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1. Purpose.  This Engineer Technical Letter (ETL) provides U.S. Army Corps of Engineers 
(USACE) with guidance for detection of abrupt and slowly varying changes (nonstationarities) in 
analyses of annual maximum discharge supporting USACE project planning, design, 
construction, operations and maintenance.  

2. Applicability.  This ETL is effective immediately and applies to all Headquarters (HQ) 
USACE elements and all USACE elements having responsibility for civil works. 

3. Distribution Statement.  Approved for public release; distribution is unlimited. 

4. References.  Required and related references are listed in Appendix A. 

5. Background.  USACE policies requires consideration of climate change in all studies to 
reduce vulnerabilities and enhance the resilience of our water resource infrastructure to the 
effects of climate change.  USACE projects, programs, missions and operations have generally 
proven to be robust enough to accommodate the range of natural climate variability over their 
operational life.  But in some places and for some impacts relevant to USACE operations, 
climate change and modifications to watersheds are undermining the fundamental design 
assumption of stationarity (the statistical characteristics of hydrologic time series data are 
constant through time).  This assumption has enabled the use of well-accepted statistical methods 
in water resources planning and design that rely primarily on the observed record.  This ETL 
provides technical guidance on detecting nonstationarities in the flow record which may continue 
to impact flow into the future and should be considered in the future without-project condition.  

6. Detection of Nonstationarities.  Changes in hydrologic processes can occur either abruptly or 
gradually depending on the characteristics of the nonstationarity factors affecting relevant 
physical processes.  Statistical methods have been developed to detect both abrupt and gradual 
change.  However, due to limitations in current understanding, this ETL does not apply to 
detection of the potential presence of Long-Term Persistence (LTP) in the discharge time series 
that are related to oscillations in climate regime over a wide range of temporal scales. 

a.  Appendix B provides detailed guidance on how to detect non-LTP nonstationarities for 
use in analyses of annual maximum discharge supporting USACE planning and engineering 
decisions.  A web tool and accompanying user manual facilitate the detection of nonstationarities 
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in stream gage data using the flow chart shown in Appendix B.  The tool has been developed to 
support consistent results and is available for USACE staff at 
https://maps.crrel.usace.army.mil/projects/rcc/portal.html and to the public at 
http://www.corpsclimate.us/ptcih.cfm. 

b.  Appendix C provides background information related to the potential for serial correlation 
within flow datasets.  

c.  Appendix D provides a glossary of statistical terms used throughout the guidance.  

d.  Appendix E provides an overview of how the detection of nonstationarities should be 
appropriately documented. 

7. Future Expansion of Support Documents for Implementation of this ETL.  This document 
may be supplemented by the following additional guidance in the future: 

a.  Guidance on how to attribute nonstationarities that are detected in annual maximum 
discharges to specific drivers such as anthropogenic climate change, distributed land use changes 
and watershed modification. 

b.  Guidance on how to carry out hydrologic analyses for cases where monotonic trends are 
detected after accounting for identified change points and where the smooth Lombard model 
identifies long time periods where the statistical properties of the dataset are gradually changing.  

c.  Guidance on how to apply the methods in this ETL to time series data input by the user, 
such as mean sea level, precipitation, annual minimum discharge records, stage, flow data pre-
processed to reflect a particular hydrologic response, naturalized flow records, or flow data 
generated from climate projections. 

8. The point of contact for this action is the lead of the Climate Preparedness and Resilience 
Community of Practice at 202-761-4163. 

FOR THE COMMANDER: 
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APPENDIX B 

Detection of Nonstationarities in Annual Maximum Discharges 

B-1.  Background.  Changes in hydrologic processes can occur either abruptly or gradually 
depending on the characteristics of the nonstationarity factors affecting physical processes (e.g., 
McCuen 2003; Chandler and Scott 2011).  These changes can potentially be detectable when 
examining hydrologic data (e.g., USACE 1994).  For example, changes in water regulation 
through the construction of a dam could abruptly change the streamflow patterns downstream. 
On the other hand, ongoing development within a watershed could gradually alter the shape of 
the resulting flood hydrograph over time (e.g., USACE 1993).  Statistical methods have been 
developed to detect both abrupt and slowly varying changes.  

a.  This guidance is directed at the detection of abrupt and slowly varying changes in annual 
maximum discharge records that could impact future without-project conditions.  Though the 
discussion focuses on extreme discharge, these tools and methodologies are more broadly 
applicable to other hydro meteorological records which may be incorporated at a later date. 

b.  This guidance does not address the potential presence of LTP in the discharge time series. 
While the presence of abrupt and slowly varying changes is generally interpreted as an indication 
of the violation of the stationarity assumption, it could also be related to oscillations in climate 
regime over a wide range of temporal scales in stationary time series (e.g., Klemes 1974, Potter 
1976, Cohn and Lins 2005 and Koutsoyiannis 2006).  LTP can be difficult to distinguish from 
deterministic, abrupt and gradual changes (e.g., Mauran et al. 2004, Rea et al. 2009 and Villarini 
et al. 2009), especially for locations lacking long time series records.  It is especially difficult to 
identify the presence of LTP in cases in which we do not have long time series. 

B-2.  Analysis and Detection of Abrupt and Slowly Varying Change.  There are several steps to 
consider when examining the presence of changes in hydrometeorological records.  Kundzewicz 
and Robson (2004) highlight four main tasks:  data preparation, exploratory data analysis, 
application of adequate test statistics, and interpretation of the results.  These four tasks are 
outlined in the flow chart displayed in Figure B-1 and can be described as follows: 

a.  Data Preparation.  This is an often overlooked but fundamental part of any study dealing 
with the detection of possible changes in historical records.  Key aspects to take into 
consideration are the quality of the data, historic changes in how data were collected (stream 
gage placement, etc.), natural phenomena that impacts data reliability (backwater conditions, 
frozen apparatus, etc.), presence of gaps and missing data, and the frequency with which data are 
collected.  It is important to work with long time series to relate the most recent potential 
changes to what was experienced in the past (e.g., Blöschl and Montanari 2010, Hirsch 2011).  
For the detection of nonstationarities in annual maximum peak flow records, the dataset being 
assessed should consist of a minimum of 30 years of record.  

b.  Exploratory Data Analysis. Basic data exploration includes plotting and reviewing the raw 
data.  This can often help to identify problems with the data, the presence of slowly varying or 
gradual changes, as well as (possibly) spatial patterns when analyzing multiple time series.  
When examining changes in flood frequency at hundreds of locations at once, alternative 
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methods include the Multiple Taper Method with Singular Value Decomposition (MTM-SVD; 
e.g., Rajagopalan et al. 1998), multiwavelet analysis or principal component analysis.  In this 
guidance, it is assumed that standard methods are appropriate for use in exploring data. 

c.  Types of Statistical Tests.  There are two primary types of tests to consider when detecting 
nonstationarity; parametric and nonparametric.  Considerations are provided below: 

(1)   When using parametric tests, an underlying statistical distribution is assumed, with the 
Gaussian (normal) distribution most commonly used.  The Anderson-Darling Test can be applied 
to assess whether or not a given dataset conforms to a normal distribution. 

(2)   One important factor in dealing with time series of annual maximum discharge is the 
highly skewed nature of the data.  It is inadvisable to use tests that solely rely on the assumption 
that the data come from the Gaussian distribution.  Instead, more flexible nonparametric tests 
should be applied to contrast these discharge datasets along with parametric methods. 

(3)   Nonparametric or distribution-free tests do not make distributional assumptions (e.g., 
Conover 1999, Mallakpour and Villarini 2016).  A disadvantage of using a nonparametric test is 
that they are less powerful in detecting Type I errors.  A Type I error is defined as the rejection 
of the null hypothesis when the null hypothesis is actually true.  The null hypothesis is the 
statement that the applied statistical test is seeking to reject (e.g., the time series is stationary). 
There are cases, however, where this loss of power is minimal and nonparametric tests do have 
the large advantage of having less restrictive assumptions (e.g., McCuen 2003; Kottegoda and 
Rosso 2008).  Additional information about nonparametric tests can be found in Conover (1999), 
among others. 

(4)   Katz (2013) argues that using traditional nonparametric methods for trend identification 
for extremes is inefficient because such methods are not appropriate for the potentially heavy 
tailed distributions one expects from theory for extremes.  He stated that the Generalized 
Extreme Value (GEV) distribution and the Generalized Pareto Distribution (GPD) can address 
the nonstationarity situations if the parameters are allowed to vary in time through an appropriate 
functional dependence on covariates, e.g., time or selected climate indices.  In his examples, 
Katz considers both block maxima (e.g., annual maxima) and peak over threshold processes, the 
latter being considered through a Poisson-GPD model.  He argues that both the GEV and the 
GPD framework are applicable even under clustering and the long range dependence of 
extremes.  The only penalty is increased variance and a slower rate of convergence. Maximum 
likelihood parameter estimation and model selection via Akaike Information Criterion (AIC), 
(e.g., Akaike 1974) or Bayesian Information Criterion (BIC), (e.g., Burnham and Anderson 
2002) are offered.  He contends that this is a more robust way of estimating trends in the full set 
of quantiles and their uncertainty.  

(5)   Similar conclusions were reached by Zhang et al. (2004).  They performed Monte Carlo 
experiments comparing different methods for the detection of trends in extreme events.  They 
showed that stronger power in detecting changes is obtained when considering the presence of 
trends in the parameters of the GEV distribution.  



ETL 1100-2-3 
28 Apr 2017 

 

B-3 

d.  Along the same lines, Yue et al. (2003) showed that the performance of the Mann-Kendall 
and Spearman tests in detecting changes was different depending on the distribution used, 
despite being nonparametric tests.  

B-3.  Prior Knowledge.  This guidance focuses on tests that allow for the detection of abrupt and 
slowly varying monotonic changes in annual maximum discharges.  For those interested in the 
detection of cyclical changes, the Noether’s test (e.g., Noether 1956; McCuen 2003) can be 
applied.  After preparing the data for analysis, the first element to consider is whether there is 
prior (a priori) knowledge of the existence of possible changes in the watershed of interest (e.g., 
year of construction of a dam).  A priori knowledge of an abrupt change in the 
hydrometeorological conditions affecting a dataset requires a test of the null hypothesis that two 
series are drawn from the same distribution.  In many situations, however, there is no a priori 
knowledge of the presence or nature of changes that may have occurred over time. In these cases, 
tests that allow the detection of changes at an unknown point in time should be used. 

B-4.  Nonstationarity Detection Methods.  A variety of methods have been proposed and 
developed as summarized by Reeves et al. (2007) and Beaulieu et al. (2008, 2012).  The vast 
majority of the published studies examining the presence of abrupt changes in the distribution of 
the variable of interest focus on changes in the mean of the distribution (the first moment of the 
distribution).  The records are tested for the presence of step changes in the second moment (the 
variance of the distribution) much more rarely, even though changes in variance could have large 
impacts, in particular at the tail of the distribution (e.g., Katz and Brown 1992, Knox 1993, 
Meehl et al. 2000, Ferro et al. 2005).  Perreault et al. (2000) proposed a Bayesian change point 
test for the detection of abrupt changes in mean and variance under the assumption that the data 
come from a Gaussian distribution.  Following Pegram (2000), Villarini et al. (2009, 2011) and 
Villarini and Smith (2010) applied the Pettitt test (Pettitt 1979) to the squared residuals with 
respect to a trend line to detect abrupt changes in the second moment of the flood peak 
distribution.  Another nonparametric test for the detection of abrupt changes in the variance at an 
unknown point in time is represented by the Lombard test (1987).  In this case, the Mood score 
function is used to detect changes in the variance of the distribution of the variable of interest at 
an unknown point in time.  Compared to the detection of abrupt changes in mean, Quessy et al. 
(2011) highlighted some of the difficulties in detecting abrupt changes in the variance.  Even 
though changes in higher moments may have even more dramatic effects on the extremes, their 
detection is complicated by the limited sample size that usually characterizes the available 
hydrometeorological records.  More recent methods implemented by the change point model and 
the energy based decisive method (see description above) allow for the detection of changes in 
the distribution of the variable of interest.  Both of these models are included within the web 
tool.  An alternative way of addressing this problem is to examine changes in the check function 
associated with the exceedance of a nominal quantile (e.g., Jain and Lall 2000; 
Sankarasubramanian and Lall 2003, Khalil et al. 2007), allowing a direct assessment of the 
changes in the tail of the distribution. 

a.  This ETL recommends applying the change point detection models described below to 
test for change points in annual maximum flow datasets.  These methods have been packaged 
into a web tool available to USACE staff at 
https://maps.crrel.usace.army.mil/projects/rcc/portal.html and to the public at 

https://maps.crrel.usace.army.mil/projects/rcc/portal.html
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http://www.corpsclimate.us/ptcih.cfm to support consistent, repeatable change-point detection 
analyses.  More detail related to the recommended statistical tests and their required input 
parameters are included in the user guide which accompanies the web tool and is available on the 
tool’s web site.  The same change point tests can be applied regardless of a priori knowledge of 
an abrupt change.  However, when a priori knowledge of a change point is available, users 
should be cautious of test results that do not identify a change point in the expected timeframe. 
The user can apply their knowledge of a potential change point to alter the significance 
parameters associated with each change point test to evaluate whether or not these significance 
parameters are being set to an appropriate value.  

(1)   The Lombard model (1987), like the other change point tests described in this ETL, 
identifies breaks in the mean and/or variance of the distribution of the time series of interest. 
Unlike the majority of statistical change point tests, the Lombard model does not assume that the 
transition from one state to the next occurs abruptly (i.e., from one year to the next).  Instead, the 
transition is allowed to happen either “smoothly” over a certain number of years or abruptly 
depending on how the Lombard model is applied. 

      (a)  The detection of both abrupt and smooth changes in the mean of the distribution of 
the variable of interest is based on the Wilcoxon score function.  The detection of changes in the 
variance of the variable of interest is based on the Mood score function.  The statistical 
significance of the results can be estimated using Monte Carlo simulations (Quessy et al. 2011). 
For the Lombard method, a p-value of 5% is often chosen as adequate evidence of an alternative 
hypothesis, meaning that there is a 5% chance of accepting the alternative hypothesis (sample 
means are not the same) when it is not true. 

      (b) The Lombard test has been recently applied to flood and drought records (e.g., 
Mazouz et al. 2011, Assani et al. 2011, Villarini and Smith 2013).  Quessy et al. (2011) provide 
an extensive evaluation of the Lombard test (see also Sugiura and Ogden (1994) and Bryden et 
al. (1995)).  The Lombard test can be applied to detect multiple change points using binary 
segmentation (e.g., Edwards and Cavalli-Sforza 1965), in which the presence of change points is 
tested for in each sub-series until no more statistically significant step changes are detected.  

(2)   The Pettitt (1979) test is related to the Lombard model that detects abrupt changes in the 
mean (Quessy et al. 2011).  Among the existing nonparametric tests, the Pettitt test (1979) is 
widely used in the hydrometeorological literature.  It is based on the Mann-Whitney test and 
allows testing whether two samples come from the same population.  It is designed to detect a 
single abrupt change in the mean of the distribution of the variable of interest at an unknown 
point in time. It is also possible to compute the statistical significance of the test Pettitt (1979).  

      (a)  Mallakpour and Villarini (2016) showed that the sensitivity of the Pettitt test in 
detecting abrupt changes in the mean increases with increases in the magnitude of the shift, 
increases with increases in record length, and decreases toward low or high extremes.  As with 
the Lombard model, a p-value of 5% is often chosen as adequate evidence of an alternative 
hypothesis, meaning that there is a 5% chance of accepting the alternative hypothesis (sample 
means are not the same) when it is not true.  

http://www.corpsclimate.us/ptcih.cfm
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      (b)  The Pettitt test can be applied to detect multiple change points using binary 
segmentation (e.g., Edwards and Cavalli-Sforza 1965), in which the presence of change points is 
tested for in each sub-series until no more statistically significant step changes are detected.  

(3)   The Bayesian change point (bcp) method applies Barry and Hartigan’s (1993) product 
partition model to identify change points within a sequence using Markov Chain Monte Carlo. 
The Bayesian alterative identifies statistically significant changes in sample mean within a 
univariate, Gaussian dataset (Erdmand and Emerson 2007).  

      (a)  Although the bcp method should be given consideration for analysis, it should be 
noted that peak annual flow datasets rarely fit a Gaussian (normal) distribution and thus in most 
instances this method would be inappropriate to apply.  

      (b)  The bcp model developed by Barry and Hartigan (1993) assumes that there exist 
unknown partitions within a sequence of values which break the dataset into groupings of values 
with a relatively constant mean.  In contrast to frequentist procedures for conducting change 
point analysis, which output the specific locations of change points, bcp characterizes the 
probability of a change point at each data point in the series being assessed in terms of a 
probability distribution.  This allows the user to identify several potential change points within a 
data series.  

      (c)  The basic bcp method can be extended to be made applicable to the multivariate case.  
To identify change points using bcp, the user specifies a probability threshold above which a 
change point should be considered significant.  The user can also adjust two tuning parameters: 
gamma (ɣ) and lambda (λ).  These parameters are selected to ensure the methodology devised by 
Barry and Hartigan (1993) “is effective in situations where there aren’t too many changes (ɣ 
small), and where the changes that do occur are of a reasonable size (λ small)” (Barry and 
Hartigan 1993, p. 312).  The tuning parameters vary between zero and one; typically, a default 
value of 0.2 works well (Barry and Hartigan 1993).  

(4)   The Change point model (cpm) is based on a framework originally developed by 
Hawkins et al. (2003) and Hawkins and Zamba (2005) to provide for a means of detecting 
statistically significant changes in mean or variance within a normally (Gaussian) distributed, 
univariate series.  Ross (2012) expanded upon the original model to allow for nonparametric 
change point detection.  

      (a)  The cpm can be applied by first selecting one of the following nonparametric, two-
sample hypothesis tests: Mann-Whitney, Mood, LePage, Kolmogorov-Smirnov or Cramer-von-
Mises statistics.  Selecting the Mann-Whitney test allows testing whether the mean from one 
group is different from the mean in another group (i.e., it can be viewed as the nonparametric 
counterpart of the t-test).  Similarly, the Mood test identifies changes in the variance between 
data subsets.  The LePage test, Kolmogorov-Smirnov test and the Cramer-von-Mises test identify 
distributional changes between data subsets.  The main difference among the tests for 
distributional changes is the fact that the Kolmogorov-Smirnov test tends to focus more on the 
central part of the distribution, while the Cramer-von-Mises test give more weight for 
discrepancies in the tails (e.g., Kottegoda and Rosso 2008).  
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      (b)  The cpm can be used for both batch (Phase I) and sequential (Phase II) change point 
detection.  By allowing for sequential, Phase II analysis, the cpm enables the user to easily detect 
multiple change points in a time series.  In order to perform a Phase II analysis a startup period is 
defined.  The startup period is used to initialize the analysis and prevents change points from 
being detected until the sample size becomes significant.  The null hypothesis is tested 
sequentially at each observation and attempts to identify statistically significant changes in the 
dataset as soon after they occur as possible.  Because it considers the input data as a stream of 
independent observations, output from the test includes both the time step at which the change 
point was detected, as well as the change point itself.  

(5)   The Energy-based divisive (ecp) method was developed based on the research carried 
out by Matteson and James (2014), who proposed a nonparametric test to detect multiple change 
points in the distribution of the variable of interest (see also James and Matteson 2014).  The ecp 
method makes as few assumptions as possible, allowing the detection of multiple change points 
and is able to detect any type of distributional changes.  The test is used to perform 
nonparametric change point analysis of both univariate and multivariate time series.  It is based 
on hierarchical clustering in which new change points are iteratively identified and can be 
diagrammed as a binary tree.  The statistical significance of the estimated change points is 
examined by means of a permutation test.  

b.  Many of the statistical tests recommended in this ETL for detecting the presence of 
change points require a user-specified significance parameter.  The significance parameter 
determines how sensitive the given statistical test is to detecting change points or monotonic 
trends.  The sensitivity parameters represent accepted probabilities of Type I errors. Significance 
values represent a choice among standards in statistics.  Selection of significance parameters 
should be made based on engineering judgment and the context of how the results of the 
statistical tests will be applied to hydrologic analysis.  

B-5.  Evaluation of Change Points.  A “strong” change point is one for which there is a 
consensus among multiple change point detection methods, robustness between changes in 
statistical properties, and for which an operationally significant change in magnitude is 
determined. 

a.  Consensus occurs when a minimum of two or more of the tests targeting either changes in 
the mean, distributional characteristics or variance are detecting a change point.  For example, if 
the Lombard Mood and the cpm Mood tests are both identifying a change point in variance, this 
would demonstrate consensus. 

b.  Change points can be considered Robust when tests targeting changes in two or more 
different statistical properties (mean, variance and/or overall distribution) of the dataset are 
indicating a statistically significant change point.  For example, if the distributional cpm LePage 
Test, identifies a change point at roughly the same time as the Lombard Mood and the cpm 
Mood tests for changes in variance are identifying a change point, this would demonstrate 
robustness. 
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(1)   Magnitude can be an indicator of a strong change point if the difference between the 
means and variances associated with the subsets of data before and after the change points being 
used to parse the dataset are operationally significant.  

B-6.  Monotonic Tests for Trend.  After the change point detection tests have been applied to 
divide the record into a series of statistically homogenous subsets, the presence of monotonic 
patterns within each of these subsets should be tested.  If no abrupt changes are detected, the 
presence of monotonic patterns should be examined using the entire record.  Tests for monotonic 
trends should be applied to data subsets with a minimum of ten years of records.  Tests for 
monotonic patterns indicate whether the statistical properties within subsets of data are relatively 
constant, increasing or decreasing.  Testing for monotonic trends provides the user with insight 
into whether or not the trends exhibited within the dataset are likely to persist.  If monotonic 
trends are detected within identified subsets of flow data, the user should apply engineering 
judgment when using hydrologic methods that rely on the stationarity assumption.  This ETL 
recommends applying the Mann-Kendall test and the Spearman test to identify monotonic 
patterns within homogenous subsets (e.g., Helsel and Hirsch, 1993; McCuen, 2003).  Further 
guidance will be developed and provided by USACE on how to carry out hydrologic analysis for 
the case where monotonic trends are detected after identified change points have been accounted 
for. 

a.  The Mann-Kendall and Spearman tests provide information about the presence of 
monotonically increasing or decreasing patterns (e.g., logarithmic, exponential), of which linear 
trends are just a special case of monotonic patterns.  Therefore, they do not provide quantitative 
information about the magnitude of a change (e.g., slope of the regression line).  This is an 
important point because there it may be tempting to test the series using the Mann-Kendall test 
and then using linear regression to estimate the magnitude of the slope.  Doing so assumes that 
the record of interest is linearly changing with time.  If this is the case, it is more meaningful to 
test directly the null hypothesis that the slope of the regression line is equal to zero.  Because of 
the skewed nature of the peak discharge records, the use of Pearson’s correlation coefficient 
would lead to violations of the Gaussian assumptions made in linear regression.  Therefore, the 
use of robust linear regression methods, such as the Sen’s estimator (Sen 1968), is 
recommended.  

b.  While the attention here is on monotonically increasing or decreasing patterns, other more 
complex patterns may better describe the data (e.g., Hall and Tajvidi 2000;  Ramesh and Davison 
2002, Mudelsee et al. 2003 and Villarini et al. 2009, 2010).  

B-7.  Independence.  The tests to detect the presence of abrupt changes or monotonic patterns 
described above rely on the independence assumption.  The violation of the independence 
assumption would affect the statistical significance of the test results because of an effective 
sample size smaller than the number of observations.  As Cox and Stuart (1955) stated, “positive 
serial correlation among the observations would increase the chance of significant answer even 
in the absence of a trend.”  Carrying out analysis to assess the validity of the independence 
assumption can be difficult.  However, if there is a strong indication of serial correlation among 
observations or if there is interest in assessing the validity of this assumption in greater depth, the 
methods described in Appendix C could be incorporated into analysis.  
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B-8.  Implications of Statistically Significant Results.  There is a large body of work in the 
literature pointing to the issue of statistically significant results, as discussed in Nicholls (2001) 
and Rosner et al. (2014) among others.  If statistically significant changes are detected, it is 
important to understand the possible physical mechanisms responsible for these changes.  

a.  Useful sources of information are represented by the metadata maintained by the U.S. 
Geological Survey (USGS); generally available under the “Water-Year Summary” for the station 
of interest), technical reports and published studies.  While in some cases the reason for a change 
may be obvious (e.g., construction of a dam), often it is not possible to identify a clear driver.  

b.  Information on how to perform a more detailed attribution analysis and how to project 
these changes in the future will be provided in forthcoming guidance on Attribution of 
Nonstationarities in in annual peak streamflow records.  

B-9.  Flow Chart.  A flow chart of the recommended steps to detect abrupt and slowly varying 
changes (nonstationarities) in annual maximum discharge records (not including the potential 
presence of LTP related to oscillations in climate regime over a wide range of temporal scales in 
stationary time series) is provided in Figure B-1. 

B-10.  Example.  Examples illustrating the steps shown in Figure B-1 are provided in Appendix 
E with further details in the user guide developed to support the web tool.  
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Figure B-1.  Flow chart detailing the suggested steps in detecting nonstationarities in annual 

maximum discharges. 

Exploratory Data Analysis:    
Plot annual maximum 
discharge time series 

YES NO 

Do the Mann-Kendall and Spearman tests 
detect the presence of a monotonic trend 

in subsets of data?  

YES 

Data Preparation: Quality 
Control Tests, Data Availability 

Assessment etc. 

NO 

Assess the default significance 
parameters associated with 

each change point test applied– 
Should they be adjusted to be 

more sensitive to facilitate 
detection of a suspected 

change point year? 

Apply Change Point Detection Models: 
Lombard Model, Pettitt Test, Bayesian 

Model, Change Point Model and Energy-
Based Decisive Model 

 

Is there one or more statistically 
significant change points being detected 
by the detection models being applied? 

Do the Mann-Kendall 
and Spearman tests 

detect the presence a 
monotonic trend in the 
entire period of record? 

Is there priori knowledge of 
when a change point year 

should be occurring within the 
dataset – but it is not being 

d d? 
YES 

NO 

YES-
ADJUST 
& 
RETEST 

Are there multiple, robust change 
points in the dataset that demonstrate 

consensus among statistical methods or 
a single change point?  

NO 

Stationarity Assumption Holds for 
Data Assessed 

Carry out analysis using the entire 
period of record. Observed record 

can be considered stationary. 
YES 

Detection of Monotonic Trends Negates 
Stationarity Assumption – Document detected 
trend and its effects on future without-project 
conditions use in subsequent analyses for the 
adopted design or study. 

No 

YES 

For analysis, truncate the dataset 
to the subset of data after the 

identified change point– compare 
to results generated using period 

of record of available data 

Carry out sensitivity 
analysis with all 
potential subsets of 
record post 
identified change 
points- include 
period of record 
analysis 
 

Single  

Stationarity Assumption Holds in Subsets of Data Being 
Assessed 
Based on sensitivity test results, the engineer should 
incorporate the appropriate results in subsequent analyses for 
the adopted design or study. 

 

Future Guidance: 
Attribution 

Attribute nonstationarities that are detected in annual maximum 
discharges to specific drivers such as anthropogenic climate change, 
distributed land use changes and watershed modifications. 

Multiple 

NO 
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APPENDIX C 

Potential for Serial Correlation within Flow Datasets  

C-1.  Background.  The statistical tests suggested within this guidance to detect the presence of 
abrupt and gradual changes in annual maximum flow datasets rely on the independence 
assumption.  Violating the independence assumption implies that there is information shared 
among different observations.  Consequently, the statistical significance of the test results is 
affected because the number of effective, independent data points is less than the total number of 
observations.  As written by Cox and Stuart (1955), “positive serial correlation among the 
observations would increase the chance of significant answer even in the absence of a trend.”  

a.  Different techniques have been proposed to accommodate for the potential presence of 
serial correlation, such as pre-whitening and trend-free pre-whitening (e.g., Kulkarni and von 
Stroch 1995, Yue et al. 2003), or corrections to account for the effective number of observations 
(e.g., Lettenmaier 1976).  Consult Khaliq et al. (2006, 2008) for a discussion of different 
techniques to account for the presence of serial dependence in the data.  

b.  It is worth clarifying that the presence of serial correlation affects only the interpretation 
of the hypothesis testing in the case of statistically significant results.  There is no need to 
account for autocorrelation if there is not enough evidence to reject the null hypothesis (i.e., the 
results would be even less statistically significant). 

c.  One word of caution is needed regarding the use of pre-whitening.  This technique usually 
assumes that the temporal dependence can be modeled by an autoregressive model of order 1 
[AR(1)] (see, e.g., Box et al. 1994, Vandaele 1983).  It is then possible to examine the presence 
of changes in the residual series after accounting for the autocorrelation structure.  It is unclear, 
however, how valid is the assumption that the temporal dependence can be described by an 
AR(1) model and what are the repercussions of model misspecification in assessing the 
significance of the trend test. 

d.  Figure C-1 shows an example of the impact of abrupt and gradual changes on the 
autocorrelation function.  

(1)   In the top-left panel, 100 values generated from a standard Gaussian distribution are 
shown. These values are independent by construction, as also indicated the autocorrelation 
function (ACF; Figure C-1, top-right panel).  

(2)   In the middle-left panel the last 50 values are shifted by 5 units. This shift introduces an 
artificial temporal dependence in an otherwise independent record (Figure C-1, middle-right 
panel).  

(3)   By adding a linear trend (Figure C-1, bottom-left panel), a spurious temporal 
dependence is introduced as well. 

e.  If significant temporal correlation is found, the question then becomes:  is the temporal 
dependence representative of the process of interest, or is it an artifact due to the presence of 
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gradual/abrupt changes?  This is a “chicken or egg” type of situation. It is difficult to provide 
guidelines on how to deal with this issue because any recommendations should likely be on a 
case-by-case basis.  As an overall statement, it is preferable to work on the original record, rather 
than on one filtered according to some pre-specified and unchecked models.  The intention is not 
to downplay the role of the independence assumption, rather to raise awareness of potential 
pitfalls associated with the use of techniques applied without understanding their strengths and 
weaknesses.  

f.  Spatial correlation may also affect the results of these tests.  If there is a regional tendency 
towards statistically significant changes in the distribution of the variable of interest, it is 
necessary to examine the impact of spatial correlation in these records to evaluate the field 
significance (e.g., Livezy and Chen 1983; Douglas et al. 2000; Hirsch and Ryberg 2012).  It is 
intuitive that, if a statistically significant trend is detected at a particular location, it is more likely 
detected at close-by stations as well.  Therefore, the inter-site correlation has an effect on the 
significance level of the trend tests by reducing the effective sample size.  If unaccounted for, the 
spatial correlation would result in the rejection of the null hypothesis (no change) more 
frequently than if no spatial correlation was present.  Different methods have been proposed to 
address this issue, such as the Walker’s test and false discovery rate (Wilks 2006) or bootstrap 
(e.g., Douglas et al. 2000; Hirsch and Ryberg 2012).  This is obviously an issue only if analyses 
are performed at the regional scale, not if the interest is in a limited number of time series. 
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Figure C-1.  Examination of the impact of abrupt and linear trends on the autocorrelation function. 
Top panels: time series of 100 independent standard Gaussian variants (left) and corresponding 
autocorrelation function. Middle panels:  same as the top panel but with the second half of the time 
series shifted by 5.  Bottom panels: same as the top panel but after superimposing a linear trend.  
The blues lines in the left panels represent the 95% confidence intervals. 
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APPENDIX D 

Glossary 

Abrupt Statistical Change:  Abrupt statistical changes occur at a single point in the record, and 
separate the period of record into two subsets of data that have different means, variances, and/or 
parent distributions.  A record can have multiple abrupt changes separating it into several subsets 
of data. 

Annual Exceedance Probability:  The probability that flooding will occur in any given year 
considering the full range of possible annual floods.  

Annual Maximum Peak Flood:  The highest instantaneous peak discharge in each year of 
record.  Practically, this is the highest value observed in the record of 15 minute or 60 minute 
values, depending on the recording interval of the device. 

Annual Maximum Peak Flow Series:  A list of annual maximum floods.  

Batch (Phase I) Change Point Detection:  An application of the cpm where change points are 
detected one at a time given complete information about the data. 

Bayesian Change Point (bcp):  A parametric change point model developed by Barry and 
Hartigan (1993) which assumes that there exist unknown partitions within a sequence of values 
which break the dataset into groupings of values with a relatively constant mean.  In contrast to 
frequentist procedures for conducting change point analysis, which output the specific locations 
of change points, this method characterizes the probability of a change point at each data point in 
the series being assessed in terms of a probability distribution. 

Bayesian Statistics:  When a Bayesian approach is applied, results are expressed in terms of 
probability distributions, in contrast to a frequentist approach, where conclusions are presented 
as frequencies.  

Binary Segmentation:  Binary segmentation consists of repeatedly dividing a dataset into two 
sub-series of data until the desired result is achieved.  In this specific context, this would consist 
of dividing the period of record until stationary subsets were identified. 

Change Point Model (cpm):  The cpm is based on a framework to provide for a means of 
detecting statistically significant changes in the overall distributional properties, mean or 
variance within a univariate series.  Within this application, the cpm is applied by first selecting 
one of the following nonparametric, two-sample hypothesis tests: Mann-Whitney, Mood, 
LePage, Kolmogorov-Smirnov or Cramer-von-Mises statistics.  

Change Point Test:  A statistical test to determine the presence of a statistically significant 
change in the data’s mean, variance, or distribution. 
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Confidence Limits:  Computed values that are established considering the uncertainty in 
estimating a parameter (i.e., population mean, standard deviation) from a sample. 

Cramer-von-Mises Change Point Test:  A nonparametric statistical test that is implemented by 
the cpm package in R. Cramer von Mises detects abrupt, changes in the overall statistical 
properties of a dataset (detects distributional changes).  

Energy-Based Divisive Method (ecp):  The ecp method is a framework for detecting change 
points within a hydrometeorological data series which makes as few assumptions as possible, 
allowing the detection of multiple change points and is able to detect any type of distributional 
changes.  The test is used to perform nonparametric change point analysis of both univariate and 
multivariate time series.  

Gaussian (Normal) Distribution:  A commonly used, symmetric distribution that is 
characterized by a unimodal, bell-shaped density curve.  The sample mean (µ, first moment) 
defines where the peak of the density curve occurs, the standard deviation (σ, second moment) 
defines the width of the bell-shaped curve.  

Homogeneity:  Records are described as homogeneous if they are from the same population. 
Flood discharges may be from different populations if, for example some occurred before the 
building of a dam and some after the building of a dam, or if some occurred before the watershed 
was urbanized and some after it became urbanized, or because of a change in climatic conditions. 
Changes in climatic conditions include changes in reoccurring natural phenomena, such as 
summer storms and snowmelt, shifts in climatic conditions induced by climate change, and other 
long-term, persistent trends in climate conditions.  

Kolmogorov-Smirnov Change Point Test:  A nonparametric statistical test that is implemented 
by the cpm package in R.  The Kolmogorov-Smirnov Change Point Test detects abrupt changes 
in the overall statistical properties of a dataset (distributional changes).  

LePage Change Point Test:  A nonparametric statistical test that is implemented by the cpm 
package in R.  The Lapage Change Point Test detects abrupt, changes in the overall statistical 
properties of a dataset (detects distributional changes).  

Lombard Model:  A nonparametric statistical test that is applied to detect change points within 
a hydrometeorological dataset.  The Lombard applies binary segmentation to test for the 
presence of a change point in each sub-series of data until no more statistically significant step 
changes are detected.  

Long-Term Persistence (LTP):  Long-term persistence in time series as it relates to oscillations 
over a wide range of temporal scales. 

Mann-Kendall Trend Test:  A nonparametric measure of trend.  The test calculates the Kendall 
Rank Correlation Coefficient, or Kendall’s tau, a value between -1 and 1, where values close to 
negative one suggest monotonically decreasing series and values close to positive one suggest 
monotonically increasing series. 
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Mann-Whitney Change Point Test:  A nonparametric statistical test that is implemented by the 
cpm package in R.  The Mann-Whitney Change Point Test detects abrupt, changes in the mean 
of a dataset.  

Mean:  The center of mass of a given probability distribution. 

Moment:  Probability distributions can be described in terms of moments.  The first moment is 
defined as the population mean (µ) or average and represents the center of mass of a given 
probability distribution.  The second moment is defined as the population variance (σ2).  The 
square root of the sample variance is the population standard deviation (σ).  The third moment is 
defined as the population skewness 

Monotonic Trends:  Temporal patterns (increasing or decreasing) within hydrometeorological 
datasets.  

Monte Carlo Simulation:  A Monte Carlo simulation is a simulation in which random statistical 
sampling techniques are employed such that the result determines estimates for unknown values. 
A Monte Carlo algorithm is a statistical procedure that determines the occurrence of probabilistic 
events or values of probabilistic variables for deterministic models; i.e., making a random draw.  

Mood Change Point Test:  A nonparametric statistical test that is implemented by both the cpm 
package in R and the Lombard Model.  The Mood Change Point Test detects changes in the 
variance of a dataset. When applied within the Lombard framework, the Mood Change Point test 
can detect both abrupt and smooth changes in sample variance.  When applied within the cpm 
framework, the Mood Change Point Test detects abrupt changes in sample variance.  

Nonparametric Statistics:  Nonparametric statistics do not require that the dataset under 
assessment can be characterized by any particular probability distribution. 

Nonstationarity:  The case where the statistical characteristics of hydrologic data series are not 
constant through time.  

Null Hypothesis:  The hypothesis which the applied test is seeking to reject.  For example, in 
change point analysis, the null hypothesis is that the dataset is statistically homogenous.  

Parametric Statistics:  Parametric statistics are based on the assumption that the data being 
analyzed come from a parent population that can be characterized by a known probability 
distribution (e.g., normal distribution) and its associated parameters (e.g., mean, standard 
deviation, skew).  

Pettitt Change Point Test:  The Pettit Test is a nonparametric statistical test that detects abrupt 
changes in the mean of a hydrometeorological dataset.  It is based on the Mann-Whitney test, and 
it tests whether two samples come from the same population.  

Population:  The entire (usually infinite) number of data from which a sample is taken or 
collected.  The total number of past, present, and future floods at a location on a river is the 
population of floods for that location even if the floods are not measured or recorded. 
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Posterior Probability:  The end result of a Bayesian statistical simulation representing the 
likelihood of the event in question given past and current information about its occurrence. 

Pre-whitening:  A technique used to reduce the degree of serial correlation within a dataset.  

Resilience:  Defined in Executive Order 13653, “Preparing the United States for the Impacts of 
Climate Change,” as “the ability to anticipate, prepare for, and adapt to changing conditions and 
withstand, respond to, and recover rapidly from disruptions.”  According to the 6 April 2015 
Memorandum to Major Subordinate Command and Center Commanders, engineers should 
consider the resilience of the (1) project, (2) system, and (3) community and evaluate how 
actions taken at any level will affect the others.  These considerations should reflect the four 
principles important in resilience: prepare and plan, absorb and withstand, recover, and adapt.  
Examples of resilient systems include those that can absorb and withstand foreseeable future 
conditions, can “fail safely” at greater than design loading, recover rapidly from disruptions, and 
support adaptation that minimizes the potential for failure over the life cycle, which can be as 
long as 100 years (e.g., ER 1110-2-8159) and should account for environmental factors that may 
extend beyond the period of economic analysis (ER 1105-2-100). 

Sample:  An element, part, or fragment of a “population.”  Every hydrologic record is a sample 
of a much longer record. 

Sen’s Slope:  Sen’s Slope estimator provides for a robust, parametric, best-fit line to a dataset 
like the maximum annual flow time series.  Sen’s slope is an average of all the slopes between 
every two points in two-dimensional series.  For this application, the two dimensions are time 
and annual maximum flow.  Values for Sen’s slope that are greater than zero correspond to an 
increasing, positive trend. Values less than zero indicate a negative trend. 

Sensitivity Parameter:  A property of a nonstationarity detection method that can be altered to 
change how many nonstationarities are likely detected in a given dataset.  For many of the 
methods, sensitivity parameters are threshold values against which p-values are compared to 
decide whether to reject the null hypothesis. 

Sequential (Phase II) Change Point Detection:  An application of the cpm where more than 
one change point is detected at a time, as information about the data is iteratively passed into the 
model. 

Serial Correlation (Autocorrelation):  Serial correlation exists when the data points that make 
up a sequence are interdependent. Serial correlation indicates that there is a relationship between 
a given variable and itself over a given time interval. 

Significance Level:  The significance level or p-value is the probability of rejecting a hypothesis 
when it is in fact true or the measure of the probability that the sample is not drawn from the 
candidate distribution.  A p-value of 5% is often chosen as adequate evidence of an alternative 
hypothesis, meaning that there is a 5% chance of accepting the alternative hypothesis (sample 
means are not the same) when it is not true. 



ETL 1100-2-3 
28 Apr 2017 

 

D-5 

Skewness:  A measure or index of the lack of symmetry in a frequency distribution. Function of 
the third moment of magnitudes about their mean, a measure of asymmetry.  Also called 
coefficient of skew or skew coefficient. 

Smooth Statistical Change:  For this application a smooth transition refers to a gradual change 
in the mean, variance/standard deviation, and/or distribution of the annual maximum discharge 
dataset recorded at a USGS site.  The only methods in the tool that can detect smooth changes in 
the statistical properties of the datasets being analyzed are the smooth Lombard Wilcoxon and 
smooth Lombard Mood methods. 

Spearman Trend Test:  The Spearman Test is a nonparametric measure of trend. Spearman’s 
test calculates the Spearman Rank Correlation Coefficient, or Spearman’s rho, a value between   
-1 and 1.  Values close to -1 suggest strong negative dependence between the two variables (in 
this case time and annual maximum flow) and values close to 1 suggest strong positive 
dependence between two variables. 

Standard Deviation:  A measure of the dispersion or precision of a series of statistical values 
such as precipitation or streamflow.  It is the square root of the sum of squares of the deviations 
from the arithmetic mean divided by the number of values or events in the series.  It is standard 
practice to divide by the number of values minus one in order to get an unbiased estimate of the 
variance from the sample data. 

Stationarity:  The case where the statistical characteristics of time series data are constant 
through time.  

t-test:  This test is a parametric, statistical hypothesis test which compares the means of the two 
groups and determines the likelihood of the observed differences occurring by chance. 

Type I Error:  Rejection of the null hypothesis when the null hypothesis is actually true, or a 
false positive.  For example, in change point analysis, this would be the detection of change point 
when it does not actually exist.  

Type II Error:  The statistical test fails to reject the null hypothesis when the null hypothesis is 
not true, or a false negative. For example, in change point analysis, the statistical test would fail 
to identify a change point when the dataset is actually nonstationarity.  

Variance:  A measure of the amount of spread or dispersion of a set of values around their 
mean, obtained by calculating the mean value of the squares of the deviations from the mean, 
and hence equal to the square of the standard deviation. 

Wilcoxcon Change Point Test:  A nonparametric statistical test that is implemented by the 
Lombard Model. The Wilcoxcon Change Point Test detects changes in the mean of a dataset. 
When applied within the Lombard framework the Wilcoxcon Change Point Test can detect both 
abrupt and smooth changes in sample mean.  
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APPENDIX E 

Guidelines for Incorporation into Hydrologic Analysis 

E-1.  All cases presented in this ETL assume that sound engineering judgment based on 
experience plays an important role in the analysis, and that specific conditions may deviate from 
the general case presented. USACE (1994, 1997) suggests methods that can be used if 
nonstationarity is detected. 

E-2.  Case 1:  A single, statistically significant change point is detected in the flow record and 
can be attributed to the construction of a major water management structure that significantly 
impacts flood peaks (e.g., large dam or flood control diversion). Example 3.1 in the User Guide 
for the Nonstationarity Detection Tool further illustrates this application.  

a.  Given the presence of this nonstationarity, design flood estimation for the present and 
future should consider whether flood frequency estimates made using the entire period of record 
would inaccurately reflect the risk of occurrence associated with a given flood magnitude.  

b.  The preferred approach would be to first generate a homogenized, natural flow record at 
the site of interest to evaluate whether additional nonstationarities within the naturalized flow 
record are being generated by drivers besides regulation (for example climate change and/or land 
use changes).  If no additional nonstationarities are detected in the homogenized natural flow 
record, the user should apply a hydrologic or hydraulic model to re-simulate the period of record 
prior to the construction of the water management structure to create a homogenous time series 
reflecting regulated flow conditions.  The homogenized, regulated record should be adopted for 
analysis.  

c.  If it is not feasible to homogenize the flows for the entire period of record, a more 
simplistic approach would be to truncate the flow record being used for analysis to the period 
after the construction of the water management structure.  

(1)   The recommended minimum record length for hydrologic analysis is 30 years of record.  

(2)   A shorter flow record is less representative of the natural variability that exists within 
hydrometeorological datasets. This adds uncertainty to the analysis and should be characterized 
alongside the presentation of results. For flow-frequency analysis this may be accomplished by 
displaying confidence limits, though other methods are available.  

d.  After selecting a period of record for analysis the user should conduct a monotonic trend 
analysis on the homogenized, full period of record or the subset of data being assessed.  If a 
monotonic trend is detected, this implies that the dataset may still not meet the assumption of 
stationarity.  This finding should be documented and the user should apply engineering judgment 
when carrying out hydrologic analysis.  The case where monotonic trends are still detected after 
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statistically identified change points have been accounted for will be addressed in greater detail 
in future guidance.  

E-3.  Case 2:  Case 2 is a continuation of Case 1, where the post-dam or pre-dam record contains 
additional statistically significant change points that cannot be attributed to a specific driver such 
as the construction of a water management structure.  

a.  At a regulated site, factors like climate change or land use changes can also produce 
change points in the flow record.  

b.  Tests for other statistically significant change points in the record at a regulated site 
should be conducted using the homogenized, natural flow record (i.e., the impacts of major water 
management structures have been removed).  

E-4.  Case 3:  Statistically significant change points are detected in an unregulated flow record. 
Example 3.2 in the user guide for the web tool further illustrates this application. 

a.  Design flood estimation for the present using the entire period of record could result in 
estimate flood frequency values that inaccurately reflect the risk of occurrence associated with a 
given flood magnitude.  

b.  The flow record could be truncated to the portion of the period of record following a 
“strong,” most recent, and statistically significant change point, with the following 
considerations that require engineering judgment:  

(1)   The recommended minimum record length for hydrologic analysis is 30 years of record.  

(2)   A shorter flow record is less representative of the natural variability that exists within 
hydrometeorological data series.  This adds uncertainty to the analysis, which should be 
characterized alongside the presentation of results.  For flow-frequency analysis this is often 
accomplished by displaying confidence limits, though other methods are available.  

(3)   The user should seek to find a balance between identifying a homogenous flow record 
and one that is long enough to be representative of the natural variation in maximum flow 
magnitudes at the site.  When multiple change point points are detected, their relative “strength” 
should be assessed to identify the “strongest” change points within the series using the 
consensus, robustness, and magnitude criteria described in Appendix B.B-5.  

c.  When there are multiple change points detected with consensus or a long period of smooth 
statistical change (via Lombard) detected, it is recommended that the user carry out sensitivity 
analyses using all potential periods of record, including the period over which the Lombard 
model might be detecting a smooth change and the entire period of record of available data.  
Note that even if a single, strong, statistically significant change point is identified, a sensitivity 
analysis should still be carried out using the entire period of record.  

d.  The user should assess the sensitivity of the results to altering the period of record used 
for analyses and the user should evaluate whether the observed trend is expected to persist into 
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the future.  The following tests are recommended for change points detected in an unregulated 
record: 

(1)   A sensitivity analysis using the period of record following all statistically significant, 
“strong” change points identified within an annual maximum average daily flow dataset. 

(2)   If the smooth Lombard model identifies a long (greater than 30 years) period where the 
statistical properties of the dataset are in flux, which also transects the portion of the period of 
record following other abrupt, “strong” change points, an additional sensitivity analysis should 
be conducted using the portion of the period of record identified as being in flux by the smooth 
Lombard model.  

(a)  Future guidance will address the case where the smooth Lombard method indicates that 
the statistical properties associated with long portions of a dataset are gradually changing.  

(b)  If the smooth Lombard model detects a smooth change over a short period (up to five 
years), the result may be given the same consideration as the results of the abrupt change point 
tests. 

(3)   A sensitivity analysis should be conducted to assess the differences between the results 
generated using a truncated record for analysis versus applying traditional methods that 
incorporate all available flow data (period of record analysis). 

e.  The Mann-Kendall Test and Spearman Test should be applied to subsets of statistically 
homogenous flow to assess monotonic trends.  This will provide the user with further insight into 
whether trends observed within the statistical properties of the flow data are likely to persist.  A 
detectable monotonic trend implies that the time series may still not meet the assumption of 
stationarity.  This finding should be documented, and the users should apply engineering 
judgment when carrying out hydrologic analysis.  Future guidance will address the case where 
monotonic trends are still detected after statistically identified change points have been 
accounted for. 

f.  Engineers should consider the resilience of the system when incorporating the range of 
results produced by conducting the sensitivity analysis described above in their adopted 
hydrologic design or study results.  In doing so, they will consider three interdependent levels of 
resilience laid out in the USACE Resilience Initiative:  (1) project, (2) system and (3) 
community, to evaluate how actions taken at any level will affect the others. These 
considerations should reflect the 6 April 2015 Memorandum to MSC and Center Commanders, 
which identifies four principles important in resilience:  Prepare and plan, absorb and withstand, 
recover, and adapt. Examples of resilient systems include those that can absorb and withstand 
foreseeable future conditions, can “fail safely” at greater than design loading, recover rapidly 
from disruptions, and support adaptation that minimizes the potential for failure over the life 
cycle, which can be as long as 100 years (e.g., ER 1110-2-8159) and should account for 
environmental factors that may extend beyond the period of economic analysis (ER 1105-2-100). 

g.  Efforts should be made to qualitatively evaluate physical processes that might be driving 
the change points detected in the flow record and the potential for these processes to continue to 
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impact flow into the future, which impacts the future without-project condition. These processes 
include the following: 

(1)   Temporal variation in land use practices should be studied using historic land use 
datasets and aerial imagery.  

(2)   Hydraulic structure inventories should be consulted to assess when both major and 
minor hydraulic structures were installed throughout the study area.  

E-5.  Case 4:  No statistically significant change points can be detected within the annual 
maximum flow data series.  Example 3.3 in the User Guide for the Nonstationarity Detection 
Tool further illustrates this application. 

a.  If there is a priori knowledge of the occurrence of a change point in the watershed, the 
user should assess the default significance parameters associated with each change point test 
applied. 

(1)   Evaluate whether adjustment of the significance parameters to be more sensitive to 
facilitates detection of a suspected change point year. 

(2)   After making appropriate adjustments to the significance parameters, the statistical 
models should be re-applied to assess the statistical properties of the flow record. 

b.  The Mann-Kendall test and Spearman test should be applied to the period of record to test 
for monotonic trends.  If a monotonic trend is detected, this implies that the dataset may still not 
meet the assumption of stationarity.  This finding should be documented and the user should 
apply engineering judgment when carrying out remaining hydrologic analyses.  The case where 
monotonic trends are still detected after statistically identified change points have been 
accounted for will be addressed in greater detail in future guidance. 

c.  If no statistically significant change points or monotonic trends are detected, the annual 
maximum streamflow record meets the stationarity assumption, and standard methods can be 
applied. 
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