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
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